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Abstract

Clinical decision-making is a crucial aspect of health care, involving the balanced integration of scientific evidence, clinical
judgment, ethical considerations, and patient involvement. This process is dynamic and multifaceted, relying on clinicians’
knowledge, experience, and intuitive understanding to achieve optimal patient outcomes through informed, evidence-based
choices. The advent of generative artificial intelligence (AI) presents a revolutionary opportunity in clinical decision-making.
AI’s advanced data analysis and pattern recognition capabilities can significantly enhance the diagnosis and treatment of diseases,
processing vast medical data to identify patterns, tailor treatments, predict disease progression, and aid in proactive patient
management. However, the incorporation of AI into clinical decision-making raises concerns regarding the reliability and accuracy
of AI-generated insights. To address these concerns, 11 “verification paradigms” are proposed in this paper, with each paradigm
being a unique method to verify the evidence-based nature of AI in clinical decision-making. This paper also frames the concept
of “clinically explainable, fair, and responsible, clinician-, expert-, and patient-in-the-loop AI.” This model focuses on ensuring
AI’s comprehensibility, collaborative nature, and ethical grounding, advocating for AI to serve as an augmentative tool, with its
decision-making processes being transparent and understandable to clinicians and patients. The integration of AI should enhance,
not replace, the clinician’s judgment and should involve continuous learning and adaptation based on real-world outcomes and
ethical and legal compliance. In conclusion, while generative AI holds immense promise in enhancing clinical decision-making,
it is essential to ensure that it produces evidence-based, reliable, and impactful knowledge. Using the outlined paradigms and
approaches can help the medical and patient communities harness AI’s potential while maintaining high patient care standards.

(JMIR AI 2024;3:e55957) doi: 10.2196/55957
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Clinical Decision-Making and Clinical
Intelligence

Clinical decision-making can be defined as a fundamental aspect
of health care practice, encompassing a wide set of skills,
competencies, processes, and outcomes through which clinicians
gather and analyze relevant patient data; differentiate among
various conditions; and diagnose, treat, and manage patient care,
balancing the effectiveness, risks, and benefits of each treatment;
patient preferences; and other related values within broader
societal and cultural contexts and guidelines or standards of
care [1-3].

Clinical decision-making involves a complex interplay of
research and biomedical knowledge, experience, and intuitive
understanding developed through years of practice, contextual
analytical reasoning, patient-centeredness, and compliance with
ethical standards and legal requirements, with the goal of
arriving at optimal health outcomes for patients by making
informed, evidence-based, and shared choices while ensuring
patient autonomy and confidentiality [4,5].

The 4 major pillars of clinical decision-making are scientific
evidence, clinical judgment (in some complex cases not isolated
to 1 clinician but involving a team of health care professionals,
each contributing their expertise), ethical considerations, and
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patient involvement, which are pivotal to the delivery of
high-quality health care [6,7].

Clinical decision-making is not a static but rather a dynamic,
multifaceted, iterative process based on reflective practice,
which implies reviewing and auditing clinical decisions and
outcomes to continuously learn and improve decision-making
skills in the face of uncertainty and epistemic risks [5,8].

The Advent of Generative Artificial
Intelligence and Its Role in Supporting
Clinical Decision-Making

Artificial intelligence (AI) [9] and, in particular, generative AI
[10] have the potential to revolutionize the field of clinical
decision-making with their advanced capabilities in data analysis
and pattern recognition. However, together with their rise, there
is a growing necessity to ensure that the knowledge used and
produced is evidence based and reliable. This necessity stems
from the potential risks and biases associated with AI-generated
insights that may not align with established medical knowledge
or practices.

Generative AI can process vast amounts of medical data,
including patient records, imaging data, laboratory test results,
other diagnostic inputs, and clinical studies, as well as research
papers, to identify patterns and correlations that might be missed
by clinicians. By analyzing patient data, generative AI can help
in tailoring treatments to individual patients, improving the
efficacy of therapies and reducing side effects, predicting disease
progression and potential complications, aiding clinicians in
proactive patient management, and assisting in diagnosing

diseases, potentially identifying conditions earlier and more
accurately than using traditional methods [11].

On the other hand, generative AI can produce “hallucinations”
or even “fabrications” and “falsifications,” generating inaccurate
or misleading information that does not accurately reflect the
data it was trained on or reality [12,13], which is of particular
concern in the medical realm.

Addressing these challenges requires a multifaceted approach,
including improving data set quality and diversity, refining
model architectures, and incorporating mechanisms for fact
checking and validation. Moreover, developing methodologies
for the model to express uncertainty or request clarification
when generating outputs on topics in which it has less
confidence could enhance reliability. In real-world clinical
applications where accuracy and truthfulness are paramount, it
is crucial to implement safeguards such as human oversight,
rigorous testing across diverse scenarios, and continuous
monitoring and updating of AI-based models to mitigate the
risks associated with these inaccuracies.

In this conceptual paper, to address these concerns, we introduce
11 “verification paradigms,” with each paradigm being a unique
method to verify the evidence-based nature of AI in clinical
decision-making.

Comparing Clinical Versus AI Reasoning

Interesting parallelisms between clinical decision-making and
AI reasoning can be drawn (Figure 1), especially in the context
of frequentist and Bayesian thinking and large language models
(LLMs) such as GPT-4, which use conditional probability,
revealing an interesting interplay of similarities and contrasts
[5].

Figure 1. Integrating clinical expertise with artificial intelligence (AI) for enhanced health care outcomes—a schematic representation of the flow and
interplay among traditional clinical reasoning, data acquisition, AI-driven predictive analytics, and the continuous learning cycle leading to improved
patient care and diagnostics. This figure was created with BioRender.com.

In clinical decision-making, the reliance on scientific evidence
mirrors AI’s dependence on extensive data sets for training.

Clinicians, through years of practice, develop an intuitive sense
of diagnosis and treatment. Clinical reasoning often involves
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abductive reasoning, which is a form of logical inference that
starts with an observation or set of observations and then seeks
to find the simplest and most likely explanation. In clinical
practice, this means forming hypotheses based on symptoms
and available data to diagnose a patient’s condition. AI,
particularly in fields such as machine learning and diagnostic
algorithms, also frequently uses abductive reasoning—AI-based
systems are, indeed, designed to analyze data, identify patterns,
and make predictions or decisions based on that analysis. In
many ways, this mirrors the process of abductive reasoning in
which the most likely conclusion is drawn from the available
information. For example, in medical diagnostics, AI-based
systems might analyze patients’ symptoms, medical history,
and test results to suggest possible diagnoses. The aspect of
human expertise underlying clinical reasoning somewhat
parallels how AI-enhanced models develop a form of “intuition”
from their vast training data [14,15].

When faced with complex cases, clinical decision-making often
involves a collaborative approach among health care
professionals, akin to the multifaceted approach of AI that
integrates diverse data sources and algorithms. Ethical
considerations and patient involvement are central to clinical
decisions, much like how AI-based models need to be ethically
aligned and user centric. Furthermore, both fields are dynamic
and iterative—clinicians continually adapt their methods based
on new research and patient feedback, similar to how
AI-enhanced models evolve with new data and interactions.

On the AI side, traditional models often align with frequentist
statistics, where the frequency of past events informs future
predictions, somewhat like clinicians using epidemiological
data. Modern AI, particularly in machine learning, uses Bayesian
methods, updating the likelihood of outcomes with new data,
reflecting how clinicians revise their hypotheses about diagnoses
or treatments as new patient information comes to light. LLMs
such as GPT-4 can predict outcomes based on conditional
probability, which can be compared to clinicians using
symptoms to predict diagnoses [16].

AI’s proficiency in pattern recognition and predictive analysis
also finds a parallel in clinical practice, where patterns in patient
symptoms and test results are crucial for effective
decision-making. However, despite these parallelisms,
significant differences remain, with AI lacking the empathetic
and deeply intuitive component inherent in human
decision-making and clinicians interpreting data within a broader
human context, an ability that AI has yet to fully replicate.

In essence, while there are notable similarities in the use of
statistical methods and data analysis between clinical
decision-making and AI reasoning, the human aspects of
intuition, empathy, and ethical considerations underscore the
unique characteristics of each field. The future of health care
may lie in the harmonious integration of these 2 domains,
leveraging the strengths of each to enhance medical care and
improve patient outcomes (Figure 1).

Toward Clinical LLMs: Necessity of
Verifying Evidence-Based Knowledge

However, the integration of generative AI into clinical
decision-making necessitates a rigorous verification process to
ensure the reliability and accuracy of the AI-generated insights.
This verification is crucial because, as previously mentioned,
AI-based models can sometimes generate conclusions based on
flawed or biased data, leading to inaccurate or even harmful
recommendations. It is essential that AI-generated advice aligns
with current medical standards and best practices in addition to
adhering to ethical standards, respecting patient autonomy, and
ensuring equitable treatment [17,18].

Clinically oriented LLMs [19-25] such as ClinicalBERT,
BlueBERT, CAML, DRG-LLaMA, GatorTronGPT, or PaLM
have shown impressive capabilities, yet their application in
clinical settings faces stringent requirements. Traditional
methods of assessing these models’ clinical knowledge often
depend on automated evaluations using narrow benchmarks.
To overcome these shortcomings, Singhal et al [25] recently
introduced MultiMedQA, a comprehensive benchmark that
merges 6 medical question-answering data sets covering a range
of areas from professional medicine to consumer queries and
includes HealthSearchQA, a new data set of medically related
web-based search questions. This novel approach includes a
human evaluation framework that examines model answers
across various dimensions, namely, accuracy, understanding,
reasoning, potential harm, and bias. The authors tested both
PaLM and its instruction-tuned version, Flan-PaLM, on
MultiMedQA. Flan-PaLM, using diverse prompting techniques,
set a new standard in accuracy across all MultiMedQA
multiple-choice data sets, including MedQA, MedMCQA,
PubMedQA, and MMLU clinical topics, achieving a remarkable
67.6% accuracy in MedQA (US Medical Licensing
Examination–style questions), which is >17% higher than the
previous best. However, human assessments uncovered
significant shortcomings. To address these, the authors
introduced “instruction prompt tuning,” an efficient method for
adapting LLMs to new domains with just a few examples. The
resultant model, Med-PaLM, shows promise, yet it still does
not match clinician performance even though the authors could
observe that model scale and instruction prompt tuning
significantly enhance comprehension, knowledge recall, and
reasoning.

A further risk is that LLMs might reinforce existing biases and
provide inaccurate medical diagnoses, potentially leading to
detrimental effects on health care. Zack et al [26] aimed to
evaluate whether GPT-4 harbors biases that could influence its
application in health care settings. Using the Azure OpenAI
interface, the authors scrutinized GPT-4 for racial and gender
biases and assessed the impact of such biases on four clinical
applications of LLMs—(1) medical education, (2) diagnostic
reasoning, (3) development and implementation of clinical plans,
and (4) subjective patient evaluations—involving experiments
using prompts mimicking typical GPT-4 use in clinical and
medical educational settings and drawing from New England
Journal of Medicine Healer clinical vignettes and research on
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implicit bias in health care. The study compared GPT-4’s
estimates of demographic distributions of medical conditions
against actual US prevalence data. For differential diagnosis
and treatment planning, the research analyzed variations across
demographic groups using standard statistical methods to
identify significant differences. The study revealed that GPT-4
inadequately represents demographic diversity in medical
conditions, often resorting to stereotypical demographic
portrayals in clinical vignettes. The differential diagnoses
generated by GPT-4 for standardized clinical vignettes tended
to reflect biases associated with race, ethnicity, and gender.
Furthermore, the model’s assessments and plans demonstrated
a notable correlation between demographic characteristics and
recommendations for costlier procedures, as well as varied
perceptions of patients.

All this, taken together, suggests the potential role of LLMs in
medicine, but human evaluations also highlight the current
models’ limitations, underscoring the importance of
comprehensive evaluation frameworks and continued

methodological advancements to develop safe, effective LLMs
for clinical use.

Implementing “Verification Paradigms”:
A Comprehensive Evaluation Framework

Overview
Several “simulation and scenario testing” or “verification”
paradigms can be particularly effective in verifying the
evidence-based nature of generative AI in clinical
decision-making. The 11 paradigms proposed in this paper were
devised following thorough familiarization with existing
literature and extensive consultation with experts in the field to
ensure that the methodologies were not only grounded in the
latest academic research and theoretical frameworks but also
shaped by practical insights and recommendations from medical
professionals and AI technology specialists (Textbox 1 and
Table 1).

Textbox 1. Overview of the verification paradigms.

Verification paradigms and brief description

• Quiz, vignette and knowledge survey: uses clinical scenarios to test artificial intelligence (AI)’s medical knowledge and reasoning.

• Historical data comparison: compares AI recommendations with known clinical outcomes to gauge accuracy.

• Expert consensus: evaluates AI-generated diagnoses or treatment plans against expert medical opinion.

• Cross-discipline validation: verifies AI insights with professionals from various medical disciplines for comprehensive evaluation.

• Rare or complex simulation and scenario testing: assesses AI’s ability to handle rare and complex medical cases through simulated scenarios.

• False myth: tests AI’s capability to identify and reject medical myths or outdated concepts.

• Challenging (or controversial) question: presents AI with complex medical questions to evaluate its nuanced understanding and reasoning.

• Real-time monitoring: monitors AI recommendations in clinical settings to observe real-world efficacy and safety.

• Algorithm transparency and audit: focuses on the transparency of AI’s decision-making process and its ability to be audited.

• Feedback loop: involves continuous AI improvement based on feedback from practical applications and outcomes.

• Ethical and legal review: regularly reviews AI recommendations to ensure that they adhere to ethical guidelines and legal standards.
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Table 1. Verification paradigms with their strengths and weaknesses.

WeaknessesStrengthsVerification paradigm

Quiz, vignette, and knowledge
survey

•• Complex to designComprehensive evaluation
• •Real-world relevance Resource intensive

•• Potential bias in test creationAssessment of contextual understanding and probabilis-
tic reasoning

Historical data comparison •• Dependent on data qualityReal-world applicability
• •Evidence-based evaluation Historical bias

•• May not capture AI’sa potential for novel in-
sights

Objective benchmarking

Expert consensus •• SubjectiveLeverages human expertise
• •Valuable in complex cases Time-consuming

•• Potential for expert biasIncorporates ethical judgment

Cross-discipline validation •• Coordination challengesComprehensive evaluation from multiple perspectives
• •Mitigates the risk of siloed decision-making Requires broad expert availability

Rare or complex simulation and
scenario testing

•• Potentially limited by available dataReveals AI’s capabilities in handling diversity
• •Can identify areas for innovation Resource intensive

False myth •• Requires careful selection of mythsTests AI’s current knowledge base
• •Assesses ability to discern evidence-based information Risk of reinforcing incorrect information

Challenging (or controversial)
question

•• Subjective evaluation criteriaEvaluates AI’s handling of ambiguity and complexity
• •Assesses balance of different viewpoints Depends on quality of input questions

Real-time monitoring •• Requires controlled clinical environmentDirect insight into practical impact
• •Simulates real-world testing Ethical concerns with experimental use

Algorithm transparency and audit •• Complexity for end usersEnhances trust and understanding
• •Facilitates regulatory compliance Risk of exposing proprietary information

Feedback loop •• Requires ongoing effort and resourcesEnsures continuous improvement
• •Adapts to changing medical knowledge Dependence on quality of feedback

Ethical and legal review •• Time-consumingSafeguards patient rights
• •Ensures adherence to ethical guidelines Needs multidisciplinary expertise

aAI: artificial intelligence.

The Quiz, Vignette, and Knowledge Survey Paradigm
This approach involves assessing the AI’s proficiency in various
domains, such as medical knowledge and diagnostic reasoning,
and its understanding of therapeutic interventions by using
quizzes, vignettes, and validated knowledge surveys designed
to mimic real-world clinical scenarios [27]. This would require
the AI to have not only a vast knowledge base of medical
information but also, and especially, the ability to apply this
knowledge contextually, thus demonstrating an understanding
of the nuances of patient presentations and how they correlate
with various medical conditions and treatments. In addition,
this format could incorporate elements of both frequentist and
Bayesian thinking, reflecting the probabilistic nature of clinical
reasoning—in other words, as previously mentioned, the AI
would have to weigh the likelihood of different diagnoses based
on the presented symptoms and history, similar to how clinicians
use Bayesian reasoning to update their probability assessments
as new information becomes available.

This approach has a number of strengths, including
comprehensive evaluation, real-world relevance, contextual
understanding, probabilistic reasoning assessment, and
adaptability to new information. On the other hand, it suffers
from some weaknesses, such as design complexity and resource
intensiveness, potential bias in test creation, and lack of
interdisciplinary evaluation.

Currently, this approach is the most leveraged. An extensive
body of literature has found that LLMs such as ChatGPT can
successfully pass medical examinations [28] although with
varying degrees of heterogeneity and variability [29], exhibiting
strong abilities in explanation, reasoning, memory, and accuracy.
On the other hand, LLMs struggle with image-based questions
[30] and, in some circumstances, lack insight and critical
thinking skills [31].

Some of the studies that have exploited quizzes, vignettes, and
validated knowledge surveys [32,33] have quantified the fluency
and accuracy of AI-based tools using validated and reliable
instruments such as the “Artificial Intelligence Performance
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Instrument” [32]. This tool includes 9 items related to medical
and surgical history, namely, symptoms, physical examination,
diagnosis, additional examinations, management plan, and
treatments. The Artificial Intelligence Performance Instrument
score ranges from 0 (“inadequate clinical case management by
the AI”) to 20 (“excellent clinical case management by the AI”).
This score can be further subdivided into 4 subscores: patient
feature, diagnosis, additional examination, and treatment score.

The Historical Data Comparison Paradigm
This approach involves comparing AI-generated
recommendations with outcomes from historical data—by
analyzing cases in which the clinical outcomes are well known,
one can assess how well the AI’s suggestions would have
aligned with actual scenarios. This would help in the
comprehension of the AI’s accuracy in real-world health care
settings, providing insights into its potential benefits and
limitations. This is a crucial step in understanding AI’s
performance and guiding its integration into clinical practice,
ensuring that AI-supported decisions are in line with
evidence-based medical standards and, ultimately, enhance
patient care outcomes.

Strengths of this approach include real-world applicability,
evidence-based evaluation, and objective benchmarking by
offering a clear, objective, data-driven, and evidence-based way
to benchmark AI performance against known outcomes,
facilitating a straightforward and comprehensive assessment of
its accuracy. Furthermore, this method enables the identification
of potential gaps and improvement areas—through direct
comparison with historical outcomes, specific areas in which
AI recommendations may fall short can be identified, guiding
further refinements. Demonstrating AI’s ability to match or
surpass historical outcomes can build trust among clinicians
and patients regarding AI’s utility in health care. However, this
method has some weaknesses, too, including dependence on
data quality in that the approach is heavily reliant on the
availability and quality of historical data, with poor data quality
skewing results and misleading about AI’s true performance.
In addition, historical data may contain biases (eg, diagnostic,
treatment, or outcome biases), which can inadvertently be
reinforced by AI, affecting the fairness and accuracy of its
recommendations. This shortcoming is known as “historical
bias,” which arises when the data or corpora used to train
AI-based tools no longer accurately reflect the current reality.
The potential lack of novel insights is another limitation as this
method benchmarks against known outcomes and may not fully
capture AI’s potential to provide novel insights or diagnose
conditions that were previously undetected or misdiagnosed.
Furthermore, this paradigm evaluates AI against past standards
of care, which may not account for advancements in medical
knowledge or changes in clinical guidelines over time (“static
evaluation”), and its performance on complex, multifactorial
cases might not be accurately assessed if historical data are
limited or if such cases were managed differently due to
evolving standards of care.

Currently, to the best of our knowledge, no published studies
have leveraged this approach in the biomedical arena.

The Expert Consensus Paradigm
In this paradigm, AI-generated diagnoses or treatment plans are
evaluated by a panel of medical experts, with the consensus
among these experts on the validity of the AI’s recommendations
serving as a measure of their reliability. This paradigm is
particularly useful in assessing the AI’s performance in complex
cases in which human expertise is invaluable, ranging from the
psychiatric field in dealing with issues such as suicide risk
assessment [34] to occupational medicine [35]; oncology, with
the management of malignancies [36]; and complex surgical
procedures such as bariatric surgery [37].

Strengths include high-quality validation of AI’s performance,
ensuring that AI-generated recommendations are thoroughly
vetted by experts, and bringing a high level of scrutiny and
quality control that is particularly important in complex medical
fields. Incorporation of human expertise and adaptability to
complex cases are other strengths by relying on medical experts
to evaluate AI advice and integrating nuanced human judgment
and clinical experience that AI might lack or in those instances
for which AI algorithms might not have sufficient training data
or might lack the capability to understand context deeply.
Furthermore, expert feedback provides continuous learning
opportunities, offering a platform for AI-based systems to be
continuously updated and improved, enhancing their accuracy
and reliability over time. This leads to heightened acceptance
of AI tools as having a consensus from medical experts can
increase trust among health care providers and patients in
AI-generated diagnoses or treatment plans.

On the other hand, expert feedback is time and resource
intensive—gathering a panel of experts and reaching a consensus
can be time-consuming and expensive, which may not be
feasible for every clinical decision or in settings with limited
resources. In addition, despite being experts, humans are subject
to biases that might affect their judgment, potentially leading
to the validation of inaccurate AI recommendations. Scalability
issues represent a further shortcoming—the approach may not
scale well to everyday clinical practice, where quick
decision-making is often required and the luxury of convening
an expert panel for each AI recommendation is not practical.
Furthermore, variability in expert opinion could lead to
inconsistent validation of AI-generated recommendations and
uncertainty in their reliability. Finally, there is a risk that this
paradigm could discourage direct validation of AI algorithms
through objective measures or independent verification,
potentially overlooking errors or biases in the AI-based systems
themselves.

The Cross-Discipline Validation Paradigm
This paradigm is rooted in the understanding that health care
delivery increasingly relies on the expertise and coordination
of diverse professionals to address complex health issues
effectively. This approach recognizes that no single professional
has all the knowledge and skills necessary to provide
comprehensive care, especially in cases that involve multifaceted
medical, psychological, social, and ethical considerations. As
clinical decision-making is seen as a multidisciplinary teamwork
process, this verification paradigm involves cross-verifying
AI-generated insights with experts from various medical
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disciplines. For example, a diagnosis made by an AI based on
radiology images could be evaluated by experts in radiology,
oncology, and pathology. This multidisciplinary approach
ensures comprehensive evaluation and mitigates the risk of
siloed decision-making, which is known to result in incomplete
information, lack of coordination, and duplication of efforts,
leading to inefficient care, higher costs, increased risk of medical
errors, and decreased patient satisfaction, ultimately impacting
the quality of patient care and health outcomes.

Currently, little is known about the multidisciplinary nature of
LLMs. Li et al [38] evaluated the proficiency of AI-based tools
in addressing interdisciplinary queries in cardio-oncology,
leveraging a questionnaire consisting of 25 questions compiled
based on the 2022 European Society of Cardiology guideline
on cardio‐oncology. ChatGPT-4 showed the highest percentage
of good responses at 68%, followed by Bard, Claude 2, and
ChatGPT-3.5 at 52% and LLaMA 2 at 48%. A specific area of
concern was in treatment and prevention, where all LLMs scored
poorly or borderline, particularly when their advice deviated
from current guidelines, such as the recommendation to interrupt
cancer treatment for patients with acute coronary syndrome.
Other studies have assessed LLMs as support tools for
multidisciplinary tumor boards in the planning of therapeutic
programs for patients with cancer [39,40].

The Rare or Complex Simulation and Scenario Testing
Paradigm
In this method, the AI-based tool is tested against a variety of
simulated clinical scenarios, including rare and complex cases
such as frail patients with multiple comorbidities, unusual
presentations of diseases, or cases in which symptoms are
ambiguous or misleading. This comprehensive testing can
identify areas for innovation and reveal the strengths and
limitations of the AI-based tool in diverse clinical situations,
such as AI’s capabilities in handling diversity. Conversely, this
paradigm can be resource intensive and potentially limited by
available data.

A recent study [41] explored ChatGPT’s potential contributions
to the diagnosis and management of rare and complex diseases,
such as idiopathic pulmonary arterial hypertension,
Klippel-Trenaunay syndrome, early-onset Parkinson disease,
and Rett syndrome. LLMs can detect the disease early through
AI-driven analysis of patient symptoms and medical imaging
data, rapidly analyze an extensive body of biomedical literature
for a better understanding of the mechanisms underlying the
disease, and offer access to the latest research findings and
personalized treatment plans.

Another study [42] examined the efficacy of 3 popular LLMs
in medical education, particularly for diagnosing rare and
complex diseases, and explored the impact of prompt
engineering on their performance. Experiments were conducted
on 30 cases from a diagnostic case challenge collection using
various prompt strategies and a majority voting approach to
compare the LLMs’performance against human consensus and
MedAlpaca, an LLM designed for medical tasks. The findings
revealed that all tested LLMs surpassed the average human
consensus and MedAlpaca’s performance by margins of at least
5% and 13%, respectively. In categories of frequently

misdiagnosed cases, Google Bard equaled MedAlpaca but
exceeded human consensus by 14%. GPT-4 and GPT-3.5
showed superior performance over MedAlpaca and human
respondents in often moderately misdiagnosed cases, with
minimum accuracy improvements of 28% and 11%,
respectively. Using a majority voting strategy, particularly with
GPT-4, yielded the highest overall accuracy across the
diagnostic complex case collection. On the Medical Information
Mart for Intensive Care III data sets, Google Bard and GPT-4
reached the highest diagnostic accuracy scores of 93% with
multiple-choice prompts, whereas GPT-3.5 and MedAlpaca
scored 73% and 47%, respectively.

The False Myth Paradigm
This paradigm involves deliberately introducing known medical
myths or outdated concepts into the AI’s training data. The AI’s
ability to identify and reject these myths serves as a test of its
understanding of current medical knowledge and its ability to
discern evidence-based information. On the other hand, this
approach requires a careful selection of myths and, if used in
an inappropriate way, can reinforce incorrect information.

A few studies have harnessed this approach [43,44]. These
studies evaluated the accuracy of 2 AI tools, ChatGPT-4 and
Google Bard, in debunking 20 sleep-related myths using a
5-point Likert scale for falseness and public health significance
and compared their performance with expert opinions. ChatGPT
labeled 85% of the statements as either “false” (45%) or
“generally false” (40%), showing high reliability in identifying
inaccuracies, especially regarding sleep myths surrounding
timing, duration, and behaviors during sleep. The tool
demonstrated varying success in other categories such as
presleep behaviors and brain function related to sleep. On a
5-point Likert scale, ChatGPT scored an average of 3.45 (SD
0.87) in identifying the falseness of statements and 3.15 (SD
0.99) in understanding their public health significance, indicating
a good level of accuracy and understanding. Similarly, Google
Bard identified 19 out of 20 statements as false, which was not
significantly different from ChatGPT-4’s accuracy. Google
Bard’s average falseness rating was 4.25 (SD 0.70), with
skewness of −0.42 and kurtosis of −0.83, indicating a
distribution with fewer extreme values compared to that of
ChatGPT-4. For public health significance, Google Bard scored
an average of 2.4 (SD 0.80), with skewness and kurtosis of 0.36
and −0.07, respectively, suggesting a more normal distribution
than that of ChatGPT-4. The intraclass correlation coefficient
between Google Bard and sleep experts was 0.58 for falseness
and 0.69 for public health significance, showing moderate
agreement. Text mining analysis showed that Google Bard
focused on practical advice, whereas ChatGPT-4 emphasized
theoretical aspects. A readability analysis found that Google
Bard’s responses matched an 8th-grade reading level, making
them more accessible than ChatGPT-4’s, which aligned with a
12th-grade level.

The Challenging (or Controversial) Question Paradigm
In this paradigm, the AI-based tool is presented with
controversial or complex medical questions that do not have
straightforward answers. The way in which AI navigates these
questions, balancing different viewpoints and evidence, can
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reveal its depth of understanding and its ability to handle
nuanced medical issues. In the realm of medicine, evidence is
hierarchical, with systematic reviews and meta-analyses at the
top. An analytical evaluation would consider how the AI
prioritizes, evaluates, and appraises different levels of evidence
and whether it can differentiate between high-quality and
lower-quality studies. In addition, AI should detect and minimize
biases present in medical literature and data sources.
Analytically, this involves evaluating the algorithms for their
ability to identify potential biases in studies (eg, publication
bias and selection bias) and adjust their conclusions accordingly.
Shortcomings of this paradigm include subjective evaluation
criteria and dependence on the quality of input questions.

A few studies [45,46] have assessed the skills of AI-based tools
in understanding or generating complex and nuanced clinical
documents, such as guidelines.

The Real-Time Monitoring Paradigm
In this paradigm, the AI’s recommendations are implemented
in a controlled clinical environment, and patient outcomes are
closely monitored, simulating a randomized controlled trial
(RCT). This real-world testing provides valuable feedback on
the AI’s efficacy and safety in actual clinical settings.

While this paradigm can provide direct insights into practical
impact and simulate real-world testing, it requires a controlled
clinical environment and may be limited by ethical concerns
related to the experimental use of AI.

So far, only a few RCTs have been implemented. A recent
blinded RCT [47] explored the efficacy of ChatGPT alongside
traditional typing and dictation methods in assisting health care
providers with clinical documentation, specifically in writing
a history of present illness based on standardized patient
histories. A total of 11 participants, including medical students,
orthopedic surgery residents, and attending surgeons, were
tasked with documenting history of present illness using 1 of
the 3 methods for each of the 3 standardized patient histories.
The methods were assessed for speed, length, and quality of
documentation. Results indicated that, while dictation was the
fastest method and resulted in longer and higher-quality patient
histories according to the Physician Documentation Quality
Instrument score, ChatGPT ranked intermediate in terms of
speed. However, ChatGPT-generated documents were more
comprehensive and organized than those produced through
typing or dictation. A significant drawback noted was the
inclusion of erroneous information in slightly more than
one-third of ChatGPT-generated documents, raising concerns
about accuracy. In addition, there was a lack of consensus
among reviewers regarding the quality of patient histories.

In another controlled trial [48], ChatGPT’s utility in providing
empathetic responses to people with multiple sclerosis was
assessed. The study recruited a sample of 1133 participants
(mean age 45.26, SD 11.50 years; 68.49% female), who were
surveyed through a web-based form distributed via digital
communication platforms. Participants, blinded to the authors
of the responses, evaluated alternate responses to 4 questions
on a Likert scale from 1 to 5 for overall satisfaction and used
the Consultation and Relational Empathy scale for assessing

perceived empathy. Results showed that ChatGPT’s responses
were perceived as significantly more empathetic than those from
neurologists. However, there was no significant association
between ChatGPT’s responses and mean satisfaction. College
graduates were significantly less likely to prefer ChatGPT’s
responses compared to those with a high school education.

The Algorithm Transparency and Audit Paradigm
This paradigm focuses on the transparency of the AI algorithms
and the ability to audit their decision-making processes. By
understanding how the AI-based tool arrives at its conclusions,
clinicians can better assess the validity of its recommendations,
which is crucial for building trust in AI-based systems among
health care professionals.

Strengths include improved decision-making and enhanced trust
and confidence by demystifying how decisions are made, thus
building trust among clinicians and patients, crucial for the
acceptance and integration of AI in health care. Clinicians can
make more informed decisions by understanding the reasoning
behind AI recommendations, potentially leading to better patient
outcomes. AI-based tools can also facilitate regulatory
compliance—transparency is key to meeting regulatory
standards for medical devices and software, including AI-based
systems used in health care. AI enables continuous improvement
as a transparent decision-making process allows for easier
identification of errors or biases in the AI system, facilitating
ongoing refinement and improvement. Furthermore, exposing
the decision-making process has educational benefits for health
care professionals, helping them understand complex AI
methodologies and enhancing their ability to work alongside
AI tools. On the other hand, this approach has some weaknesses
that should be acknowledged, including complexity for end
users—AI decision-making processes, especially in deep
learning, can be incredibly complex and difficult for end users
to understand, potentially limiting the effectiveness of
transparency. Understanding and trusting the AI process might
lead some clinicians to overrely on AI recommendations without
applying their judgment, especially in ambiguous or complex
cases. Complete transparency might expose proprietary
algorithms to potential theft or misuse, challenging companies
to balance transparency with protecting their intellectual
property. Moreover, there is potential room for
misinterpretation—there is a risk that transparency could lead
to misinterpretation of how AI algorithms work, especially
without a strong foundation in data science or AI methodologies
among health care professionals. Finally, developing transparent
AI systems that are also understandable to clinicians requires
significant resources, including time and expertise, potentially
slowing down innovation.

The Feedback Loop Paradigm
This approach involves the continuous updating of the AI system
based on feedback from its practical applications, with clinicians
providing feedback on the AI’s performance, which is then used
to refine and improve the AI models. This iterative, ongoing
process ensures that the AI-based system properly evolves and
adapts to changing medical knowledge and practices.
Conversely, it also requires ongoing efforts and resources in
addition to depending on the quality of the feedback.
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A few studies have investigated reproducibility and repeatability
[49,50]. In a study [49] involving emergency physicians, 6
unique prompts were used in conjunction with 61 patient
vignettes to assess ChatGPT’s ability to assign Canadian Triage
and Acuity Scale scores through 10,980 simulated triages.
ChatGPT returned a Canadian Triage and Acuity Scale score
in 99.6% of the queries. In terms of temporal reproducibility
and repeatability, the study found considerable variation in the
results—21% due to repeatability (using the same prompt
multiple times) and 4% due to reproducibility (using different
prompts). ChatGPT’s overall accuracy in triaging patients was
47.5%, with an undertriage rate of 13.7% and an overtriage rate
of 38.7%. Of note, providing more detailed prompts resulted in
slightly greater reproducibility but did not significantly improve
accuracy.

In another study [50] assessing ChatGPT’s proficiency in
answering frequently asked questions about endometriosis,
detailed internet searches were used to compile questions, which
were then aligned with the European Society of Human
Reproduction and Embryology (ESHRE) guidelines. An
experienced gynecologist rated ChatGPT’s responses on a scale
from 1 to 4. To test repeatability, each question was asked twice,
with reproducibility determined by the consistency of
ChatGPT’s scoring within the same category for repeated
questions. Of the frequently asked questions, 91.4% (n=71)
were answered completely, accurately, and sufficiently by
ChatGPT. The model showed the highest accuracy in addressing
symptoms and diagnosis (16/17, 94% of the questions) and the
lowest accuracy in treatment-related questions (13/16, 81% of
the questions). Among the 40 questions related to the ESHRE
guidelines, 27 (68%) were rated as grade 1, a total of 7 (18%)
were rated as grade 2, and 6 (15%) were rated as grade 3. The
reproducibility rate was highest (100%) for questions in the
categories of prevention, symptoms and diagnosis, and
complications. However, it was lowest for questions aligned
with the ESHRE guidelines, at 70%.

These contrasting findings warrant further investigation.

The Ethical and Legal Review Paradigm
The “ethical and legal review paradigm” emphasizes the
importance of ensuring that AI recommendations in health care
settings adhere to established ethical guidelines and legal
standards, which involves regular review rounds of the AI’s
recommendations by an ethics committee or legal team. This
is particularly important in sensitive areas such as critical care,
emergency management, end-of-life care, or genetic testing,
where the stakes of decisions are particularly high and the moral
and legal implications are significant. This approach aims to
safeguard patients’ rights, maintain trust in AI-assisted health
care, and ensure that the implementation of AI technologies in
medicine is both ethically sound and legally compliant [51,52].

The deployment of AI-based tools such as ChatGPT in sensitive
fields raises, indeed, several ethical and legal concerns. One
significant issue is the potential for bias in AI algorithms, which
can lead to unfair or incorrect outcomes. Moreover, the use of
AI in these fields touches on privacy concerns, especially with
the processing of personal data. Furthermore, issues regarding

accountability and liability for malpractices and bad outcomes
associated with AI-influenced LLM medical decision-making
represent an emerging topic in the arena of legal medicine and,
more broadly, forensic science.

These concerns underscore the need for strict ethical guidelines
and robust legal frameworks governing AI use in biomedical
and clinical practices, with the final goal of leveraging AI’s
strengths while mitigating its limitations, ensuring that it serves
as a tool for progress rather than a source of bias and error
[52,53].

Integrating the “Verification Paradigms”

These various paradigms for assessing AI in health care contexts
underscore the multifaceted and complex nature of integrating
AI technologies such as ChatGPT into medical practices. These
paradigms reflect a concerted effort to evaluate AI systems’
proficiency, ethical alignment, and practical utility in clinical
settings comprehensively. Each of these paradigms offers a
unique perspective and method for verifying the reliability and
accuracy of generative AI in clinical decision-making, and they
can be used in combination to provide a robust validation
framework (Tables 2 and 3 and Figure 2).

It is of paramount importance to note that all these paradigms
do not necessarily have the same weight or importance; their
relevance can vary depending on the context, the specific health
care domain, and the goals of the AI system being assessed.
Integrating and combining these paradigms can provide a
comprehensive, robust evaluation framework that leverages the
strengths of each approach while mitigating their individual
limitations.

Contextual or clinical relevance can be used to prioritize these
approaches—in clinical settings in which decision-making is
complex and highly nuanced (eg, oncology or psychiatry),
paradigms that emphasize expert consensus and cross-discipline
validation may be more critical, whereas for emerging treatments
or rare diseases, paradigms focusing on simulation and scenario
testing and challenging questions can be invaluable to explore
AI’s capacity to contribute novel insights or support rare
condition management. In contexts in which AI is being directly
implemented into clinical workflows and related follow-up,
real-time monitoring and feedback loop paradigms become
essential to ensure patient safety and system efficacy.

Combining paradigms for comprehensive evaluation requires
a “layered, sequential, strategic integrative approach,” starting
with broad assessments such as the quiz, vignette, and
knowledge survey paradigm to gauge general knowledge and
reasoning abilities, followed by more specific tests such as
historical data comparison for accuracy in real-world scenarios
and expert consensus for nuanced judgment calls. The
cross-discipline validation paradigm can be harnessed to assess
AI’s recommendations from multiple professional perspectives,
ensuring a holistic evaluation of AI’s clinical recommendations.
Throughout all stages of evaluation, the ethical and legal review
paradigm is continuously applied to ensure adherence to ethical
standards and legal requirements, safeguarding patient rights
and data privacy.
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Table 2. Overview of the layered integrative approach for evaluating artificial intelligence (AI) in health care, delineating the structured, multistage
framework for the comprehensive assessment and continuous improvement of AI systems.

IntegrationObjectiveVerification paradigmStage

Forms the baseline assessment of the AI’s capabil-
ities, setting the stage for more targeted evalua-
tions

To gauge the AI’s foundational medical knowl-
edge and its ability to apply this knowledge in
simulated real-world scenarios

Quiz, vignette, and
knowledge survey

Initial assessment

Uses the insights gained from initial assessments
to focus on areas requiring improvement, ensuring
that the AI’s recommendations are grounded in
real-world evidence

To refine the AI’s understanding and application
of medical knowledge by comparing its recom-
mendations or diagnoses against known outcomes
from historical data

Historical data com-
parison

Refinement

Builds on the refined knowledge base by integrat-
ing expert clinical insights, further improving the
AI’s decision-making processes

To incorporate nuanced clinical insights and ex-
pert judgments into the AI’s learning, ensuring
that it aligns with current clinical practices and
expert opinions

Expert consensusExpert feedback

Leverages the foundational knowledge, refined
understanding, and expert insights to test the AI’s
capabilities in a multidisciplinary context, identi-
fying any gaps or biases

To evaluate the AI’s recommendations and diag-
nostics across various medical disciplines, ensur-
ing a comprehensive and holistic assessment

Cross-discipline vali-
dation

Comprehensive evalu-
ation

Uses the comprehensive evaluations as a founda-
tion to challenge the AI with scenarios that require
sophisticated reasoning, further refining its deci-
sion-making abilities

To test the AI’s ability to handle complex, rare,
or novel medical scenarios, ensuring that it can
adapt to a wide range of clinical challenges

Rare or complex simu-
lation and scenario
testing

Complexity handling

Builds on the previous layers by specifically tar-
geting and rectifying inaccuracies in the AI’s
knowledge, ensuring reliability

To ensure that the AI’s current knowledge base
is accurate and up-to-date, identifying and correct-
ing any misconceptions or outdated information

False mythKnowledge accuracy

Further refines the AI’s decision-making process
by exposing it to nuanced clinical scenarios, en-
hancing its ability to provide balanced and in-
formed recommendations

To evaluate the AI’s ability to navigate complex
medical questions that may not have straightfor-
ward answers, assessing its reasoning in ambigu-
ous situations

Challenging (or con-
troversial) question

Complexity and nu-
ance handling

Applies all previous layers of assessment in a live
clinical environment, providing direct feedback
on the AI’s performance and areas for improve-
ment

To monitor the AI’s recommendations and diag-
noses in real-world clinical settings, assessing its
practical efficacy and safety

Real-time monitoringReal-world efficacy

Uses insights from real-world applications and
previous evaluations to demystify the AI’s logic,
ensuring that it is both effective and comprehensi-
ble

To ensure that the decision-making processes of
the AI are transparent and understandable, build-
ing trust among health care providers and patients

Algorithm transparen-
cy and audit

Transparency and
trust

Represents the culmination of the integrative ap-
proach, in which feedback from all previous stages
is used to iteratively enhance the AI system, en-
suring that it remains effective, safe, and ethically
compliant over time

To continuously refine and improve the AI system
based on real-world data, feedback, and evolving
medical knowledge

Feedback loopContinuous improve-
ment

Runs parallel to all stages, providing a constant
check on the AI’s compliance with ethical norms
and legal requirements, safeguarding against po-
tential malpractices, and ensuring that patient
rights are protected

To ensure that all AI recommendations and pro-
cesses adhere to established ethical guidelines and
legal standards

Ethical and legal re-
view

Ethical and legal
compliance
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Table 3. Engagement and impact of key health care stakeholders—physicians, patients, nurses, administrators, artificial intelligence (AI) developers,
ethicists, and regulators—across various AI evaluation paradigms, highlighting their roles and interactions in the process of assessing and integrating
AI technologies in health care.

StakeholdersVerification
paradigm

RegulatorsEthicistsAI developersHealth care
administrators

NursesPatientsPhysicians

Establish stan-
dards for testing

Evaluate sce-
nario ethics

Design relevant
quizzes and sur-
veys

Oversee imple-
mentation

Assist in sce-
nario design

May be partici-
pants in scenarios

Participate in
creating and
testing

Quiz, vignette, and
knowledge survey

Monitor data use
and outcomes

Assess the ethi-
cal use of histor-
ical data

Analyze compari-
son outcomes for
improvement

Use data for
strategic deci-
sions

Observe AI’s
real-world accu-
racy

Benefit from im-
proved outcomes

Use outcomes
to validate AI

Historical data
comparison

Ensure that ex-
pert consensus
meets guidelines

Participate in
consensus dis-
cussions

Incorporate ex-
pert feedback

Involved in
consensus
building

Support expert
consensus

Trust in consen-
sus-driven AI

Contribute ex-
pertise

Expert consensus

Regulate multidis-
ciplinary valida-
tion processes

Ensure ethical
cross-discipline
validation

Work with di-
verse health care
teams

Ensure inter-
disciplinary
cooperation

Facilitate multi-
disciplinary
care

Benefit from
holistic care ap-
proaches

Collaborate
across special-
ties

Cross-discipline
validation

Oversee testing
for safety and effi-
cacy

Scrutinize simu-
lations for ethi-
cal considera-
tions

Design simula-
tions for complex
conditions

Plan for inno-
vative care so-
lutions

Involved in pa-
tient care scenar-
ios

Receive personal-
ized care for rare
conditions

Engage in sce-
nario creation
and testing

Rare or complex
simulation and sce-
nario testing

Regulate misinfor-
mation manage-
ment

Highlight the
ethical handling
of myths

Correct and up-
date AI knowl-
edge

Promote accu-
rate patient ed-
ucation

Educate pa-
tients on myths
vs facts

Protected from
misinformation

Input on rele-
vant myths

False myth

Set standards for
addressing contro-
versial topics

Engage in ethi-
cal debates

Develop algo-
rithms for nu-
anced questions

Address poli-
cy implica-
tions

Assist in manag-
ing complex
cases

Empowered by
nuanced AI assis-
tance

Address com-
plex questions

Challenging (or
controversial)
question

Ensure patient
safety in real-
time monitoring

Monitor ethical
implications of
real-time use

Refine AI
through real-time
data

Supervise op-
erational inte-
gration

Monitor and re-
port on patient
responses

Directly affected
by AI recommen-
dations

Monitor patient
outcomes

Real-time monitor-
ing

Enforce trans-
parency and au-
ditability

Advocate for
transparent deci-
sion-making

Ensure algorith-
mic transparency

Demand sys-
tem transparen-
cy

Advocate for
clear AI expla-
nations

Seek transparen-
cy for trust

Require under-
standing of AI
decisions

Algorithm trans-
parency and audit

Facilitate regula-
tory feedback
loops

Provide ethical
oversight in
feedback

Use feedback for
technical refine-
ment

Implement
system feed-
back

Offer practical
feedback

Benefit from on-
going improve-
ments

Provide clinical
feedback

Feedback loop

Conduct legal re-
views and compli-
ance checks

Lead ethical
and legal re-
views

Adhere to ethical
and legal stan-
dards

Ensure compli-
ance with regu-
lations

Uphold ethical
standards in AI
use

Protected by ethi-
cal and legal
safeguards

Ensure that AI
aligns with ethi-
cal and legal
standards

Ethical and legal
review
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Figure 2. Integrating verification paradigms for artificial intelligence in health care.

This “layered, sequential, strategic integrative approach” enables
continuous improvement of the entire process. An initial
assessment uses paradigms such as the quiz, vignette, and
knowledge survey and historical data comparison to evaluate
AI’s knowledge base and practical accuracy, which are
iteratively refined and optimized by applying the feedback loop
paradigm using insights from real-time monitoring and expert
consensus followed by algorithm transparency and audits to
ensure that the system’s decisions are understandable and
justifiable.

For AI-based systems targeting specific or novel medical fields,
the rare or complex simulation and scenario testing should be
integrated alongside challenging question paradigms to push
the boundaries of AI’s capabilities and uncover areas for
innovation. The feedback loop paradigm should be implemented
so that AI systems are regularly updated based on new clinical
evidence, shifts in expert consensus, and outcomes from
real-time monitoring to ensure that AI remains aligned with
current medical standards and practices through continuous
evolution and adaptive learning.

This evolution is maintained transparently in terms of how
feedback and new data influence AI algorithms, fostering trust
among health care professionals and patients. Regular ethical
and legal reviews should accompany these updates to address
any emerging concerns.

Throughout the process, which is dynamic, adaptive, and
iterative, a broad range of stakeholders—including patients,
health care professionals, ethicists, and legal experts—should
be engaged. This ensures that diverse perspectives are
considered, particularly in applying paradigms such as expert
consensus, ethical and legal review, and real-time monitoring.
As previously mentioned, integrating these paradigms creates
an ongoing process for evaluating and improving AI in health
care, acknowledging the complexity of medical decision-making
and the importance of maintaining ethical standards and ensuring
that AI systems are not only accurate and effective but also
trusted and ethical components of health care delivery.

Toward a Model of “Clinically Explainable,
Fair, and Responsible Clinician-, Expert-,
and Patient-in-the-Loop Artificial
Intelligence”

Clinical decision-making is a cornerstone of health care,
demanding a blend of knowledge, intuition, and experience. It
is a dynamic process in which clinicians sift through patient
data, balancing the effectiveness and risks of treatments against
patient preferences and ethical standards with the goal of optimal
health outcomes achieved through informed, evidence-based
choices that respect patient autonomy and confidentiality
[54-56].

As previously mentioned, clinical decision-making is built on
4 pillars: scientific evidence, clinical judgment, ethical
considerations, and patient involvement. The integration of
generative AI into this realm presents exciting possibilities and
challenges—on the one hand, AI’s capacity to analyze vast
amounts of medical data can enhance diagnosis, tailor
treatments, and predict disease progression. However, its
incorporation demands rigorous verification to align
AI-generated insights with medical standards and ethical
practices.

In this conceptual paper, to ensure the reliability of AI in clinical
decision-making, various verification paradigms have been
proposed. The quiz, vignette, and knowledge survey paradigm
assesses AI’s proficiency in medical domains by using realistic
scenarios to test its knowledge and contextual application
incorporating frequentist and Bayesian reasoning in clinical
diagnosis, whereas the historical data comparison paradigm
examines AI recommendations against known clinical outcomes,
assessing real-world accuracy. The expert consensus paradigm
involves a panel of medical experts evaluating AI-generated
diagnoses and treatment plans, whereas the cross-discipline
validation paradigm cross-checks AI insights with those of
professionals from different medical fields, ensuring
comprehensive evaluation. In addition, the rare or complex
simulation and scenario testing paradigm tests AI against a
range of clinical scenarios, revealing its strengths and
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limitations. The false myth paradigm tests the AI’s ability to
reject outdated concepts or information and content not
substantiated by scientific evidence, whereas the challenging
question paradigm assesses how AI handles nuanced medical
issues. The real-time monitoring paradigm involves
implementing AI recommendations in controlled environments
to monitor patient outcomes. The algorithm transparency and
audit paradigm focuses on understanding how AI reaches its
conclusions, essential for clinician trust. The feedback loop
paradigm ensures AI’s continuous improvement based on
practical application feedback. Finally, the ethical and legal
review paradigm ensures that AI recommendations comply with
ethical guidelines and legal requirements. Each paradigm offers
a unique perspective for verifying AI in clinical
decision-making, and when used in combination, they provide
a comprehensive framework for ensuring the accuracy and
reliability of AI, crucial for its effective integration into health
care. This blend of AI and traditional clinical expertise promises
a future of enhanced health care delivery, marked by precision,
efficacy, and patient-centered care.

The convergence of generative AI in clinical decision-making,
when rigorously verified and integrated with traditional health
care practices, paves the way for a model of “clinically
explainable, fair, and responsible clinician-, expert-, and
patient-in-the-loop artificial intelligence.” This model
emphasizes not just the technical prowess of AI but also its
comprehensibility, collaborative nature, and ethical grounding,
ensuring that AI acts as an augmentative tool rather than an
opaque, autonomous decision maker (“AI as a black box”).
Clinically explainable AI demystifies the often complex and
opaque decision-making processes of AI systems. In particular,
the algorithm transparency and audit paradigm plays a crucial
role here, ensuring that AI’s reasoning is accessible and
understandable to clinicians. This transparency is vital for trust
and effective collaboration between human experts and AI-based
systems—clinicians need to understand the rationale behind
AI-generated recommendations to make informed decisions,
particularly in complex or critical cases.

This understanding would also facilitate discussions and
interactions with patients, who are increasingly seeking active
roles in their health care decisions. By demystifying AI outputs,
health care providers can offer clear, comprehensible
explanations to patients, fostering trust and informed consent.
Incorporating clinicians and experts in the loop is, indeed,
fundamental in realizing this model—the expert consensus and
cross-discipline validation paradigms highlight the importance
of human expertise in evaluating and interpreting AI-generated
insights, with clinicians bringing invaluable context, experience,
and judgment to the table, which are crucial for nuanced
decision-making. AI in this context is a tool that augments but
does not replace the clinician’s judgment. This collaboration
ensures that AI recommendations are not only based on data
and algorithms but also tempered by human insight and ethical
considerations. Patient involvement is another cornerstone of
this model—patient-centric care is increasingly recognized as
a key component of quality health care.

The integration of AI in clinical decision-making should not
diminish the patient’s role but, rather, enhance it. By providing

tailored and precise medical insights, AI can empower patients
with information that is specific to their condition and treatment
options. This approach aligns with the growing trend toward
personalized or individualized medicine, where treatments are
tailored to individual patient profiles. AI can facilitate this by
analyzing patient data in depth, offering insights that help with
crafting personalized treatment plans. Moreover, engaging
patients in the decision-making process aided by AI’s insights
respects their autonomy and preferences, leading to better
satisfaction and adherence to treatment plans. Implementing a
clinically explainable, fair, and responsible clinician-, expert-,
and patient-in-the-loop AI model also necessitates continuous
learning and adaptation—the feedback loop paradigm ensures
that AI systems evolve based on real-world outcomes and
clinician inputs. This ongoing refinement is crucial for the
AI-based tool to stay relevant and effective in the ever-changing
landscape of medical knowledge and practice.

Finally, the ethical and legal review paradigm ensures that AI
recommendations are continually assessed for ethical and legal
compliance, an aspect critical in maintaining public trust and
upholding professional standards. Trust in this context extends
beyond mere reliability to include ethically relevant and
value-laden aspects of AI systems’ design and use. This
broadened understanding of trust aims to encompass concerns
about fairness, transparency, privacy, and the prevention of
harm, among others. While pure epistemic accounts of trust
focus solely on rational and performance-based criteria, more
broadly speaking, trust encompasses the full spectrum of ethical
considerations necessary for truly trustworthy AI, fully
integrating ethical considerations into the core of what it means
for an AI system to be considered trustworthy. AI-based systems
not only function effectively and reliably but also and especially
operate within ethical boundaries, adhering to ethical standards
and principles that respect human autonomy, prevent harm, and
promote fairness and transparency [57].

In summary, the envisioned model of AI in health care is one
in which AI acts as an intelligent, transparent, and adaptable
assistant in the complex process of clinical decision-making,
enhancing rather than replacing human expertise and keeping
clinicians, experts, and patients central to the decision-making
process. This approach not only leverages the strengths of AI
in data processing and pattern recognition but also upholds the
irreplaceable value of human judgment, experience, and ethical
reasoning, all crucial for delivering high-quality patient-centered
health care.

Current State of the Art and Future
Directions

Currently, in a great portion of articles, the authors have limited
themselves to querying the AI-based tools on a variety of topics
without fully leveraging their potential. While that was
understandable at the beginning of the revolution posed by
LLMs, when early fascination and curiosity were prevalent, it
is time to go beyond just chatting with ChatGPT and shift toward
a deeper, comprehensive, and robust assessment of the
capabilities of smart chatbots in real-world clinical settings.
Researchers should make responsible use of AI; use standardized
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reporting guidelines [58]; systematically compare different types
of AI-based tools; evaluate the accuracy, repeatability, and
reproducibility of the tools; and incorporate ethical and legal
considerations. Validated and reliable reporting checklists are
essential for ensuring that research findings and advancements
are communicated clearly and consistently, facilitating
comparative analyses across different AI-enhanced tools. This
will help not only in identifying the most effective solutions
but also in uncovering potential biases, limitations, and areas
for improvement. By systematically comparing different
AI-based tools and rigorously evaluating their performance, the
research community can establish a benchmark for what
constitutes successful integration of AI in clinical settings. A
composite set of performance and outcome metrics is essential
for validating the reliability of AI in clinical applications and
for ensuring that tools can be confidently used across various
settings without loss of performance quality. Currently, only
accuracy is being investigated, with only a few studies exploring

the repeatability and reproducibility of AI-generated medical
responses and recommendations.

Scholars can harness the 11 paradigms proposed in this paper
to make AI-enhanced applications more clinically relevant and
meaningful as well as robust and safe.

Conclusions

Generative AI holds immense promise in enhancing clinical
decision-making and offering personalized, accurate, and
efficient health care solutions. However, ensuring that this
technology produces evidence-based, reliable, impactful
knowledge is paramount. By using paradigms and approaches
such as those outlined in this conceptual paper, the medical and
patient communities can better leverage the potential of AI
while safeguarding against misinformation and maintaining
high standards of patient care.
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