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Abstract

Background: A significant proportion of young at-risk patients and nonsmokers are excluded by the current guidelines for lung
cancer (LC) screening, resulting in low-screening adoption. The vision of the US National Academy of Medicine to transform
health systems into learning health systems (LHS) holds promise for bringing necessary structural changes to health care, thereby
addressing the exclusivity and adoption issues of LC screening.

Objective: This study aims to realize the LHS vision by designing an equitable, machine learning (ML)–enabled LHS unit for
LC screening. It focuses on developing an inclusive and practical LC risk prediction model, suitable for initializing the ML-enabled
LHS (ML-LHS) unit. This model aims to empower primary physicians in a clinical research network, linking central hospitals
and rural clinics, to routinely deliver risk-based screening for enhancing LC early detection in broader populations.

Methods: We created a standardized data set of health factors from 1397 patients with LC and 1448 control patients, all aged
30 years and older, including both smokers and nonsmokers, from a hospital’s electronic medical record system. Initially, a
data-centric ML approach was used to create inclusive ML models for risk prediction from all available health factors. Subsequently,
a quantitative distribution of LC health factors was used in feature engineering to refine the models into a more practical model
with fewer variables.

Results: The initial inclusive 250-variable XGBoost model for LC risk prediction achieved performance metrics of 0.86 recall,
0.90 precision, and 0.89 accuracy. Post feature refinement, a practical 29-variable XGBoost model was developed, displaying
performance metrics of 0.80 recall, 0.82 precision, and 0.82 accuracy. This model met the criteria for initializing the ML-LHS
unit for risk-based, inclusive LC screening within clinical research networks.

Conclusions: This study designed an innovative ML-LHS unit for a clinical research network, aiming to sustainably provide
inclusive LC screening to all at-risk populations. It developed an inclusive and practical XGBoost model from hospital electronic
medical record data, capable of initializing such an ML-LHS unit for community and rural clinics. The anticipated deployment
of this ML-LHS unit is expected to significantly improve LC-screening rates and early detection among broader populations,
including those typically overlooked by existing screening guidelines.
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Introduction

Lung Cancer–Screening Challenges
Lung cancer (LC) is the second most common cancer and the
leading cause of cancer deaths worldwide [1]. It accounted for
an estimated 2.2 million new cases and 1.8 million deaths in
2020. Screening for early detection of LC is a crucial strategy
to combat this deadly disease [2]. LC-screening guidelines
recommend that heavy smokers aged 50-80 years undergo LC
screening [3]. Clinical trials have shown about a 20% reduction
in LC mortality due to screening with low-dose computed
tomography [4].

However, nonsmoking adults and individuals younger than 50
years are often excluded from LC-screening guidelines, despite
representing a significant percentage of patients with LC
worldwide [5,6]. Statistical risk prediction models, such as
PLCOm2012, have been used to recommend LC screening for
smokers [7]. The subsequent PLCOall2014 model included
nonsmokers in risk evaluation [8], but its impact on screening
uptake was unclear. In addition, the adoption of LC screening
is low; for instance, only about 5% of the at-risk population in
the United States has undergone LC screening [9].

There have been numerous research efforts to overcome these
challenges, but their results were inconclusive and unsatisfactory
[10]. Researchers have proposed individualized risk-based
screening approaches for both smokers and nonsmokers [11].
In 2018, the PLCO model developer reviewed several traditional
risk prediction models and suggested that the including
biomarkers might help identify individuals who could benefit
from LC screening [12]. The PanCan study demonstrated that
selecting participants for LC screening based on risk modeling
could identify patients with early-stage LC [13]. A recent
systematic review concluded that further research is needed to
optimize risk-based LC screening [14]. Concurrently, an updated
evidence report for the US Preventive Services Task Force
indicated that screening high-risk individuals with low-dose
computed tomography could reduce LC mortality but might
also lead to false positives, resulting in unnecessary tests and
invasive procedures [15].

As electronic medical records (EMRs) become prevalent in
hospitals, several machine learning (ML) models have been
developed using EMR data for LC risk prediction. Kaiser
researchers used a small set of preselected variables to identify
patients with early-stage LC from routine clinical and laboratory
data [16,17]. Stanford researchers developed an ML model to
predict the 1-year risk of incident LC using more than 33,000
features from EMR data [18]. Deep learning with convolutional
neural networks applied to EMR data from 2 million patients
produced a high-performance LC risk prediction model [19].
However, the widespread deployment of these models for
risk-based LC screening is yet to be determined.

The Learning Health System Approach
Over a decade ago, the US National Academy of Medicine
(NAM) identified some major shortcomings in the current
clinical evidence generation enterprise and proposed the vision
of learning health systems (LHS) to address these issues [20-22].

First, many guidelines are primarily based on clinical trials with
narrow scopes, failing to fully represent real-world scenarios.
For instance, the exclusion of nonsmokers and younger
populations from the LC guidelines might be a result of these
narrow scopes. Second, the slow dissemination of evidence
from discovery to clinical practice contributes to the low
adoption rate of LC screening. To address these significant
challenges, NAM envisions transforming health systems into
LHS to bring necessary structural changes to health care. One
of the most significant system-level changes in LHS is that
embedding clinical research becomes into routine clinical
delivery, facilitating more efficient generation of real-world
evidence from real-world data (RWD) of patients and faster
dissemination of new evidence to practices. Efficient evidence
generation also necessitates innovations in clinical trial
methodologies, such as pragmatic clinical trials [23,24].

We believe that NAM’s LHS vision points in the right direction
to address the exclusivity, bias, and adoption issues of LC
screening. In pursuing sustainable, long-term solutions for
inclusive screening and increased screening rates, we believe
that system-level innovations are essential. We have focused
on two interdependent considerations: (1) more inclusive
intervention: exploring data-centric, risk-based LC-screening
recommendations instead of blunt exclusions of certain
demographic groups; and (2) broader access to the intervention:
applying ML-based artificial intelligence (AI) to enable doctors
in community and rural primary care to conduct routine
risk-based LC screening. Our goal is to assess whether
identifying at-risk individuals anywhere using the LHS approach
can help close the gap in LC-screening disparities.

These considerations necessitate at least two innovations: (1) a
new ML-enabled LHS unit that can continuously improve ML
models and thus enhance risk prediction services. Our first
ML-enabled LHS (ML-LHS) simulation study using synthetic
patient data demonstrated performance improvement of LC risk
prediction ML models over time [25]. (2) ML models that are
inclusive in terms of patient populations and practical for use
in low-resource clinics. Previously, by applying a data-centric
EMR ML approach and feature engineering based on a
quantitative distribution of health factors derived from EMR
data [26]. we successfully developed an inclusive and practical
ML model for predicting the risk of nasopharyngeal cancer [27].

Aims
This study aimed to design an equitable ML-LHS unit for LC
screening and to develop an inclusive and practical LC risk
prediction model suitable for initializing the LC-screening
ML-LHS unit. The future deployment of this new LC ML-LHS
unit will aid in implementing risk-based LC screening across
populations broader than those currently covered by existing
LC-screening guidelines, thereby improving both patient
coverage and LC-screening rate.
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Methods

Hybrid EMR ML Pipeline for Inclusive and Practical
LC ML Model
We designed a hybrid EMR ML pipeline to create an inclusive
and practical ML model for LC risk prediction (see Figure 1).
In step 1, data related to all health factors associated with LC
are collected from the EMR. Common ML algorithms, such as

XGBoost, are then used to train risk prediction models using
these data. In step 2, a patient graph is constructed using all
health factors in the EMR, which produces a quantitative LC
health factor distribution. In step 3, feature engineering, based
on the health factor distribution, refines the model into a more
practical one with fewer variables. The recently published
patient graph analysis method is used to generate this
quantitative distribution of health factors from hospital EMR
data [26].

Figure 1. Hybrid EMR ML pipeline for developing inclusive and practical machine learning models for lung cancer risk prediction. The inclusive ML
model uses as many health factor variables from EMR as possible. In contrast, the practical ML model uses a small number of variables that are readily
available in low-resource clinics. The quantitative distribution of health factor distribution, derived from real-world patient data, aids in refining the
features of the inclusive model to formulate the practical model. EMR: electronic medical record; ML: machine learning.

Standardized Patient Data Collection
Deidentified patient medical records were generated from the
hospital’s EMR and relevant databases, covering the period
from January 2018 to June 2021. These data sets were securely
stored on a data server managed by the hospital’s informatics
department. The data set encompassed about 1 million patients
and 7 million outpatient and inpatient encounters. The records
excluded all fields containing personal information, such as
patient names, birth dates, personal IDs, contact details, and
addresses. Original hospital identifiers for patients and
encounters were replaced by random numbers, not linked to the
patients.

Due to the absence of applicable codes for diagnoses in the
EMR, Chinese synonyms for LC were used to identify patients
with LC. The targeted data set included 1397 patients with LC
aged 30 years and older. In addition, 1448 patients aged 30
years and older with no LC were randomly selected to form the
background or control data set. We maintained similar numbers
of patients in the target and control groups to preserve class
balance. However, data standardization, being time-consuming,
limited the number of patients in the final structured data set.

Based on our experience in building multiple models from EMR,
the minimal number is approximately 1000 target patients and
1000 background patients.

Deidentified records of outpatient and inpatient visits, diagnoses,
laboratory tests, and procedures were imported into a custom
data collection tool on the data server. This tool automatically
extracted laboratory test data for storage in a MongoDB
database, provided by MongoDB Inc. Our researchers manually
curated data from patient record texts and entered them into the
database. Data were categorized into 9 categories: disease and
condition, symptom, medical history, observation, laboratory
test, procedure, medication, treatment, and other risk factors.
To overcome the lack of coding and standardization in the
records, practical rules were established to ensure consistency
in data collection. Synonyms were automatically converted to
local “standard terms” with corresponding local codes,
culminating in local “standard data.” For each patient with LC,
only those data leading to the final diagnosis of LC were
collected, forming a patient diagnosis journey (PDJ) object
comprising 1 or multiple encounters. For each background
patient, all encounters within the 3.5-years period were included.
When exporting PDJ data to a comma-separated values file for
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analysis, only the most recent data for each health factor in the
PDJ were selected.

EMR ML for Inclusive LC Risk Prediction Models
All continuous numeric data in the profiles were converted to
categorical data. For example, age ranges were established as
30-50, 50-70, and more than 70 years; drinking levels were
categorized as 0-2, and >2 drinks per day; and smoking levels
were divided into 0, 1-20, and >20 cigarettes per day. Laboratory
test results had predefined categorized such as normal or
abnormal, true or false, positive or negative, and high, medium,
or low. After this conversion, profiles of patient with LC
encompassed more than 58,000 data items and 2066 codes,
while background patient profiles comprised more than 46,000
data items and 1298 codes. Subsequently, the profile data were
structured into a horizontal table for ML, labeling patients with
LC as “1” and background patients as “0.”

Codes were organized based on the number of associated
patients with LC. Various sets of codes, exceeding a cutoff of
10 patients with LC, were selected by different criteria for ML.
For the LC risk prediction study, all codes related to cancer
diseases, procedures, medications, and treatments were omitted.
In addition, diagnostic imaging procedures commonly used for
patients with cancer but not for background patients were also
excluded.

In developing ML models, we used the XGBoost Python library
[28]. XGBoost is known for parallel tree boosting and its
efficient management of missing data. The Python library
scikit-learn from Scikit-learn.org was used for all other ML
tasks [29]. The free Jupyter Notebook tool was used to conduct
ML experiments [30]. The Pandas library was used for reading
and writing comma-separated values files and manipulating
data tables. The data set was divided into training (60%), tunning
(20%), and validating (20%) subsets. Using the default
hyperparameters, the XGBoost classifier was fitted with the
training and tunning sets, and the resulting model was
independently validated by the validation data set [31]. The
model’s effectiveness in risk prediction was evaluated using
key metrics such as recall, precision, area under the receiver
operating characteristic curve (AUROC), and accuracy. Receiver
operating characteristic (ROC) curve and reliability (or
calibration) curve were drawn by calling the corresponding
Scikit-learn functions.

By comparing the performances of models built from different
variable sets, an inclusive variable set was established. Using
this set, XGBoost was compared with 3 other commonly used
algorithms: random forest (RF), support vector machines (SVM),
and k-nearest neighbors (KNN). These algorithms were executed
using Scikit-learn classifiers with default parameters. The main
reason for evaluating only the common algorithms is because
they are promising in delivering the initial acceptable
performance required by our LHS design, and their deployment
is easier and cost-efficient. Only if this test fails will we test
more complex algorithms like neurol networks.

Building Practical ML Prediction Models
In the final refinement step of our hybrid ML pipeline, a
quantitative distribution of LC health factors was generated

directly from the same EMR data through patient graph analysis
[32]. In the patient graph, health factors are connected to patients
with LC and background patients with no LC. The difference
in the number of connections to patients with LC versus patients
with no LC, called the “connection delta ratio” (CDR), was
calculated for each health factor. Sorting the health factors by
CDR in descending order provided a quantitative distribution
of the health factors. Most of the top health factors with a CDR
above a threshold were verified as LC risk factors or were
correlated with LC in a literature review. This distribution laid
the groundwork for grouping risk factors, selecting only 1
representative factor from each group for the ML model. For
instance, pains at different body sites were combined into a
single “pain” factor. Data for each variable group were also
consolidated, considering the representative variable for the
group as true if any of the variables in the group was true.

The following criteria were applied to select a small number of
variables for the practical variable set: (1) ensuring that the
number of essential variables remained fewer than 30 while
achieving key prediction performance metrics (recall, precision,
and accuracy) above 80%; (2) using consolidated variables
based on the risk factor distribution wherever feasible; (3)
minimizing the number of required laboratory tests; and (4)
using imaging observations obtainable through simple chest
radiographs. The rationale for these empirical criteria is to make
the deployment and adoption of the model more practical in
low-resource clinical settings, where data for only a small
number of variables may be available. However, the LHS
starting model should strike a balance between a minimal
number of variables and acceptable performance metrics. We
tested and compared feature selections using XGBoost. After
determining a practical set, we ran RF, SVM, and KNN
algorithms for comparison. All models were trained and
evaluated using the default parameters of the classifiers. The
XGBoost base model used the following default
hyperparameters: scale_pos_weight = 1, n_estimators = 500,
max_depth = 6, eta = 0.3, gamma = 0, reg_lambda = 1.0,
early_stopping_rounds = 5, and eval_metric = 'logloss'.

Ethical Considerations
This retrospective study of EMR patient data received approval
from the Institutional Review Board of Guilin Medical
University Affiliated Hospital (number QTLL202139). Prior
to data usage, our research team underwent training in patient
data security and privacy policy of the hospital.

Results

Design of ML-LHS Unit for LC Screening
To improve patient inclusivity and adoption in LC screening,
we designed a novel ML-enabled LHS unit for LC screening
within a clinical research network (CRN). The CRN is led by
a central hospital and participated by numerous clinics in
surrounding communities and rural areas. The central hospital
is tasked with developing an inclusive and practical LC risk
prediction ML model to initialize the LHS unit and providing
an AI tool online for clinic use. Primary physicians in these
clinics are responsible for routinely using the AI tool to assess
LC risk in all patient populations in the CRN. At-risk patients
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are recommended for LC screening. The hospital also
continuously updates models with new patient data, validates
models, and deploys improved models for predictive services.

Inclusive LC Risk Prediction ML Models
A total of 2845 patients, comprising 1397 patients with LC and
1448 patients with no LC, were selected from the EMR of a
Chinese hospital. The cohort consisted of 60.8% (1731/2845)
men and 39.2% (1114/2845) women. Agewise, 19.6%
(557/2845) patients were between 30 and 50 years of age, 58.1%
(1654/2845) were between 50 and 70 years of age, and 22.0%
(625/2845) were older than 70 years. Within the patient group
with LC, 19.8% (277/2845) had a history of smoking, while
80.2% (1120/2845) did not. Since the data set includes a
significant number of patients outside the typical LC-screening
guideline–recommended demographic, which usually targets
heavy smokers aged 50-80 years, the resulting LC risk prediction
models were more inclusive, encompassing a broader patient
population aged 30 years and older, regardless of smoking status.

To develop an LC risk prediction XGBoost model with default
settings, we compared different sets of top-ranked health factors
(including diseases, symptoms, medical histories, laboratory
tests, observations, and other risk factors) from a list of more
than 2000 factors, sorted by each factor’s prevalence in patients
with LC. As the number of variables exceeded 200, key model
performance metrics plateaued, reaching 0.85 for recall, 0.90
for precision, 0.88 for AUROC, and 0.88 for accuracy (Table
1 and Figure 2). Consequently, a set of 250 variables was
selected as the inclusive variable set (denoted as “iv250”).

Using the iv250 set and default parameters, we compared
XGBoost with other common algorithms such as RF, SVM,
and KNN. Table 2 demonstrates that XGBoost and SVM
achieved similarly high performance levels, with 0.86 for recall,
0.90 for precision, 0.89 for AUROC, and 0.89 for accuracy.
The ROC curve and the reliability curve of the iv250 XGBoost
model are shown in Figure 3.

Table 1. Performance metrics of the XGBoost lung cancer risk prediction models with different numbers of variables.

Number of variablesMetricsa

3002502001501005040302010

0.8870.8620.8580.8370.8160.8010.7940.7940.7550.734Recall

0.8900.9140.9030.9040.8580.8560.8420.8300.8490.802Precision

0.8890.8910.8840.8750.8420.8350.8240.8170.8110.778AUROCb

0.8890.8910.8840.8750.8420.8350.8240.8170.8120.779Accuracy

aThe XGBoost machine learning base models were configured with default settings.
bAUROC: area under the receiver operating characteristic curve.

Figure 2. Trends in performance metrics of XGBoost lung cancer risk prediction models with varying numbers of variables. Base models were trained
using default settings. ROC-AUC: area under the receiver operating characteristic curve.
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Table 2. Comparison of machine learning model performance using different algorithms for lung cancer risk prediction with default parametersa.

K-nearest neighborsSupport vector machinesRandom forestXGBoostAlgorithm

The inclusive 250-variable set (iv250)

0.6670.8870.8720.862Recall

0.7150.9090.8750.914Precision

0.7030.9000.8750.891AUROCb

0.7030.9000.8750.891Accuracy

The inclusive and practical 29-variable set (pv29)

0.6490.7480.8160.805Recall

0.8320.8580.8300.825Precision

0.7600.8130.8260.819AUROC

0.7610.8140.8260.819Accuracy

aAll machine learning base models used default settings.
bAUROC: area under the receiver operating characteristic curve.

Figure 3. ROC and reliability curves of XGBoost models for lung cancer risk prediction. Models were trained with the default settings. (A) ROC curve
for the inclusive model using 250 variables (iv250). (B) Reliability curve for iv250. (C) ROC curve for the practical model using 29 variables (pv29).
(D) Reliability curve for pv29. ROC: receiver operating characteristic.
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Practical LC Risk Prediction ML Models
For practical application in clinics, the models underwent further
refinement through feature engineering based on the quantitative

distribution of LC health factors. This refinement led to the
development of a concise and practical set of 29 variables,
termed “pv29.” Table 3 presents the details of the pv29
variables.

Table 3. List of the 29 variables used in the inclusive and practical machine learning models for lung cancer risk prediction.

Health factor termLocal codeCategory

EmphysemaC-572430Disease

Lung inflammationC-654730Disease

BronchitisC-897420Disease

Smoking historyC-902187History

Albumin/globulin ratioC-602395Laboratory test

HematocritC-320164Laboratory test

Non–small cell lung cancer–associ-
ated antigen

C-952408Laboratory test

Carcinoembryonic antigenC-023789Laboratory test

FibrinogenC-945807Laboratory test

Lymphocyte ratioC-609483Laboratory test

Platelet distribution widthC-346250Laboratory test

Hemoglobin concentrationC-965710Laboratory test

GlobulinC-546207Laboratory test

Alkaline phosphataseC-015328Laboratory test

High-sensitivity C-reactive proteinC-963520Laboratory test

Neuron-specific enolaseC-573086Laboratory test

Carbohydrate antigen 153C-284309Laboratory test

Urine proteinC-507246Laboratory test

Lung nodulesC-598214Observation

Pleural effusionC-825049Observation

AtelectasisC-567942Observation

GenderC-504168Risk factor

AgeC-928456Risk factor

CoughC-546879Symptom

Chest painC-984012Symptom

Shortness of breathC-943817Symptom

Coughing up bloodC-152064Symptom

Chest tightnessC-275809Symptom

PainC-549780Symptom

Table 2 compares the key performance metrics of the base
models (XGBoost, RF, SVM, and KNN) using the pv29 variable
set with default settings. The pv29 XGBoost and RF models
demonstrated comparable performance, achieving 0.80 recall,
0.82 precision, 0.82 AUROC, and 0.82 accuracy. Figure 3
illustrates the ROC and reliability curves of the pv29 XGBoost
model. Considering other requirements, including dealing with
sparse data in EMRs and compute time, the pv29 XGBoost
model was selected as the initial model for the LC risk prediction
in initialization of the ML-LHS unit, aimed at the future

implementation of risk-based LC-screening recommendations
in broader populations.

Discussion

Principal Findings
This study introduces a novel ML-LHS unit approach, aiming
to offer sustainable and inclusive LC-screening solutions for
all at-risk populations in both urban and rural areas within a
CRN. To initiate this LC ML-LHS unit, we developed an
inclusive and practical XGBoost model for LC risk prediction
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using hospital EMR data. This enables risk-based LC screening
in broader patient populations aged 30 years and older,
regardless of smoking status. Using 29 variables, accessible
even in low-resource clinics, the ML model achieved LC risk
prediction with performance metrics of 0.80 recall, 0.82
precision, 0.82 AUROC, and 0.82 accuracy. Because most of
the 29 variables were verified as risk factors or correlated factors
for LC in literature, these model outputs are highly plausible.
If an end user provides values for the 29 variables to the
XGBoost model, the model will return a probability (0%-100%)
of LC risk. More than 50% indicates a high risk of having LC,
while below 50% indicates a low risk.

Future Direction: Implementing LC ML-LHS CRN
Considering the challenges in LC screening, such as
low-screening adoption and inadequate coverage for nonsmokers
and younger patients, exploring risk-based screening strategies
is vital [11,33-35]. Following the present study, a future
direction involves externally validating the LC risk prediction
model. If validated, we plan to deploy the LC ML-LHS unit
across a CRN, which will continuously monitor, rebuild the
model, validate the new model, and deploy the improved model
in so-called “LHS learning cycles.” Once operational, this
innovative LHS unit could improve LC-screening rates and
early detection in hospitals, community clinics, and rural areas.

Moreover, the ML-LHS CRN is well suited to screen for rare
genetic mutations associated with LC, such as the ROS-1
mutation. If certain mutations are identified, personalized and
precision medicine may be recommended by a doctor to the
patient. Since the pv29 LC model does not contain the genetic
mutations as variables, the LHS would need to integrate a large
language model (LLM) into the prediction module for treatment
prediction task. The top general-purpose LLMs, such as
OpenAI’s ChatGPT 4 and Google Gemini 1.5, have shown high
accuracy in making medical predictions in our and many other
studies without requiring structured data input [36,37].
Enhancing AI applicability through cooperation of structured
data ML model and natural language LLMs presents an exciting
future research direction.

Furthermore, screening is just the beginning of a patient’s
diagnostic journey in an equitable LHS. Future research should
also investigate on how AI, particularly generative AI, and LHS
can effectively follow up with high-risk patients, educate
patients for shared decision-making, and remind patients to
underdo diagnostic tests in time for early detection of LC.
Simultaneously, LHS will coordinate primary care physicians
and specialists to provide the appropriate diagnostics tests, such
as image tests (computed tomography, positron emission
tomography–computed tomography, and magnetic resonance
imaging), pathology tests, and biopsies for final diagnosis.
Future studies should also determine when to recommend
molecular and genetic testing for achieving personalized and
precision treatment.

Future Direction: Applying the ML-LHS Approach
to Other Diseases
The vision of NAM’s LHS emphasizes using RWD to generate
real-world evidence. As EMRs are a primary source of RWD,

they can be used to develop inclusive and practical ML models
for risk predictions of various diseases. Another promising
future research direction is applying the ML-LHS unit approach
proposed in this study to other preventable diseases and building
LHS units in routine health care delivery, aimed at delivering
more inclusive predictive screening in underserved populations.

We identify the biggest challenge of applying ML or AI in
disease screening for all populations as the difficulty of
deployment. ML models requiring a large number of variables
may be deployed in hospitals, but they may not be usable in
small clinics because the required data cannot be collected there.
This study proposes a promising solution to this deployment
problem: design a novel ML-enabled LHS unit and strike a
balance of minimal variables and acceptable performance for
the starting ML model of the LHS. Reducing the number of
variables in a practical model usually reduces mode performance
compared with the inclusive mode. Setting 80% recall, precision,
and accuracy as the acceptance bar, this study of the LC model
and previous study of the nasopharyngeal cancer model
demonstrated that it is possible to reduce the number of variables
to below 30 [27].

For feature engineering, a common method is to use the feature
importance list from the ML model. To meet the requirements
of reducing variables to a minimal while keeping performance
metrics above an acceptable level in starting up an ML-LHS
unit, we have proposed an alternative approach that uses a
quantitative distribution of health factors generated directly
from EMR data by the patient graph CDR method in previous
studies [26,27,32]. This study demonstrated again the
effectiveness of the new feature selection approach of using
health factor distribution from the CDR method in developing
inclusive and practical ML models.

Limitations and Responsible AI
This study, however, has limitations. The EMR data presented
issues with bias and missing data [38,39], which could
potentially lead to biased models. For instance, smoking status
and family history of LC were underreported in our data set.
Significant efforts were made to understand and address these
data biases, excluding variables where potential bias was
identified. Despite these efforts, some biases may remain
undetected and unmitigated. We also used algorithms such as
XGBoost, known for effectively handling missing data. The
lack of standardized structured data in EMRs made data
collection labor-intensive. Reducing variables for practicality
might risk overfitting in a small data set, though this issue should
diminish as the ML-LHS unit continuously accumulates more
data through its prediction service [40].

To further address these data bias issues as well as ML or AI
application inequities, ML-LHS CRN will emphasize
responsible AI development in future research [41]. First, CRN
will strive to include more clinics from communities and rural
areas surrounding the lead hospital, providing access to a
broader population for AI-based LC screening. Second, the ML
model will be frequently updated with new data from all
patients, particularly including underserved populations, to
continuously make the ML data set more representative and
less biased. Third, a governance committee should be established
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to review the development and use of the ML models to ensure
high ethical standards, including protection of data safety and
patient privacy, minimizing potential bias in data and
algorithmic decision-making. Fourth, because mistakes or errors
in AI prediction may cause harm or even deadly consequences,
AI will be used only as a new information source for medical
professionals or patients to make health care decisions.

Conclusions
This study devised an innovative ML-LHS unit for a CRN to
sustainably offer inclusive LC screening to all at-risk

populations. For initializing such an ML-LHS unit serving
community and rural clinics, we developed an inclusive and
practical XGBoost model from hospital EMR data. Future
deployment of the LC ML-LHS unit is expected to significantly
improve LC-screening rates and early detection in broader
populations, including those typically overlooked by existing
LC-screening guidelines, such as nonsmokers and younger
patients.
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