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Abstract

Background: Type 2 diabetes (T2D) is a significant global health challenge. Physicians need to assess whether future glycemic
control will be poor on the current trajectory of usual care and usual-care treatment intensifications so that they can consider
taking extra treatment measures to prevent poor outcomes. Predicting poor glycemic control from trends in hemoglobin A1c

(HbA1c) levels is difficult due to the influence of seasonal fluctuations and other factors.

Objective: We sought to develop a model that accurately predicts poor glycemic control among patients with T2D receiving
usual care.

Methods: Our machine learning model predicts poor glycemic control (HbA1c≥8%) using the transformer architecture,
incorporating an attention mechanism to process irregularly spaced HbA1c time series and quantify temporal relationships of past
HbA1c levels at each time point. We assessed the model using HbA1c levels from 7787 patients with T2D seeing specialist
physicians at the University of Tokyo Hospital. The training data include instances of poor glycemic control occurring during
usual care with usual-care treatment intensifications. We compared prediction accuracy, assessed with the area under the receiver
operating characteristic curve, the area under the precision-recall curve, and the accuracy rate, to that of LightGBM.

Results: The area under the receiver operating characteristic curve, the area under the precision-recall curve, and the accuracy
rate (95% confidence limits) of the proposed model were 0.925 (95% CI 0.923-0.928), 0.864 (95% CI 0.852-0.875), and 0.864
(95% CI 0.86-0.869), respectively. The proposed model achieved high prediction accuracy comparable to or surpassing LightGBM’s
performance. The model prioritized the most recent HbA1c levels for predictions. Older HbA1c levels in patients with poor glycemic
control were slightly more influential in predictions compared to patients with good glycemic control.

Conclusions: The proposed model accurately predicts poor glycemic control for patients with T2D receiving usual care, including
patients receiving usual-care treatment intensifications, allowing physicians to identify cases warranting extraordinary treatment
intensifications. If used by a nonspecialist, the model’s indication of likely future poor glycemic control may warrant a referral
to a specialist. Future efforts could incorporate diverse and large-scale clinical data for improved accuracy.
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Introduction

Type 2 diabetes (T2D) affects an estimated 529 million people
globally [1]. Hemoglobin A1c (HbA1c) serves as an indicator of
poor glycemic control, reflecting the average blood glucose
levels over 1 to 2 months. An increase in HbA1c of 1 percentage
point worsens cardiovascular disease risk by 1.2 times and
mortality risk by 1.14 times [2]. According to the American
Diabetes Association Standards of Care in Diabetes [3], target
HbA1c levels are set at 7% for many adults who are nonpregnant
and 8% for patients with limited life expectancy or where the
harms of treatment are greater than the benefits.

Physicians need to identify early signs of impending poor
glycemic control in patients with T2D and act early to intensify
treatment, via a combination of pharmacological and lifestyle
interventions, to avoid poor outcomes. There are costs to
intensified treatment, including side effects, so it is prudent to
delay intensification until it is warranted by disease progression.
Factors associated with poor glycemic control include age,
duration of T2D treatment, treatment, race or ethnicity, and
family history [4-7]. External factors such as seasonal variations
affecting HbA1c levels [8] complicate accurate glycemic control
prediction.

People with T2D receive care from primary care physicians,
not T2D specialists, in many areas including the United States,
Europe [9], and Japan [10]. For example, two-thirds of people
with T2D in Japan receive care from primary care physicians
[10]. These nonspecialists may struggle to predict a patient’s
glycemic control. In Japan, approximately 60% of surveyed
patients with T2D treated by nonspecialists experienced poor
glycemic control (HbA1c≥8%), with around 30% seeing
worsened levels the following year, according to a survey on
T2D treatment practices by primary care physicians [10].

Physicians regularly adjust a T2D patient’s treatment,
intensifying treatment when the clinical indications lead them
to predict poor glycemic control. Despite this usual care,
including treatment intensification, some patients still experience
poor glycemic control. From 2015 to 2018, a total of 49.5% of
US community-dwelling adults with diabetes had HbA1c≥7%
and 24.6% had HbA1c≥8% [11]. A tool predicting poor glycemic
control while under usual care, including usual-care treatment
intensifications, could enhance treatment outcomes. It could
alert physicians early enough to enable intensified modification
of treatment, improving treatment outcomes for patients and
increasing referrals to specialists when warranted by disease
progression.

Machine learning (ML) has demonstrated success in predicting
patient symptoms, including forecasting the onset of T2D [12]
and predicting complications [13], and it is a promising approach
to predicting poor glycemic control, although to our knowledge
it has not previously been applied to this task. Glycemic control
data are in general irregularly spaced, reflecting the variability
in patient care appointment dates, with updates to outpatient

electronic health records (EHRs) occurring before and after
clinical visits. Irregularly spaced data require preprocessing
techniques such as interpolation, denoising autoencoders, and
self-supervised learning [14-17]. Processing data with irregular
intervals may hurt predictive performance [18], requiring careful
consideration in developing artificial intelligence models.

Although ML models may provide good prediction performance,
they often operate as “black boxes,” with opaque reasoning and
associated poor interpretability that makes it difficult for both
physicians and patients to understand the logical process guiding
decision-making [19]. To allow the interpretation of ML models,
so that they are more acceptable to physicians [20,21] and
patients [22], explainable artificial intelligence (XAI) has been
studied [23]. It attempts to clarify temporal relationships of
symptoms at each time point toward temporal interpretability
based on patient trajectories [24,25], and this has been actively
researched in the computer science field [26].

Since its introduction in 2017, the transformer model has
excelled in various time-series predictive tasks, solidifying its
position as a core technology across multiple fields [27-32].
The transformer model incorporates an attention mechanism
simplifying the extraction of temporal relationships and setting
it apart from other models [33-35]. The attention mechanism
allows a model to selectively focus on different data points in
the input sequence, assigning varying degrees of importance to
each data point. Applied to the problem of predicting poor
glycemic control, the attention mechanism can process
irregularly spaced HbA1c time series and quantify temporal
relationships of past HbA1c levels at each time point, following
a model-specific approach in XAI [36].

This study aims to develop an ML tool that accurately and
interpretably predicts poor glycemic control (HbA1c≥8%) using
irregularly spaced HbA1c levels over the past year, in support
of preventing T2D complications by enabling timely
intensification of treatment. Although the treatment guidelines
generally target an HbA1c level of 7% or lower [3], higher levels
are common in diabetes patients. In our clinical experience,
levels of 8% and higher are a cause of great concern and trigger
more intensive intervention. Accordingly, we have set 8% HbA1c

as the threshold for defining poor glycemic control.

Given the absence of prior studies in this specific area, we set
target accuracy to be the receiver operating characteristic (ROC)
area under the curve (AUC)>0.9 and precision-recall
(PR)–AUC>0.8 based on our clinical endocrinology experience
with diabetes treatment. These values are commonly used as a
benchmark for good prediction accuracy in the ML field [37]
and are consistent with the ROC-AUCs of past diabetes-related
ML tasks ranging from 0.819 to 0.934 [38-42].

Drawing on our team’s prior work in self-management support
for T2D treatment [43] and predicting treatment discontinuations
[44,45], we designed this task with the hope of overcoming
barriers to implementing ML in clinical practice, believing it
could significantly advance T2D diagnosis and treatment.
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We hypothesize that an ML model can predict poor glycemic
control in patients with T2D under usual care. Our specific
research question is whether a transformer-based model,
incorporating temporal relationships of HbA1c levels, can
accurately and interpretably predict instances of poor glycemic
control (HbA1c≥8%). Our approach is novel in how it overcomes
challenges posed by irregularly spaced HbA1c time series.

Methods

Data Sets and Preprocessing
All data were collected from EHRs at the University of Tokyo
Hospital, which included 7787 patients who visited the hospital
and had diagnostic codes indicative of T2D. The data were
recorded in the EHRs between January 1, 2006, and December
31, 2015. The data, including treatment decisions and outcomes,
were reflective of care by T2D specialists. Only HbA1c levels
were used in the ML model.

ML Models
Given the irregularly spaced data, we organized the data into
Monday-to-Sunday weeks and quantized the data to a single
value per week, using the average in the case of multiple
measurements and treating weeks with no values as having
missing values [46]. This approach allowed the ML model to
treat irregularly spaced data spanning N years as regularly
spaced data consisting of N×365/7 (rounded up to the nearest
integer) values, that is, we treat all data as weekly data. We did
not perform preprocessing, including interpolation, on missing
values in the regularly spaced data. No normalization, outlier
removal, or dimensionality reduction were performed on the
HbA1c levels. Typical ML models such as LightGBM address

missing values via interpolation or replacement before learning.
In contrast, we adopted an approach that ignores and skips
missing values.

We designed a transformer model (Table 1) that takes as input
an irregularly spaced time series of HbA1c levels spanning over
the past year or more and outputs a binary assessment of poor
glycemic control (HbA1c≥8%) within the subsequent year. The
model incorporates 2 types of attention layers: self-attention,
designed to extract temporal relationships from past irregularly
spaced HbA1c levels, and cross-attention, used to predict poor
glycemic control based on these temporal relationships. The
self-attention weights are optimized through self-supervised
learning. This involves the task of predicting the next HbA1c

level using a time series of weekly spaced past HbA1c levels
with missing values, where the past levels are used as both input
and output. We use an attention mask mechanism that
completely ignores missing values by setting their self-attention
weight to 0, allowing us to learn using values with irregular
spacing due to missing values as is. This is similar to the process
of padding in language models. The cross-attention weights are
optimized through supervised learning. This involves the task
of predicting the class representing the likelihood of future poor
glycemic control using the latent variables transformed by
self-attention from the past HbA1c time series. We used causal
masking in both learning tasks to prevent the model from
referencing future data, ensuring that the model makes
predictions considering the causal relationship between past
symptoms and future symptoms. Conceptually, given that we
constrained the model to improve interpretability, we expect a
slightly lower prediction accuracy than that of an unconstrained
model (Figure 1), and 1 goal is to minimize this interpretability
penalty.

Table 1. Model details (transformer architecture).

ValueConfigure

4Encoder layers including self-attention blocks, n

4Decoder layers including cross-attention blocks, n

4Heads in the attention, n

128Transformer hidden size, n

512Transformer feedforward neural network hidden size, n

AdamOptimizer method

Focal LossLoss function

1×10–4Learning rate

512Batch size, n

20,000 (no early stopping)Iterations, n

Python (version 3.11) and PyTorch (version
2.2.0)

Library
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Figure 1. Conceptual trade-off between prediction accuracy and interpretability, for a given level of computational complexity.

This model makes a yes or no decision on future poor glycemic
control, with a threshold as a free variable allowing a tradeoff
among true or false negatives or positives. We set the threshold
to maximize the F1-score (the harmonic mean of the ROC and
PR values) using training data, resulting in a tool that made a
binary prediction as to whether or not, in the next year, glycemic
control will be poor. The training data include treatment
intensification by specialists making their own assessments of
likely future glycemic control. As such, the predicted poor
glycemic control occurs despite any usual-care intensification
of treatment prescribed by the attending specialist physicians.
In other words, a prediction of poor glycemic control indicates
a case likely warrants special attention and intervention, as
usual-care intensification of treatment is predicted to be
insufficient.

Temporal Data Usage
Our analysis sought to determine the length of the HbA1c time
series needed to achieve the target accuracy. Training and testing
were separated by period using the well-established time series
prediction accuracy evaluation method [47]. We used as a
reference the date on which a patient took an HbA1c test in 2013.
We used the HbA1c time series for the N years before the
reference date as training input and the occurrence or absence
of poor glycemic control (HbA1c≥8%) within 1 year from the
reference date as the training output. Then, we tested the
resulting model using the same procedure, but for the following
year, 2014, selecting an appropriate choice for N, the length of
training data. We evaluated the predictive performance of the
resulting model using 7 years of test data, sliding the reference
dates from 2007 to 2013, using the rolling-origin procedure
[47].

The training input or output period and the testing output period
do not overlap, and therefore there was no leakage into
predictive evaluation. Data for a given patient will in general
have some time samples in the training data and some in the
test data, but since patient identification is not an input to the
model, the model does not identify specific patients.

Statistical Methods
We analyzed the characteristics of patients in the data set using
means, SDs, and frequency counts. We performed all statistical
analyses using custom Python code. We used the Python
(version 3.11) and PyTorch (version 2.2) libraries for developing
the transformer model, the Numpy (version 1.26) and Pandas
(version 2.2) libraries for managing data sets, and the scikit-learn
(version 1.4) library for evaluating predictive accuracy.

We compared our model with an established ML method
recognized for high accuracy. There were no studies directly
addressing our task, but validations on similar T2D prediction
tasks favored LightGBM [48,49], making it our chosen reference
for comparisons. While LightGBM is acknowledged for its
superior predictive performance, it is not inherently
interpretable. The model’s complexity and intricate decision
tree paths make it difficult to provide a straightforward
interpretation of its predictions. Our reference LightGBM model
takes as input equally spaced HbA1c data and outputs a binary
assessment of poor glycemic control (HbA1c≥8%).

We compared the transformer model and LightGBM using the
evaluation metrics of ROC-AUC, PR-AUC, accuracy rate, and
F1-score, with 95% CI using the bootstrap method.
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Ethical Considerations
This study was approved by the Institutional Review Board of
the University of Tokyo School of Medicine (10705-(3)) and
was conducted per the Declaration of Helsinki. This was a
retrospective, noninterventional database study without patient
involvement. Confidentiality was safeguarded by the University
of Tokyo Hospital. According to the Guidelines for
Epidemiological Studies of the Ministry of Health, Labour and
Welfare of Japan, written informed consent was not required.
Information about this study was available to patients on a
website, and patients have the right to cease registration of their
data at any time [50].

Results

Patient Data
We analyzed 7787 patients (Table 2). Although specialist
physicians were providing usual care and prescribing treatment
intensifications based on their clinical judgment, 57.83%
(n=4504) of patients had an HbA1c over 8% at least once. The
number of HbA1c tests per year was 7.7 (SD 2.8). In other words,
the missingness level of weekly spaced past HbA1c levels for a
year was 1 – 7.7 / ROUNDUP(365/7) = 85.5%. The age group
with the highest number of individuals is the aged 70-80 years
category, comprising 2347 people, accounting for 30.14% of
the patients. In addition to diabetes, more than 45% of patients
had diseases such as essential (primary) hypertension,
hypertensive heart disease, pure hypercholesterolemia, and
astigmatism. Each patient had multiple records, leading to
323,825 records used in our analysis.
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Table 2. Characteristics of patients.

Patients (n=7787)Records (n=323,825)Characteristics

Feature used in the model

HbA1c
a

—b7.1 (1.1)Mean (SD)

4103 (52.69)42,495 (13.12)<6%, n (%)

6666 (85.6)137,968 (42.61)6%-7%, n (%)

5770 (74.1)89,875 (27.75)7%-8%, n (%)

4504 (57.84)53,487 (16.52)≥8%, n (%)

—7.7 (2.8)Tests per year, mean (SD)

Features not used in the model

Gender

4726 (60.7)193,976 (59.9)Male, n (%)

3061 (39.3)129,849 (40.1)Female, n (%)

Age (years)

67.5 (13.6)—Mean (SD)

1 (0.01)—10-20, n (%)

58 (0.74)—20-30, n (%)

255 (3.27)—30-40, n (%)

585 (7.51)—40-50, n (%)

1006 (12.92)—50-60, n (%)

2058 (26.43)—60-70, n (%)

2347 (30.14)—70-80, n (%)

1322 (16.98)—80-90, n (%)

149 (1.91)—90-100, n (%)

6 (0.08)—100-110, n (%)

Top 10 most common diseases

5495 (70.57)—E14: unspecified diabetes mellitus, n (%)

5023 (64.5)—I10: essential (primary) hypertension, n (%)

3715 (47.71)—E11: hypertensive heart disease, n (%)

3661 (47.01)—E780: pure hypercholesterolemia, n (%)

3636 (46.69)—H522: astigmatism, n (%)

3490 (44.82)—E785: hyperlipidemia, unspecified, n (%)

3353 (43.06)—K590: constipation, n (%)

2937 (37.72)—K210: gastro-esophageal reflux disease with esophagitis, n (%)

2756 (35.39)—K295: chronic gastritis, unspecified, n (%)

Top 10 most common medicines

2541 (32.63)—Metformin hydrochloride, n (%)

2177 (27.96)—Sitagliptin phosphate hydrate, n (%)

2036 (26.15)—Glimepiride, n (%)

1641 (21.07)—Pioglitazone hydrochloride, n (%)

1597 (20.51)—Insulin glargine (genetical recombination), n (%)

1458 (18.72)—Rosuvastatin calcium, n (%)
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Patients (n=7787)Records (n=323,825)Characteristics

1430 (18.36)—Voglibose, n (%)

1323 (16.99)—Atorvastatin calcium hydrate, n (%)

1277 (16.4)—Insulin aspart (genetical recombination), n (%)

1187 (15.24)—Vildagliptin, n (%)

aHbA1c: hemoglobin A1c.
bNot applicable.

Prediction Performance for HbA1c Time Series
Lengths
We assessed using different lengths of past HbA1c time series
(Table 3) as both training and test inputs to the model to
determine the most effective period for predicting poor glycemic
control. Extending the input period beyond 1 year did not yield
a statistically significant difference within a 95% CI (Figures

2 and 3). This study’s objectives of achieving ROC-AUC>0.9
and PR-AUC>0.8 were attainable with just 1 year of past HbA1c

time series. Comparing prediction accuracy with LightGBM
revealed no significant differences within the 95% CI, indicating
nearly equivalent performance between the transformer and
LightGBM. As a result, we settled on a final model that is based
on using 1 year of prior data for training.

Table 3. Test data set size for the evaluation of various hemoglobin A1c (HbA1c) time series lengths.

Weekly spaced data with values
in input data, mean (SD)

Records per pa-
tient, mean (SD)

Patients, nT/R, %Records with poor
glycemic control (T), n

Records (R), nLength of past
HbA1c time series

7.3 (2.7)5.5 (2.7)466126.7681825,5641

13.2 (5.6)5.5 (2.7)467226.7682725,5942

18.8 (8.6)5.5 (2.7)467626.7683125,6113

24.1 (11.8)5.5 (2.7)467826.7683125,6184

28.9 (15.1)5.5 (2.7)467826.7683225,6215

Figure 2. Predictive performance using ROC-AUC as a measure for various HbA1c time series lengths using test data reference dates in 2014. HbA1c:
hemoglobin A1c; ROC-AUC: area under the receiver operating characteristic curve.
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Figure 3. Predictive performance using PR-AUC as a measure for various HbA1c time series lengths using test data reference dates in 2014. HbA1c:
hemoglobin A1c; PR-AUC: area under the precision-recall curve.

Prediction Performance Over the Full Data Set
We assessed whether the resulting model, using 1 year of prior
data for training, could consistently achieve the target accuracy
over the available 7 years of test data (Table 4). Despite some
fluctuation in prediction accuracy, the target was achieved over
the entire 7-year period (Figures 4 and 5). The ROC-AUC (95%
confidence limits) for transformer was 0.925 (95% CI

0.923-0.928; Figure 6), compared to LightGBM’s 0.920 (95%
CI 0.918-0.923), and the PR-AUC (95% confidence limits) for
transformer was 0.864 (95% CI 0.852-0.875; Figure 7),
compared to LightGBM’s 0.857 (95% CI 0.846-0.868). The
average accuracy rate (95% confidence limits) for the
transformer was 0.864 (95% CI 0.860-0.869), comparable to
LightGBM’s 0.861 (95% CI 0.857-0.865).

Table 4. Test data set size for the evaluation of various hemoglobin A1c (HbA1c) time series lengths.

Weekly spaced data with values
in input data, mean (SD)

Records per pa-
tient, mean (SD)

Patients, nT/R, %Records with poor
glycemic control (T), n

Records (R), nYear of the test da-
ta

8 (2.9)7 (3.1)322131.9717622,5202007

8.1 (2.9)6.8 (3.1)362630.3751724,7752008

8 (2.9)6.6 (3)297332.3844426,1442009

7.8 (2.9)6.4 (3)426031.4852127,1242010

7.7 (2.8)6.1 (3)437728.8768726,6612011

7.5 (2.7)6 (2.9)441226.4694426,2592012

7.4 (2.7)5.7 (2.8)453328.1728125,9452013

7.3 (2.7)5.5 (2.7)466126.7681825,5642014
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Figure 4. Predictive performance over time using ROC-AUC as a measure using test data reference dates ranging from 2008 to 2014. ROC-AUC: area
under the receiver operating characteristic curve.

Figure 5. Predictive performance over time using PR-AUC as a measure using test data reference dates ranging from 2008 to 2014. PR-AUC: area
under the precision-recall curve.
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Figure 6. Predictive performance over time using ROC curve as a measure using test data reference dates ranging from 2008 to 2014. AUC: area under
the curve; FPR: false positive rate; HbA1c: hemoglobin A1c; ROC: receiver operating characteristic; TPR: true positive rate.

Figure 7. Predictive performance over time using PR curve as a measure using test data reference dates ranging from 2008 to 2014. AUC: area under
the curve; HbA1c: hemoglobin A1c; PR: precision-recall.
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Interpretability
The proposed model extracts temporal relationships from past
irregularly spaced HbA1c levels using self-attention and
determines the contribution of each HbA1c level to the prediction
of glycemic control using cross-attention. An example of the
extracted results is shown in Figure 8.

Figures 9-11 plot the average values of HbA1c levels,
self-attention weights, and cross-attention weights for 4 groups:
true positives with transformer and true positives with
LightGBM, true negatives with transformer and true negatives
with LightGBM, true positives with transformer and false
negatives with LightGBM, and false negatives with transformer
and true positives with LightGBM. The group with true positive

results in both models had an average HbA1c level of 8% or
higher, whereas the group with true negative results in both
models had an average HbA1c level of less than 7%. The weight
of older self-attention was larger in the former group, and the
weight of recent cross-attention was smaller in the latter group.
The group containing true positives by transformer and false
negatives with LightGBM had an average HbA1c level of around
7.5%, had a smaller recent self-attention weight than the other
groups, and had a similar trend of cross-attention weights as
the group of true negatives with both models. The group that
was false negative with transformer and true positive with
LightGBM tended for HbA1c to fall from the 8% range to the
7% range, and both recent self-attention and cross-attention
were greater than other groups.

Figure 8. Example of HbA1c levels, self-attention weights, and cross-attention weights. HbA1c: hemoglobin A1c.

Figure 9. Average levels of HbA1c time series. HbA1c: hemoglobin A1c.
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Figure 10. Average weight of self-attention.

Figure 11. Average weight of cross-attention.

Discussion

Evaluation of the Predictive Accuracy
Our results show that, despite usual care by specialist physicians,
poor glycemic control was common, affecting 57.83%
(4504/7787) of patients. By highlighting cases with a high
likelihood of poor glycemic control despite normal treatment
intensifications, the proposed model provides new information
to physicians, identifying patients who may benefit from
extraordinary treatment intensification.

Balancing high predictive accuracy with interpretability is vital
for acceptance by patients and physicians. The proposed model
achieved impressive predictive accuracy, with ROC-AUC above
0.9, PR-AUC above 0.8, and an overall accuracy of 0.864. For
physicians, ROC-AUC above 0.9 suggests excellent
performance in distinguishing between patients who will have
poor glycemic control and patients who will have good glycemic

control. Similarly, PR-AUC above 0.8 indicates excellent
performance in providing accurate prediction while minimizing
false positives. LightGBM, a widely respected model in ML,
serves as a benchmark. The proposed model slightly surpassed
the performance of LightGBM, implying that the proposed
model can offer physicians a reliable tool for predicting poor
glycemic control.

Accuracy did not increase with longer training data lengths.
The model achieved accurate predictions with just 1 year of
training data, suggesting that recent glycemic control plays a
dominant role in prediction outcomes. However, the actual
future glycemic control is influenced by factors not accounted
for in the current model, such as medications, exercise, diet,
and other lifestyle factors.

While the proposed model demonstrated comparable predictive
accuracy to LightGBM within this experiment’s scope, further
improvement may be possible with extensive training data.
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Transformer models, known for power-law characteristics,
benefit from scale-ups [51], and expanding this study to multiple
hospitals could explore potential performance enhancements
and test the applicability of the power-law in the medical field.

Interpretability
The cross-attention weights were very similar for the group that
was true positive in both models and the group that was true
positive in transformer and false negative in LightGBM. This
suggests that the proposed model consistently made predictions
by capturing sufficient features, while the benchmark LightGBM
might have captured extraneous features. On the other hand,
when the proposed model performed worse than LightGBM,
as observed in the group of false negatives with the transformer
and true positives with LightGBM, it appears that the
cross-attention strongly responded to the decreasing trend in
HbA1c, leading to a prediction failure. These prediction failures
accounted for only 0.30% (77/25,564) of cases.

Limitations
Our study has notable limitations. First, the data were sourced
from past records at a single hospital, limiting generalizability.
We have not confirmed prediction accuracy for new patients,
as we used a rolling origin procedure. While we separated the
data into training and testing sets based on time duration, some
patients still overlap between these sets. While this approach is
useful for assessing the model’s performance within the hospital
where it is trained, it poses challenges when applying a model
trained in one hospital to another. The intensification of
treatment may depend on factors specific to individual patients,
the treatment strategies of individual physicians and hospitals,
guidelines, and varying treatment trends across countries.
Further work is needed to verify the extent to which the model
needs to be customized for different environments.

Second, ML reflects majority characteristics, potentially limiting
applicability to diverse patient populations. In the data set used
in the experiment, as shown in Table 2, 40% of patients have
7 diseases, and patient characteristics are biased. Prediction
failure analysis needs to be further scrutinized, including versus
patient characteristics. We should examine this issue by
comparing prediction accuracy for each patient cluster.

Third, the model uses only HbA1c levels as inputs. We
incorporated prescription and other laboratory tests as
explanatory variables during preliminary validation, but both
our proposed model and LightGBM did not show improved
predictive accuracy. Future work should further explore
incorporating clinical data beyond HbA1c. EHRs contain patient
history represented in categorical, numeric, text, and images
that are still underused. We should devise model designs based

on cutting-edge multimodal modeling using the transformer
[52-54].

Fourth, the interpretability of the model expresses temporal
relationships numerically, lacking readability. To enhance clarity
and visualization of the information that physicians require, it
is essential to solidify the user interface or user experience
concepts. There is a need for further consultation with physicians
to determine an interface that would effectively communicate
interpretability. Additionally, to increase the interpretability of
this method, an approach that combines it with traditional XAI
technologies [36] such as SHAP and LIME should be
investigated.

Fifth, this was a backward-looking study, using past data, and
the essential next phase is to assess the model’s predictive
capabilities in clinical practice. There is a need for a careful
exploration of the model’s effectiveness in real clinical
scenarios.

Future Research Direction
Our ultimate goal is to improve the treatment outcomes of
diabetes. Merely predicting poor glycemic control alone cannot
achieve this goal. By providing predictive results to physicians
and reinforcing treatment, we can demonstrate the value of the
predictions. Future research could focus on improving
predictions by incorporating additional clinical data beyond
HbA1c levels. Exploring the applicability of the model in diverse
populations will help assess its generalizability and
institution-specific variations. Implementing the model in
clinical practice for real-time predictions, possibly through
randomized controlled trials, would elucidate its impact on
clinical decision-making and patient outcomes. Moreover,
expanding the scope to predict the impact of treatment changes
as well [55] could further enhance the model’s utility in diabetes
management.

Conclusions
The proposed model addresses the challenge of identifying
patients with T2D who will have poor glycemic control,
increasing the risk of complications, despite usual care by
specialist physicians. The model achieves highly accurate
predictions, with an accuracy of 0.864, and provides good
interpretability from the irregularly spaced HbA1c values
commonly observed in clinical settings. The model balances
desirable predictive accuracy and interpretability in clinical
practice, enhancing the acceptability of ML. Future efforts
should focus on further improving accuracy and interpretability
by incorporating additional features beyond HbA1c and
validating large clinical data sets.
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