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Abstract

Background: Despite their growing use in health care, pretrained language models (PLMs) often lack clinical relevance due
to insufficient domain expertise and poor interpretability. A key strategy to overcome these challenges is integrating external
knowledge into PLMs, enhancing their adaptability and clinical usefulness. Current biomedical knowledge graphs like UMLS
(Unified Medical Language System), SNOMED CT (Systematized Medical Nomenclature for Medicine–Clinical Terminology),
and HPO (Human Phenotype Ontology), while comprehensive, fail to effectively connect general biomedical knowledge with
physician insights. There is an equally important need for a model that integrates diverse knowledge in a way that is both unified
and compartmentalized. This approach not only addresses the heterogeneous nature of domain knowledge but also recognizes
the unique data and knowledge repositories of individual health care institutions, necessitating careful and respectful management
of proprietary information.

Objective: This study aimed to enhance the clinical relevance and interpretability of PLMs by integrating external knowledge
in a manner that respects the diversity and proprietary nature of health care data. We hypothesize that domain knowledge, when
captured and distributed as stand-alone modules, can be effectively reintegrated into PLMs to significantly improve their adaptability
and utility in clinical settings.

Methods: We demonstrate that through adapters, small and lightweight neural networks that enable the integration of extra
information without full model fine-tuning, we can inject diverse sources of external domain knowledge into language models
and improve the overall performance with an increased level of interpretability. As a practical application of this methodology,
we introduce a novel task, structured as a case study, that endeavors to capture physician knowledge in assigning cardiovascular
diagnoses from clinical narratives, where we extract diagnosis-comment pairs from electronic health records (EHRs) and cast
the problem as text classification.

Results: The study demonstrates that integrating domain knowledge into PLMs significantly improves their performance. While
improvements with ClinicalBERT are more modest, likely due to its pretraining on clinical texts, BERT (bidirectional encoder
representations from transformer) equipped with knowledge adapters surprisingly matches or exceeds ClinicalBERT in several
metrics. This underscores the effectiveness of knowledge adapters and highlights their potential in settings with strict data privacy
constraints. This approach also increases the level of interpretability of these models in a clinical context, which enhances our
ability to precisely identify and apply the most relevant domain knowledge for specific tasks, thereby optimizing the model’s
performance and tailoring it to meet specific clinical needs.

Conclusions: This research provides a basis for creating health knowledge graphs infused with physician knowledge, marking
a significant step forward for PLMs in health care. Notably, the model balances integrating knowledge both comprehensively
and selectively, addressing the heterogeneous nature of medical knowledge and the privacy needs of health care institutions.
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Introduction

Background
In recent years, pretrained language models (PLMs) have
revolutionized many areas of natural language processing (NLP),
demonstrating proficiency in handling a broad spectrum of
general-domain text tasks. However, their performance declines
when confronted with specialized domains, such as health care,
as clinical text often presents unique linguistic characteristics
and semantics that differ from standard language [1,2]. The
extensive proliferation of electronic health records (EHRs)
further underscores the gap, highlighting the demand for
domain-specific methods in PLMs.

Although there are domain-specific PLMs designed by training
on large-scale clinical data sets, they often fail to capture the
depth and breadth of knowledge scattered across diverse
biomedical sources [3]. This limitation calls for an approach
that integrates specific domain knowledge into PLMs, enhancing
their effectiveness and accuracy in specialized contexts.

To address this need, we propose a dual strategy—the strategic
incorporation of external knowledge from diverse sources in a
unified yet compartmentalized manner. Biomedical domain
knowledge is inherently heterogeneous and stored in a variety
of formats. A unified approach that simultaneously incorporates
various knowledge sources is essential to manage this diversity.
Traditional methods of sequential training with new knowledge
sources are inefficient and risk losing previously integrated
knowledge due to continuous model parameter adjustments. A
unified model overcomes these challenges by integrating diverse
knowledge without the need for repeated, individualized
retraining.

Furthermore, the broad diversity of domain knowledge sources,
each relevant to different tasks in its own way, underscores the
need for a compartmentalized approach. This strategy allows
for the selective integration of the most relevant knowledge,
avoiding information overload. In addition, given that each
institution manages its own proprietary repository of data and
knowledge, often governed by protected health information
(PHI) regulations, a method that potentially respects institutional
boundaries is desirable. This could enable an institution to freely
choose to equip a widely shareable foundational model with its
particular data, thereby enabling an adaptable and compliant
framework that can cater to diverse institutional needs without
compromising data privacy and security.

Building on this rationale, we introduce a specific case study
in the cardiovascular domain to demonstrate our approach. This
involves extracting diagnosis-comment pairs from EHRs and
approaching the problem through text classification, predicting
diagnoses based on physician comments. Essentially, we take
PLMs with a linear head on top as the foundational prediction

model and fine-tune them on this specific task, optimizing it to
better capture the specialized knowledge and clinical
terminologies present in physician comments within the
cardiovascular domain.

As most clinical PLMs, such as clinical bidirectional encoder
representations from transformer (ClinicalBERT) [4], are
primarily trained on large-scale free texts and lack integration
with structured domain knowledge, they often demonstrate
suboptimal performance in knowledge-driven tasks [5-7]. To
address this limitation, we incorporate the Diverse Adapters for
Knowledge Integration (DAKI) framework [6] for knowledge
infusion, which integrates domain knowledge adaptively from
multiple sources. More specifically, we train 3 distinct adapters,
each tailored to encapsulate domain knowledge from a specific
source, that are (1) the Unified Medical Language System
(UMLS) Metathesaurus, (2) Wikipedia articles, and (3) semantic
grouping information for biomedical concepts. This approach
effectively augments PLMs, enhancing their performance within
the clinical context. The adapter-enhanced PLMs retain a unified
utility, functioning as standard PLMs, while simultaneously
featuring a compartmentalized structure, where adapters are
incorporated in a plug-and-play manner, ensuring flexibility
and transferability. The contributions can be summarized as
follows: (1) we propose a novel task aimed at capturing
physician knowledge in the cardiovascular domain through text
classification of diagnosis-comment pairs from EHRs. The
encouraging performance of our models on this task validates
its feasibility, demonstrating the potential of PLMs in capturing
medical insights. (2) Upon integrating domain knowledge
through the DAKI framework, the models not only exhibit
enhanced performance but also an increased level of
interpretability, where we can closely examine and clarify which
external domain knowledge is activated during tasks. Such
interpretability could further enable the identification of vital
knowledge pieces, refine the fine-tuning of models for particular
tasks, and assist in adjusting the applied domain knowledge to
be more task-specific. (3) The domain knowledge demonstrates
transferability when injecting respective adapters into different
PLMs, where pretrained knowledge adapters also prove effective
when equipped with other, previously unseen PLMs. This
highlights the potential for heterogeneous knowledge infusion
while considering institutional boundaries, laying a foundational
step toward the development of health knowledge graphs
enriched with physician knowledge.

Related Work
Patient diagnosis prediction is a challenging task due to the
complex and knowledge-intensive nature of this field. Most
existing studies heavily rely on codified, numerical, or
time-series features of patients, where significant features are
manually selected as input to downstream machine learning
models. Franz et al [8] extracted all numerical observations
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from MIMIC-III (Medical Information Mart for Intensive Care
III) data set [9], for example, vital sign measures and lab results,
and fed them as input into a 4-layer neural network (1
convolutional neural network [10] layer spanning across the
time dimension followed by 3 fully connected layers) for
multiclass classification. Zoabi et al [11] selected a set of
features including sex, age, symptoms (cough, fever, sore throat,
shortness of breath, and headache), and known contact as input
and fed them into a gradient-boosting machine model to track
COVID-19. Meanwhile, with the rapid growth of NLP
techniques, researchers have been exploring the clinical notes
of EHRs for a wide variety of clinically relevant tasks, including
diagnosis prediction. For example, Franz et al [8] fine-tuned
ClinicalBERT [12] for the prediction and significantly
outperformed their numerical method. Another line of research
aimed to leverage the multimodality of EHRs as there exists
rich structural information within EHRs, for example, the
interactions among users, symptoms, and diseases [13], where
these interactions are captured through encoding EHRs through
graph neural networks [14,15]. The task of this work differs
from the aforementioned studies in that we only use a single
piece of physician comment as input, and instead of pushing
state-of-the-art predictive performance, we try to understand
the insight of a physician by capturing their reasoning on the
diagnosis.

While PLMs excel on general-domain text, their performance
over domain-specific text is relatively poor due to domain shift
[2]. In the last few years, several domain-specific PLMs have
been proposed to mitigate the issue, for example, BioBERT
[16], ClinicalBERT [12], ClinicalBERT [4], PubMedBERT
[17], ClinicalT5 [18], etc. Despite their specificity, training
these models demands significant time and resources. Moreover,
recent findings indicate that even these specialized models can
struggle in certain scenarios, particularly when reliable
knowledge retrieval is essential for complex domain-specific
reasoning [3].

Beyond acquiring domain knowledge through pretraining, a
distinct research trajectory emphasizes knowledge infusion,
wherein domain knowledge is intentionally injected into
language models [6,7,19-23]. Typically, this involves adding
an auxiliary training objective driven by knowledge. This
approach facilitates additional pretraining or fine-tuning of
existing models, thereby cutting down on training expenses,
though it can still demand significant resources. For instance,
Wang et al [7] jointly optimized language modeling with a
knowledge embedding objective. Zhang et al [23] fused PLMs
with graph neural networks through layered modality
interactions, enabling bidirectional information flow for
enhanced reasoning in question-answering tasks. Our choice to
use DAKI [6] for knowledge infusion is motivated by 3 principal
reasons, that are (1) the framework integrates domain knowledge
of varied sources and formats, which reflects the heterogeneous
nature of the domain knowledge; (2) focusing on training
adapters, instead of the entire language model, presents a more
sustainable and efficient approach; and (3) the knowledge
adapters are integrated in a plug-and-play manner that increases
both flexibility and interpretability.

Proposed Task Design

Data Collection and Structure
The experiment was conducted using clinical notes generated
by the Mayo Clinic Rochester Campus between January 1 and
December 31, 2015, corresponding to roughly 5 million
documents. Specifically, we extracted the problem entries from
the Impression/Report/Plan (IRP) section in the clinical note as
it contained a diagnostic problem list that was used to summarize
the main findings [24]. The entries are recorded as numbered
items and each item is a textual description of the diagnosis
followed by a physician comment detailing their reasoning for
giving a diagnosis. We then convert them into <entity,
comment> pairs by mapping the textual descriptions of diagnosis
to entities and associated UMLS concept unique identifiers
(CUIs) using SciSpacy [25]. We specifically perform entity
linking for diseases and syndromes, in light of the observation
that medical interests arise primarily around symptoms and
problems [26]. After filtering to only clinical narratives
generated in the Department of Cardiovascular Medicine and
removing unrecognized or unlinkable texts, 174,980 valid pairs
were generated corresponding to 30,240 patients. We then split
the data into 10 folds where 8 folds for training, 1 fold for
development, and 1 fold for testing were at the patient level.

Task Objective and Metrics
The task is cast as a multiclass text classification problem, that
is, to predict the assigned diagnosis (entity) from a physician’s
comment detailing their reasoning for assigning a diagnosis.
As most (linked) entities occur only once in the prepared data
set, we use the most frequent top 50 entities as the targets for
all experiments in this study. For instance, the top 10 most
frequent entities that appear in the training set are “hypertensive
disease,” “hyperlipidemia,” “sleep apnea, obstructive,” “atrial
fibrillation,” “coronary arteriosclerosis,” “hypothyroidism,”
“diabetes mellitus, non-insulin-dependent,” “gastroesophageal
reflux disease,” “chronic kidney diseases,” and “dyslipidemias.”
We use the top-k (k=1,3,5,10) accuracy classification score as
the evaluation metric, which computes the number of times
where the correct label is among the top-k labels predicted
(ranked by predicted scores).

Methods

We consider 2 prediction models in this study, that are, the
PLMs and those equipped with DAKI [6].

Foundational Models
For the foundational prediction models, we used
BERT-base-uncased [27], ALBERT-xxlarge-v2 [28], and
ClinicalBERT-base [4] to cover base or large, and general or
specific domain variants. Essentially, we encode the physician
comment with the models and feed the average pooled
representations into a linear layer for prediction. The model is
fine-tuned by optimizing a cross-entropy loss.

Models Equipped With DAKI
To facilitate prediction on clinical text, we leverage a novel
framework that incorporates DAKI into PLMs. The adapter in
this framework is a small bottleneck feed-forward network with

JMIR AI 2024 | vol. 3 | e56932 | p. 3https://ai.jmir.org/2024/1/e56932
(page number not for citation purposes)

Lu et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


a residual connection that is placed within PLMs, as illustrated
in Figure 1. One can also incorporate a more advanced adapter
structure, such as the LoRA (low-rank) adapter [29]. This
framework consists of 3 major components, which are the base
PLM, pretrained knowledge-specific adapters, and the
knowledge controller (CTRL) that adaptively activates the
adapters, as illustrated in Figure 2. Generally, when pretraining
a knowledge adapter, the parameters of the base PLM are frozen,
and only the adapter is optimized. In this way, we inject specific
knowledge into an adapter. By equipping PLMs with adapters,
one can inject domain knowledge into the models without
touching the original parameters of PLMs, enhancing their
representation capabilities on domain-specific text. Essentially,
a knowledge adapter is independently pretrained to encode
domain knowledge, and the trained adapters are then plugged
into DAKI for downstream fine-tuning, where the knowledge
adapters are adaptively activated by the knowledge controller.
Therefore, the usage of DAKI is simple and straightforward as
the output can be considered as the last hidden states of a PLM.

We use the best version of ALBERT (ie, ALBERT-xxlarge-v2
[28]) as the base PLM for adapter pretraining. In this study, we
incorporate 3 clinically relevant knowledge adapters that
integrate disparate domain knowledge from the UMLS
Metathesaurus (knowledge graph adapter [KG]), the Wikipedia
articles for diseases (disease adapter [DS]), and the semantic

groupings (semantic grouping adapter [SG]). More specifically,
the KG captures relational patterns within medical entities using
the UMLS Metathesaurus. It is trained on triples from UMLS,
treated as textual sequences, to predict the plausibility of these
relational statements. For the DS, disease-related textual
descriptions are sourced from Wikipedia, with the training
process focusing on inferring disease names through masked
language modeling, enhancing the model’s grasp on disease
contexts. The SG uses UMLS semantic groupings to predict the
categorization of medical concepts, leveraging textual definitions
to understand and classify medical concepts into coherent
groupings. Essentially, we try to enforce the KG to capture the
relationships between medical entities, the DS to help PLMs
understand the definitions and contexts for diseases, and the
SG to maintain semantic coherence within a categorization
group. We refer the readers to our previous work for a more
detailed treatment of the architecture and training objectives of
DAKI [6].

We equip the 3 foundational models, that is, BERT, ALBERT,
and ClinicalBERT, with DAKI, respectively, and enable all the
previously trained adapters within the framework for the
experiments. Likewise, we encode the physician comments with
the DAKI models and feed the average pooled representations
to a linear layer for prediction.

Figure 1. Adapter module, for example, a bottleneck feed-forward network with a residual connection.
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Figure 2. Architecture of DAKI [6]. CTRL: knowledge controller; DAKI: Diverse Adapters for Knowledge Integration; DS: disease adapter; h, r, t:
head, relation, tail; KG: knowledge graph adapter; PLM: pretrained language model; SG: semantic grouping adapter; TL: transformer layer.

Ethical Considerations
We used the Mayo Clinic IRP data, and this study was approved
by the Mayo Clinic Institutional Review Board (#20-001137)
for human participants research. The data were not anonymous.
No compensation was offered to participants in the study. Due
to the presence of private health information in the clinical data
set, we do not distribute any recordings or models trained on
these recordings. Access to the clinical data is restricted to Mayo
Clinic researchers who have the appropriate authorization.

Results

Overview
We present the performance of models both with and without
DAKI on the test set and development set in Table 1. Generally,
all the models are fine-tuned on the development set, and the
best epochs of that are selected to report their performance on
the test set. The results indicate that the infusion of domain
knowledge into PLMs through DAKI consistently boosts their
overall performance. Notably, DAKI-ALBERT demonstrates
compelling performance gain over ALBERT across all the
metrics, compared with the other 2 foundational models, which

is almost expected as the adapters are trained with ALBERT as
the base PLM. On the other hand, the improvement with
ClinicalBERT is comparatively slight, and we hypothesize that
this is due to ClinicalBERT’s extensive exposure to clinical text
during its pretraining, rendering DAKI-ClinicalBERT less
striking.

Another key observation from our results is that DAKI-BERT
not only matches but in certain metrics surpasses the
performance of ClinicalBERT. This highlights the advantages
of incorporating knowledge adapters, particularly given that
DAKI-BERT achieves such results without needing extensive
and sensitive clinical text corpora. Such transferability of
knowledge adapters also indicates a potential for heterogeneous
knowledge infusion while respecting institutional boundaries,
especially in contexts where each institution possesses its own
exclusive data repository due to PHI constraints.

Moreover, considering it is a complex 50-class classification
problem, these results are commendably robust. They not only
shed light on the feasibility of encapsulating physician reasoning
but also highlight the potential of transferable or portable domain
knowledge.
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Table 1. Overall performance.

DevelopmentTestData sets and metrics

Acc@10Acc@5Acc@3Acc@1Acc@10Acc@5Acc@3Acc@1a

Without DAKIb, %

84.9276.8470.2150.5685.3776.7369.748.81BERT

84.67669.3750.4785.8276.769.3548.02ALBERT

84.9776.8770.2750.6385.9677.0569.8848.49ClinicalBERT

With DAKI, %

84.7876.7770.1950.5986.3877.6470.2648.2BERT

84.8476.8270.4850.786.377.669.9348.32ALBERT

84.7576.4569.9951.1485.9477.0570.1548.73ClinicalBERT

aAcc@k: the number of times where the correct label is among the top-k labels predicted (ranked by predicted scores).
bDAKI: Diverse Adapters for Knowledge Integration.

Ablation Study
To investigate the influence of each of the knowledge adapters,
we conduct an ablation study and show the results in Table 2.
We take DAKI-BERT and DAKI-ClinicalBERT for comparison
as they have the same number of parameters. We gradually
remove the knowledge adapters from the complete setting (ie,
all 3 equipped) and this makes 6 conditions, as shown in the
table. Essentially for DAKI-BERT, the results of the ablated
models demonstrate varying degrees of decline in performance,

indicating the necessity of each source of external knowledge.
For DAKI-ClinicalBERT, however, the situation is different.
When 1 knowledge adapter is removed (ie, KG or DS), the
performance gets improved, which is consistent with our
conjecture that ClinicalBERT has been exposed to clinical
knowledge during pretraining and this weakens the knowledge
adapters’ impact. When 2 knowledge adapters are removed, the
performance gets decreased at a lower level compared with that
of DAKI-BERT, indicating the effectiveness and complementary
nature of the knowledge adapters.

Table 2. Ablation analysis on the test set.

DAKI-ClinicalBERTDAKIa-BERTAblated model and
metrics

ΔAcc@10Acc@5Acc@3Acc@1ΔcAcc@10Acc@5Acc@3Acc@1b

Baseline (no ablation), %

—85.9477.0570.1548.73—d86.3877.6470.2648.2With all

1 adapter removed, %

1.5086.877.7770.1648.65–1.8785.8577.1569.5748.04KGe

0.6786.4177.7869.8748.49–1.1885.8577.3270.5147.62DSf

–0.6086.2276.9169.4948.65–0.1786.3977.5169.9148.49SGg

2 adapters removed, %

–0.8086.2377.3269.2848.25–1.6885.9776.7769.6648.39KG-DS

–0.3686.1877.2269.5948.52–1.6885.8176.6369.9348.83KG-SG

–0.3186.3977.4769.6748.03–2.3086.0676.9469.6347.55DS-SG

aDAKI: Diverse Adapters for Knowledge Integration.
bAcc@k: the number of times where the correct label is among the top-k labels predicted (ranked by predicted scores).
cΔ: the change of accumulated accuracy scores.
dNot applicable.
eKG: knowledge graph adapter.
fDS: disease adapter.
gSG: semantic grouping adapter.
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Analysis
In this section, we want to analyze and answer the following
research questions: (1) what knowledge is lacking in the PLMs
for the physician reasoning task? (2) How do the models perform
on different target diagnoses, that is, at the individual level? (3)
How does the knowledge affect the representations at the token
level?

Knowledge Activation
Due to DAKI’s inherent flexibility, we are able to provide a
high-level representation of the adapter activations during the
inference process. As depicted in Multimedia Appendix 1, we
compute the softmax activations across 3 key layers within the
encoders of DAKI-BERT (left) and DAKI-ClinicalBERT (right)
where the adapters are situated. These activations are then
averaged across all test set instances. Notably, the disease
knowledge consistently stands out in its importance and
activation across these layers, when compared with the other 2
knowledge types. We conjecture that the specificity and

relevance of DS to the model’s tasks allow it to have a more
significant influence on the encoder’s activation patterns. This
reinforces the notion that domain-specific knowledge,
particularly when closely aligned with the predictive tasks, is
crucial for the model’s decision-making process. The injected
knowledge also demonstrates a more pronounced effect on
BERT than on ClinicalBERT. This distinction is likely because
ClinicalBERT has previously encountered clinical data sets
during its pretraining phase, which aligns with the observations
detailed in Table 1. The diminished reliance of ClinicalBERT
on the knowledge adapters underscores the importance of
identifying knowledge that truly complements specific PLMs.

Impact Pattern
We also investigate the impact pattern of these knowledge
adapters. Essentially, we show the top 10 most and least
successful targets in Figure 3. We also observe that the targets
with the biggest improvement are among the least successful
targets, as shown in Multimedia Appendix 2. The impact is
evaluated in terms of the F1-score.

Figure 3. Understanding performance variability: most versus least successful targets.

In general, we believe targets that demand more tests to diagnose
are easier to predict, for example, Gout. Such targets might
demonstrate more unique textual context in the comment that
facilitates the prediction. On the other hand, targets that are
easier to diagnose are more challenging for the model to identify.
For instance, it makes more sense to diagnose “Diabetes” with
“150 mg/dL” than with “blood sugar.” Moreover, we observe
that nearly half (ie, 4 out of 10) of the most-impacted targets
are among the least successful ones (ie, represented in orange
in Multimedia Appendix 2). This pattern underscores the utility
of the domain knowledge we have incorporated into the PLMs.
It indicates that this specialized knowledge is particularly

effective for enhancing the model’s capability to accurately
predict outcomes for what are considered harder targets. This
suggests that targeted interventions in the training process can
yield substantial improvements in predictive accuracy.

Contribution Shift
In the end, we would like to understand how the injected
knowledge affects PLMs in the specific task. We use the
SHapley Additive exPlanations (SHAP) tool, a game theoretic
approach to explaining the output of any machine learning model
[30], to explain the results. We take one of the hardest targets,
that is, coronary heart disease, as an example and investigate
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the contribution distribution of tokens from ClinicalBERT and
DAKI-ClinicalBERT, as shown in Figure 4. Red means positive
contribution (ie, predicting the comment to be coronary heart
disease among all the targets in this case), and blue means
negative contribution. The f(x) is the model’s score for this
observation, where a higher score leads the model to predict the

specific class. Essentially, we observe that with the external
knowledge, the DAKI-ClinicalBERT model is more sensitive
to the tokens and their contribution to the prediction, compared
with ClinicalBERT that treats the tokens almost equally. Such
contribution shift indicates that the injected knowledge helps
PLMs capture the semantics of text at the token level.

Figure 4. Contribution shift analysis of ClinicalBERT (top) and DAKI-ClinicalBERT (bottom). Darker shades of pink indicate a positive contribution
and the shades of blue indicate a negative contribution to the target, that is, coronary heart disease. DAKI: Diverse Adapters for Knowledge Integration.

Discussion

Principal Findings
Interpretability is a major issue in machine learning, especially
in the clinical setting. The reasons are 2-fold. First, it is essential
for physicians to understand how a model is making its
predictions in order to trust and effectively use the model. This
is particularly important in the medical field because the
consequences of incorrect predictions can be severe. Second,
machine learning techniques, especially deep learning models,
are hard to interpret, which makes it difficult for physicians to
identify potential biases or errors in the model. To improve the
interpretability in the application of machine learning to the
clinical setting, we consider constructing a health knowledge
graph so that the models are used responsibly and that the
consequences of incorrect predictions are minimized.

In recent years, there has been a surge of interest in creating
and using external health knowledge graphs to enhance the
domain adaptation and interpretability of PLMs. An optimal
health knowledge graph can be used for a variety of purposes,
such as, (1) for research purposes, they could be used to
represent the relationships between different medical conditions,
treatments, and patient characteristics that a physician considers
when deciding on a course of treatment for a patient and this
could help to clarify the reasoning behind the decision and
identify any factors that may have influenced the decision; (2)
for analysis purposes, they could help to identify patterns and
factors in physicians’ decision-making process, which can be
important for improving the quality and efficiency of hospital
care; and (3) for practical purposes, such graphs could support
clinical decision-making by providing physicians with
information and guidance to help them make informed decisions
about patient care.

Nevertheless, traditional biomedical knowledge graphs,
including the UMLS [31], the Systematized Nomenclature of
Medicine Clinical Terms (SNOMED CT) [5], the Human
Phenotype Ontology (HPO) [32], etc, mostly consist of

biomedical concepts and their relationships, along with textual
descriptions, and can struggle to fulfill the third purpose, that
is, clinical practice. The reason lies in their limited capacity to
incorporate practical physician knowledge, which is crucial for
clinical applications.

Physician knowledge is a key item of interest for inclusion in
health knowledge graphs, as mining a health knowledge graph
(as opposed to manual construction) provides the potential for
discovering latent clinical knowledge that may not be
self-evident. Such items can be found within physician reasoning
behind assigning a diagnosis, as such diagnoses are typically
made based on an application of the individual physician’s
knowledge. As physician reasoning is primarily not encoded in
structured data forms, we must instead turn to NLP techniques,
for example, the PLMs, on clinical narratives, which can include
symptom descriptions, reasons for diagnosis, patient activities,
and patient histories with the aim of helping physicians express
a holistic picture of the patient [8].

As a preliminary step, we aim to explore and model the thought
process and decision-making in the clinic by capturing physician
reasoning. With the experiment of text-based diagnosis
prediction, we believe that foundational PLMs are capable of
capturing physician knowledge given relatively high
performance in top-k (k=1,3,5,10) returned results, especially
when compared with random chance.

Moreover, by injecting external domain knowledge from 3
disparate sources (ie, the UMLS Metathesaurus, the Wikipedia
articles, and the semantic groupings) into the PLMs through
adapters, we show that the models’ performance gets
consistently improved with an increased level of interpretability.
Essentially, the framework’s flexibility enables us to investigate
and interpret what external domain knowledge is activated and
how it contributes to the model in capturing physician reasoning.

The transferability of the knowledge adapters is also notably
highlighted. As demonstrated in Table 1, DAKI-BERT’s
performance, on par with ClinicalBERT, underscores the

JMIR AI 2024 | vol. 3 | e56932 | p. 8https://ai.jmir.org/2024/1/e56932
(page number not for citation purposes)

Lu et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


adapters’ transferability, given that DAKI-BERT achieves
comparable performance even without using extensive and
confidential clinical text corpora. This transferability implies
the potential for infusing heterogeneous knowledge while
honoring institutional boundaries; institutions can create their
adapters using proprietary data and knowledge, thereby sharing
only the foundational models and not the institution-specific
adapters. This aspect warrants further exploration in future
studies.

As for future work, we would further investigate the impact of
different sources of knowledge over individual diagnosis, that
is, how external knowledge affects the judgments over the 50
diagnoses. We would also explore and incorporate other sources
of knowledge such as the ontological structure of the target
diagnoses. By combining the internal knowledge within the
EHRs and the external knowledge accumulated throughout
knowledge bases under a unified framework, we would improve
the interpretability of machine learning models in the clinical
scenario and facilitate the construction of a health knowledge
graph eventually.

Although the experiments demonstrate the effectiveness of our
method, there are still some limitations that can be improved.
First, the impact of knowledge adapters over different clinically
relevant tasks remains unclear as only one task is considered in

this work. Second, the range of external knowledge is a bit
limited, for example, the inherent ontological structure of the
targets is not leveraged, as mentioned above. Third, there is a
lack of clinical explanation for the observations at an individual
level, for example, why these knowledge adapters are most
useful for “normocytic anemia.” We will try to fix these issues
in future work.

Conclusions
This study serves as a preliminary exploration of capturing
physician reasoning. By predicting patients’ diagnoses based
on physician comments, we aim to explore physician knowledge
and the way they make judgments about the patients. We
propose to inject domain knowledge from disparate sources into
PLMs through adapters under the DAKI framework, enhancing
their representation capability on clinical text. The experimental
results demonstrate that capturing physician knowledge is
feasible through the encoding of clinical text using PLMs, the
representation capability and interpretability of which can be
further improved when equipped with external domain
knowledge. Notably, the transferability of the knowledge
adapters, exemplified by comparable performance between
DAKI-BERT and ClinicalBERT without access to extensive
clinical corpora, underscores the potential for scalable and
versatile applications across various institutional contexts and
knowledge domains.
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