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Abstract

Background: The integration of machine learning (ML) in predicting asthma-related outcomes in children presents a novel
approach in pediatric health care.

Objective: This scoping review aims to analyze studies published since 2019, focusing on ML algorithms, their applications,
and predictive performances.

Methods: We searched Ovid MEDLINE ALL and Embase on Ovid, the Cochrane Library (Wiley), CINAHL (EBSCO), and
Web of Science (core collection). The search covered the period from January 1, 2019, to July 18, 2023. Studies applying ML
models in predicting asthma-related outcomes in children aged <18 years were included. Covidence was used for citation
management, and the risk of bias was assessed using the Prediction Model Risk of Bias Assessment Tool.

Results: From 1231 initial articles, 15 met our inclusion criteria. The sample size ranged from 74 to 87,413 patients. Most
studies used multiple ML techniques, with logistic regression (n=7, 47%) and random forests (n=6, 40%) being the most common.
Key outcomes included predicting asthma exacerbations, classifying asthma phenotypes, predicting asthma diagnoses, and
identifying potential risk factors. For predicting exacerbations, recurrent neural networks and XGBoost showed high performance,
with XGBoost achieving an area under the receiver operating characteristic curve (AUROC) of 0.76. In classifying asthma
phenotypes, support vector machines were highly effective, achieving an AUROC of 0.79. For diagnosis prediction, artificial
neural networks outperformed logistic regression, with an AUROC of 0.63. To identify risk factors focused on symptom severity
and lung function, random forests achieved an AUROC of 0.88. Sound-based studies distinguished wheezing from nonwheezing
and asthmatic from normal coughs. The risk of bias assessment revealed that most studies (n=8, 53%) exhibited low to moderate
risk, ensuring a reasonable level of confidence in the findings. Common limitations across studies included data quality issues,
sample size constraints, and interpretability concerns.

Conclusions: This review highlights the diverse application of ML in predicting pediatric asthma outcomes, with each model
offering unique strengths and challenges. Future research should address data quality, increase sample sizes, and enhance model
interpretability to optimize ML utility in clinical settings for pediatric asthma management.
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Introduction

Background
Asthma is characterized by inflammation and narrowing of the
airways, leading to recurring episodes of wheezing,
breathlessness, coughing, and chest tightness. As the most
prevalent chronic childhood condition, asthma affects
approximately 14% of children worldwide [1,2] and ranks
among the top conditions for disability-adjusted life years in
children [3]. Severe asthma exacerbations, defined as those
requiring systemic corticosteroids, emergency department (ED)
visits, or hospitalization, are not only the primary cause of urgent
health care visits, hospitalizations, and asthma-related mortality
in children but contribute to asthma-related morbidity and
mortality in children, incurring substantial treatment costs [4,5].

Risk factors for asthma exacerbations are multifaceted, ranging
from socioeconomic factors to environmental exposures. Low
income, residing in areas of concentrated poverty, limited access
to health care providers, and high medication costs are
significant contributors [6-8]. In addition, factors such as
systemic and interpersonal racial and ethnic discrimination,
suboptimal asthma control, and environmental triggers play a
crucial role in exacerbation development [9,10]. Specifically,
aeroallergen exposure or sensitization and concurrent viral
infections have been shown to significantly increase
exacerbation risks [11-13]. Given this complex interplay of
factors, accurately predicting severe asthma exacerbations in
children remains a challenge. Accurate prediction of children
at risk for severe exacerbations can facilitate preemptive care
strategies, reduce morbidity, and enhance the quality of life of
those affected [14].

Machine learning (ML), a branch of artificial intelligence (AI),
emerges as a promising tool. A range of supervised learning
techniques, such as linear and logistic regression, decision trees,
and classifier methods, including support vector machines
(SVMs) and gradient boosting, are used to predict specific data
categories (eg, asthmatic vs nonasthmatic) or continuous
variables (eg, lung function measurements) [15]. In contrast,
unsupervised learning techniques, such as k-means clustering
and hierarchical clustering, are used to develop models that
enable the clustering of the data [15]. ML’s ability to analyze
data and identify patterns has already shown success in various
medical applications, including electrocardiography
interpretation, heart failure classification, and diabetes outcome
prediction [16-18]. In asthma management, AI has been
instrumental in diagnosis, severity classification, and even in
predicting asthma-related hospitalization risks at emergency
encounters [19-22]. Several studies have investigated the role
of AI in monitoring asthma exacerbations. Real-time assessment
tools using environmental and physiological sensors have
demonstrated notable accuracy in predicting exacerbations [23].
Contactless bed sensors for nocturnal data collection have also
shown promise in detecting exacerbations [24]. In addition,
AI-assisted clinical decision support tools, such as the Asthma

Guidance and Prediction System, have been evaluated for their
efficacy in reducing exacerbation frequency in children [25].

Recent advancements in ML offer promising tools for predicting
asthma exacerbations. A previous systematic review highlighted
the moderate predictive performance of traditional models, with
emerging ML approaches showing potential for enhancing
prediction accuracy [26]. Similarly, another recent systematic
review and meta-analysis of 11 studies, focusing on participants
aged ≥5 years with preexisting asthma diagnoses, demonstrated
good discrimination. The overall pooled area under the receiver
operating characteristic curve (AUROC) was 0.80 (95% CI
0.76-0.83), and the diagnostic odds ratio was 7.02 (95% CI
5.20-9.47), indicating that ML-based prediction models for
asthma exacerbation could achieve substantial accuracy [27].
Notably, of the 11 studies included in the 2022 systematic
review, 6 (55%) were conducted after 2019, indicating
considerable advancements in a short period [27]. However,
these studies focused on participants aged >5 years, leaving a
gap in research for younger children [27]. Therefore, our scoping
review aims to focus exclusively on studies conducted since
2019 that applied ML in predicting asthma exacerbations in
children aged <18 years.

Objectives
We intend to consolidate current knowledge by examining recent
studies. This includes describing the types of predictive models
developed, their applications in various settings, and the
populations targeted and evaluating their performance in terms
of accuracy, sensitivity, and specificity. This targeted approach
will provide insights into the latest ML advancements and their
potential to enhance pediatric asthma care.

Methods

Search Strategy
We registered this systematic review with PROSPERO
(CRD42023440928) and have used the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) to guide our reporting.

Search Strategy and Eligibility Criteria
An experienced information specialist (BS) developed and tested
the search strategies in an iterative process in consultation with
the review team. The MEDLINE strategy was peer reviewed
by another senior information specialist before execution using
the Peer Review of Electronic Search Strategies checklist [28].
Using the multifile and deduplication tool available on the Ovid
platform, we searched Ovid MEDLINE ALL and Embase
Classic+Embase. We also searched the Cochrane Library
(Wiley), CINAHL (EBSCO), and Web of Science (core
collection). All searches were performed on July 18, 2023. In
addition, the reference lists of retrieved articles and relevant
reviews were searched to identify other relevant studies.

The strategies used a combination of controlled vocabulary (eg,
“Asthma,” “Artificial Intelligence,” and “Risk Assessment”)
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and keywords (eg, asthma, deep learning, and prognosis). There
were no language restrictions on any of the searches, but results
were limited to the publication years 2019 to the present. When
possible, animal-only records, opinion pieces, and other
irrelevant publication types (eg, case studies and conferences)
were removed (refer to Multimedia Appendix 1 for strategies).
Records were downloaded and deduplicated using EndNote
(version 9.3.3; Clarivate Analytics) and uploaded to Covidence
(Veritas Health Innovation [29]) for efficient data management,
extraction, and synthesis.

All studies were required to meet the eligibility criteria
concerning the research focus, at both title/abstract and full-text
screening: (1) in-vivo studies (human-based) that applied ML
techniques to predict asthma-related outcomes, (2) participants
aged <18 years, and (3) reported original data. The inclusion
criteria were not limited to any specific study design to ensure
inclusivity; hence, all available evidence from any study design
was captured. There were no language restrictions for the studies
reviewed. Studies were excluded if they were (1) in vitro studies
(conducted on cellular substrates); (2) not focused on ML
techniques to predict asthma-related outcomes; and (3) reviews,
systematic reviews, opinions, editorials, and/or case reports.

Data Collection
Covidence was used throughout the review to manage citations.
We engaged and trained several individuals to assist with
reviewing citations (AP, RS, TO, and TV). During both parts
of the screening process, the reviewers used the eligibility
criteria to evaluate and determine the inclusion or exclusion of
studies, which were then reported in Covidence. The first-level
screening consisted of title and abstract screening of all uploaded
studies. Each citation was reviewed by 2 people independently
to select studies for full-text review (RS and TO). If the
eligibility criteria were met completely, as assessed by both
reviewers, the studies were included. If studies did not meet
eligibility criteria, as determined by both reviewers, they were
excluded. Any citations in which there was a difference in
opinion were brought to the study team to discuss, and a third
reviewer decided on inclusion or exclusion (AP and TV).
Second-level screening involved a thorough assessment of all
the studies that passed the initial screening on the basis of their
title and abstracts, performed independently by 2 reviewers (RS
and TO). An additional second-level review was performed by
a solo reviewer (AP), who excluded any studies that did not
meet the same eligibility criteria in the primary step and were
considered ineligible. The final set of studies included in this
scoping review includes only those that passed the full-text
screening process. Two members of the study team (RS and
TO) independently assisted with data extraction, with each study
being extracted once. Subsequently, a comparison check was
performed on each extracted study by a third reviewer (AP).

The following data were extracted: authors, title, journal,
publication year, funding source, ML application types, the
intended purpose of ML application, identification of any
potential bias in the ML model design (if applicable), bias
mitigation strategies (if applicable), study design, research
question/study objective, primary and secondary outcomes,
country, demographics, sample size, youth age groups, the unit

of analysis (individuals, groups, etc), data source (electronic
medical records, databases, claims data, and health surveys),
results, limitations, future research requirements (if applicable),
use for clinical applications, and performance metrics
(regression and classification). We noted if the information from
an article was unavailable. A summary of the extracted
information was recorded in Table S1 in Multimedia Appendix
2 [25,30-43].

Risk of Bias Assessment
To assess the risk of bias, we used the Prediction Model Risk
of Bias Assessment Tool (PROBAST) [44] and the guidelines
for developing and reporting ML predictive models in
biomedical research [45].

Data Synthesis
In this review, we used a narrative synthesis to thoroughly
review and summarize the objectives, ML algorithms, and
clinical relevance of each study. We focused on how these
studies used ML to predict asthma-related outcomes in children,
detailing the different ML algorithms, such as random forests
(RFs), logistic regression, and neural networks, that were used
and how they were applied. We organized the studies using the
ML techniques they used and gathered key performance
measures, such as accuracy, sensitivity, and specificity for each
one. We also noted studies that used >1 ML method and
identified and documented common limitations found within
the studies, such as small sample sizes and generalizability
issues.

Results

Study Selection and Characteristics
Our initial screening involved 1231 articles, from which 12
duplicates were removed using EndNote. This was followed by
a primary screening that resulted in the inclusion of 102 studies.
Upon secondary screening, 87 of these were excluded, leaving
15 articles that met our criteria for this review. The selection
process is detailed in Figure 1.

The included studies, published between 2019 and 2023,
predominantly came out in 2021 [25,30-43]. They originated
from various countries, including the United States (n=10, 67%)
[25,30,32,34,35,38,39,41-43], Germany (n=1, 7%) [40], New
Zealand (n=1, 7%) [31], Japan (n=1, 7%) [36], the United
Kingdom (n=1, 7%) [33], and Singapore (n=1, 7%) [37]. Sample
sizes in these studies ranged from 74 to 87,413 pediatric patients,
indicating a wide variation in the population sizes examined.

Table S1 in Multimedia Appendix 2 provides a comprehensive
summary of the key data extracted from each included study.
Most of these studies (n=9, 60%) implemented multiple ML
techniques [30-34,38-40,43]. Logistic regression (n=7, 47%)
and RFs (n=6, 40%) were the most commonly studied
techniques [30-35,38-40,43]. This was followed by gradient
boosting (n=4, 27%) [31,32,39,40] and artificial neural networks
(ANNs; n=3, 20%) [30,38,41]. Decision trees (n=2, 13%)
[34,36], natural language processing (NLP) models (n=2, 13%)
[25,42], and Gaussian mixture models (n=1, 7%) [37] were the
least frequent techniques used. Regarding study design,

JMIR AI 2024 | vol. 3 | e57983 | p. 3https://ai.jmir.org/2024/1/e57983
(page number not for citation purposes)

Ojha et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


retrospective cohort studies were predominant (n=9, 60%)
[30-32,35,38,39,41-43], with a smaller proportion being
prospective cohorts (n=5, 33%) [33,34,36,37,40] and a single
randomized controlled trial (n=1, 7%) [25]. Detailed information

on the various ML models applied in the prediction of asthma
exacerbations and related outcomes in children is provided in
Tables S2-S8 in Multimedia Appendix 2.

Figure 1. The selection process of eligible studies from all identified citations. ML: machine learning.

Quality Assessments
The risk of bias in the included studies was assessed using the
PROBAST tool [44]. Our analysis revealed that most studies
(n=8, 53%) exhibited a low risk of bias [30-32,34-36,40,41],
indicating robust methodologies and reporting. However, some
studies (n=3, 20%) were classified with an unclear risk
[33,37,42] because of insufficient detail in certain aspects,
whereas a few studies (n=4, 27%) were identified as high risk

[38,39,42,43], suggesting potential issues affecting their
reliability. Studies classified as unclear or high risk often faced
issues such as inconsistent definitions of outcomes across
participants, outcome assessments influenced by prior
knowledge of the predictors, or poorly specified inclusion and
exclusion criteria for participants. Detailed breakdowns of each
study’s bias assessment are presented in Figure 2, and a
summary of the overall risk across all studies is depicted in
Figure 3.
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Figure 2. Risk of bias summary based on the Prediction Model Risk of Bias Assessment Tool quality assessment tool for included studies [25,30-43].

Figure 3. Summary of the risk of bias assessment.

ML Models in Pediatric Asthma: Predictive and
Diagnostic Applications
Table 1 outlines the primary outcomes and the ML models used
across the included studies. For predicting asthma exacerbations,
the outcomes included any asthma-related health care encounter
(outpatient visits, ED visits, and hospitalizations) or a
prescription for a systemic steroid [25,30,35,38,39,43]. In
classifying asthma phenotypes, the outcomes were the
identification of allergic versus nonallergic asthma and the
differentiation between mild and moderate-severe asthma
[31,40,42]. For asthma diagnosis prediction, the outcomes were

the prediction of an asthma diagnosis and the calculation of a
pediatric asthma score (PAS) [32,41]. Studies identifying
potential risk factors for asthma-related outcomes focused on
outcomes, including the severity of symptoms and lung function,
considering factors such as family history, medical history, and
environmental triggers [33,34]. In sound-based diagnosis studies,
the outcomes included the identification of wheezing versus
nonwheezing sounds and the differentiation between asthmatic
and normal coughs [36,37]. Features commonly used across
studies include demographic data, such as sex, age, and race,
despite significant variations in ML models and outcomes
[25,30,35,38,39,43].
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Table 1. Application of MLa models in pediatric asthma management through predictive and diagnostic modalities.

Primary ML modelsOutcomeCategory

Neural networks, LASSOd regression, RFse,
XGBoost, and natural language processing

Any encounter (outpatients, EDb visits, and hospitalization)

with an asthma-related ICD-9 or ICD-10c code or a prescrip-
tion for a systemic steroid

Prediction of asthma exacerbations
[25,30,35,38,39,43]

SVMsf and stochastic gradient boostingAllergic vs nonallergic asthma and mild vs moderate-severe
asthma

Classification of asthma phenotypes
[31,40,42]

XGBoost, ANNsh, and natural language pro-
cessing

Prediction of asthma diagnosis and PASgAsthma diagnosis prediction [32,41]

K-means clustering, RFs, and decision treePotential risk factors (such as family hxi, medical hx, and en-
vironmental triggers) for asthma-related outcomes (including
symptom severity and lung function)

Identification of potential risk factors
for asthma [33,34]

Decision trees and Gaussian mixture modelsIdentification of wheezing vs nonwheezing sounds and differ-
entiation between asthmatic and normal coughs

Sound-based asthma or wheezing diag-
nosis [36,37]

aML: machine learning.
bED: emergency department.
cICD-9 or ICD-10: International Classification of Diseases, 9th or 10th revisions.
dLASSO: least absolute shrinkage and selection operator.
eRF: random forest.
fSVM: support vector machine.
gPAS: pediatric asthma score.
hANN: artificial neural network.
ihx: history.

Table 2 provides a detailed summary of the predictors, clinical
outcomes, and models used in the included studies. Studies have
consistently used demographic data to predict asthma
exacerbations. However, features related to medical history and
health care use varied across the studies. Some studies focused
on prescribed inhaled or oral steroids, previous health care use,
and presence of moderate to severe asthma [25,30,35,39]. In
contrast, others included variables such as time to triage, time
to first medication and asthma medication, ED hourly volume,
and patient disposition, including admitted or discharged [43].
Notably, some studies incorporated hospital characteristics,
such as ownership (private vs public sector), teaching status,
and size, along with family history factors such as alcohol or
drug issues or housing instability [38]. Health insurance presence
and type were also examined [39]. The models used in these
studies included neural networks, least absolute shrinkage and
selection operator regression, RFs, XGBoost, and NLP. The
models were evaluated using metrics such as AUROC, accuracy,
F1-score, precision, recall, and specific measures such as mean
average negative predictive value (NPV). The best-performing
models varied by application. Recurrent neural networks [30]
and XGBoost showed high performance in predicting asthma
exacerbations, with XGBoost achieving an AUROC of 0.761
[39]. ANNs outperformed logistic regression in predicting
hospital readmissions, achieving an AUROC of 0.637 [38]. RFs

were particularly effective in predicting hospitalization needs,
with an AUROC of 0.886 [43].

A variety of demographics and clinical characteristics were used
to differentiate between allergic and nonallergic asthma
[31,40,42]. Key demographic variables included age, sex,
weight, and race. Clinical parameters such as C-reactive protein
levels, eosinophilic granulocytes, and oxygen saturation were
also included in some studies [31]. Genetic markers, specifically
protein kinase N2 and protein tyrosine kinase 2, along with
breastfeeding duration, were also evaluated for their roles in
asthma phenotypes [40]. In addition, some studies evaluated
risk factors such as home conditions (eg, presence of carpets,
home location and year, and animal triggers) and school
characteristics, and home-related ventilators were considered
to assess indoor environmental impacts on asthma [34]. ML
models (eg, RFs, SVMs, gradient boosting, and decision trees)
were used to analyze these variables. The most effective models
varied across studies. Metrics such as AUROC, accuracy,
precision, true positive rate, true negative rate, F1-score,
prevalence ratios, and IQRs were used to evaluate the models’
performance. SVMs demonstrated high performance with
metrics, including an accuracy of 77.8%, precision of 0.81, and
an AUROC of 0.79. Stochastic gradient boosting achieved an
AUROC of 0.81, highlighting its efficacy in incorporating
genetic markers and breastfeeding duration.
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Table 2. Summary of the included studies on MLa applications in pediatric asthma: predictors, clinical outcomes, and models.

ML modelsOutcomesData sourceMetricsPotential predictors, variables of inter-
ests-grouped

Study

Deep learning:
recurrent neural
networks

Frequency of EDf use
(number of visits made by
pediatric patients during a
1-year predication window)

EHRseAUROCb (0.85), AUCc-PRd

(0.74), and F1-score (0.61)

Demographic data, medication use,
health service use, clinical parameters
and characteristics (comorbid illnesses),
and insurance information

AlSaad et al
[30], 2022

RFsh, extreme
gradient boost-

Classify predominantly aller-
gic asthma and nonallergic
asthma among preschool
children

EHRsSVMg differentiated be-
tween allergic and nonaller-
gic asthma most well: accu-
racy (77.8%), precision

Demographic data (age and weight) and
clinical parameters and characteristics
(C-reactive protein, eosinophilic granu-
locytes, oxygen saturation, premedica-
tion inhaled corticosteroid+long-acting

Bhardwaj et
al [31], 2023

ing, SVMs,
adaptive boost-
ing, extra tree(0.81), true positive rate

β-2 agonist, other premedication, Pulmi- classifier, and(0.73), true negative rate
cort or celestamine during hospitaliza- logistic regres-

sion
(0.81), F1-score (0.81), and
AUROC (0.79); because of
the imbalance between both

tion, and azithromycin during hospital-
ization)

groups, a stratified 10-fold
cross-validation was used

Naive Bayes,
K-nearest

Occurrence of asthma diag-
nosis by the age of 10 years

EHRsMean ANSA, median
ANSA, precision, recall,

Demographic data (race, sex, ethnicity,
and language spoken), geographic loca-

Bose et al
[32], 2021

neighbors, logis-following an asthma inci-
dent

F1-score, and accuracy;
XGBoost presented the best

mean ANSAj: mean ANSA

tion (state of residency at the time of
their first asthma diagnosis), insurance
information (Medicaid enrollment), care
site information (place of service such

tic regression,
RFs, and XG-
Boost(0.43), median ANSA

as EDs or office visits and provider spe- (0.43), precision (0.95), re-
cialties at first asthma diagnosis), medi- call (0.82), F1-score (0.88),

and accuracy (0.81)cal hxi (age of first and last asthma diag-
noses and nonasthma-related clinical
visits)

K-means cluster-
ing

Examine risk factors that re-
sult in asthma-related out-
comes in late childhood

EHRs and
health sur-
veys

FVCk, FEV1l, IEm, FEn

(early-onset frequent exacer-
bations), IE (93.7%), and FE

Medical hx and medication use (asthma
diagnosis, use of asthma medication,
current wheeze, asthma severity, and
lung function) and risk factors (environ-

Deliu et al
[33], 2020

(6.3%); shorter duration of
mental tobacco smoke, pet ownership, breastfeeding was the
length of breastfeeding, day-care atten- strongest risk factor.
dance, presence of older siblings, and
family hx of asthma)

FEV1/FVC of FE group:
85.1% at 8 years old

RFs and deci-
sion tree

Evaluating factors in indoor
environments (home vs
school) contributing to asth-

Health sur-
veys

Percentage and PR; top con-
tributing factors: asthma,
family rhinitis hx (relative

Demographic data (sex, race, age, and
grade), family hx (job status, health sta-
tus and hx, and education), insurance

Deng et al
[34], 2021

ma and allergy-related
symptoms

importance: 10.40%), plant
pollen trigger (relative im-
portance: 5.48%), and bed-

information, and risk factors (home
conditions, such as carpet in house, tile
flooring, or home location and year, ani-

room carpet (relative impor-mal triggers, home-related ventilators,
and school characteristics) tance: 3.58%). Allergy-relat-

ed symptoms: plant pollen
trigger (relative importance:
10.88%), higher paternal
education (relative impor-
tance: 7.33%), and bedroom
carpet (relative importance:
5.28%)

Logistic regres-
sion

ED visit because of asthma
exacerbations (also known

as AERo); asthma exacerba-

EHRsAUROC; internal validation:
0.769. 10-fold cross-valida-
tion AUROC: 0.737

Demographic data (age, sex, and race)
and medical hx and medication use (in-
haled or oral steroid prescribed, ED visits
in a year, moderate to severe asthma, and

Gorham et al
[35], 2023

tions: asthma-related emer-
gencyasthma-related primary care visits in a

year)

Decision treeIdentification of wheeze
sounds vs nonwheeze
sounds

EHRsSensitivity, specificity,

PPVp, and NPVq; sensitivity
(100%), specificity (95.7%),

Audio features (wheeze sounds: frequen-
cy, intensity, and duration) and demo-
graphic data (age)

Habukawa et
al [36], 2020

PPV (90.3%), and NPV
(100%)
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ML modelsOutcomesData sourceMetricsPotential predictors, variables of inter-
ests-grouped

Study

Gaussian mix-
ture model-uni-
versal back-
ground model

Classify and differentiate
asthmatic coughs from nor-
mal voluntary coughs

EHRs and
health sur-
veys

Sensitivity (82.81%) and
specificity (84.76%)

Demographic data (age, sex, race, and
weight), clinical parameters and charac-
teristics (temperature, respiratory rate,
heart rate, and shortness of breath), audio
features (cough sounds: mel-frequency
cepstral coefficients and constant-Q
cepstral coefficients), and medical hx
(asthma, allergic rhinitis, and recurrent
wheeze)

Hee et al
[37], 2019

Logistic regres-
sion and ANNs

Asthma hospital readmission
180 days after hospital dis-
charge

Claims data
and biomedi-
cal databases

AUC; logistic regression

(0.592) and ANNss (0.637)

Demographic data (sex and age), insur-
ance, family hx (family member with
alcohol or drug issues, hx of abuse,
housing instability, and foster care),
clinical parameters and characteristics

(LOSr, admission season, and chronic
conditions), and hospital characteristics
(hospital ownership, teaching status, and
hospital size)

Hogan et al
[38], 2022

LASSO, RFs,
and XGBoost

Predict the occurrence of
asthma exacerbation; asthma
exacerbation: any encounter
with an asthma-related ICD-

9 or -10u code and a prescrip-
tion for a systemic steroid

EHRs and
biomedical
databases

AUC at day 30, 90, and 180;

LASSOt (0.753, 0.740, and
0.732), RFs (0.757, 0.747,
and 0.729), and XGBoost
(0.761, 0.752, and 0.739)

Demographic data (age and sex), medical
hx and medication use (comorbidities
and prescribed asthma control plan), in-
surance, and health care use (inpatient
admissions, ambulatory visits, and ED)

Hurst et al
[39], 2022

LASSO, elastic
net, RFs, and
stochastic gradi-
ent boosting

Distinguish between healthy
children, those with mild to
moderate allergic asthma,
and those with nonallergic
asthma

Health sur-
veys and
biomedical
databases

AUC; boosting was the best
model for all data sets: 0.81

Clinical parameters and characteristics

(genes, including PKN2v, PTK2w, and

ALPPx, and breastfeeding), and demo-
graphic data (age and sex)

Krautenbach-
er et al [40],
2019

ANNsUse of vital sign data to pre-
dict the presence of asthma
and to generate a novel pedi-
atric-automated asthma
score

EHRs and
biomedical
databases

Median absolute error; bal-

anced set MAEz: 1.21

Demographic data (age, sex, and race)
and medication use, medical hx, and

medications (LOS, PASy including vital
sign data such as heart rate, respiratory
rate, oxygen saturation, respiratory sup-
port, and medications)

Messinger et
al [41], 2019

NLPIdentifying characteristics
that will identify childhood
asthma and its subgroups
using 2 algorithms

EHRsPercentage;

NLPab-PACac+/NLP–APIad+:
1614 (20%), NLP-PAC+
only: 954 (12%), NLP-API+
only: 105 (1%), and NLP-
PAC–/NLP-API–: 5523
(67%); NLP-PAC) and
NLP-API); asthmatic chil-
dren classified as NLP-
PAC+/NLP-API+ showed
earlier onset asthma, more

Th2ae-high profile, poorer
lung function, higher asthma
exacerbation, and higher risk
of asthma-associated comor-
bidities compared with other
groups

Demographic data (age, sex, ethnicity,
and weight), family hx (asthma and
smoking during pregnancy), medical hx
(diagnosis of asthma, eczema, allergic

rhinitis, eosinophilia, total IgEaa, asthma
and associated outcomes such as persis-
tent asthma, pertussis, pneumonia), and
health care use (visits per year)

Seol et al
[42], 2020

NLPDetermine the presence of
asthma exacerbation to re-
duce its frequency using
clinical information; asthma
exacerbation: ED visit, hos-
pitalization, or outpatient
visit requiring systemic cor-
ticosteroids for asthma

EHRsIQR and P value; asthma
exacerbation: intervention
12%, control 15%, P=.60;
Time (min) taken by the
clinician to take a clinical
decision, median: interven-
tion 3.5 min vs control 11.3
min

Medical hx and medications (IgE count,
eosinophil count, smoking exposure, hx
of allergic rhinitis, previous exacerba-
tions, asthma diagnosis, and medication
use) and demographic data (age, sex, and
race)

Seol et al
[25], 2021
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ML modelsOutcomesData sourceMetricsPotential predictors, variables of inter-
ests-grouped

Study

RFs and logistic
regression

Predict the need for hospital-
ization of pediatric patients
with asthma

EHRsAUC, accuracy, and F1-;
model 1: triage (RF-AUC
0.831, accuracy 0.777, and
F1-score 0.635, and logistic
regression-AUC 0.795, accu-
racy 0.731, and F1-score
0.564); model 2: 60 minutes
after patients’ arrival (RF-
AUC 0.886, accuracy 0.795,
and F1-score 0.689, and lo-
gistic regression-AUC
0.823, accuracy 0.753, and
F1-score 0.618)

Demographic data (age, race, and sex),
insurance, medical hx, and medications
(ED and treatment factors: time to triage,
time to first medication and asthma
medication, ED hourly volume, and dis-
position including admitted or dis-
charged)

Sills et al
[43], 2021

aML: machine learning.
bAUROC: area under the receiver operating characteristic curve.
cAUC: area under cover.
dPR: precision recall.
eEHR: electronic health record.
fED: emergency department.
gSVM: support vector machine.
hRF: random forest.
ihx: history.
jANSA: average negative predictive value specificity area.
kFVC: forced vital capacity.
lFEV1: forced expiratory volume in the first second.
mIE: infrequent exacerbation.
nFE: frequent exacerbation.
oAER: asthma emergency risk.
pPPV: positive predictive value.
qNPV: negative predictive value.
rLOS: length of stay.
sANN: artificial neural network.
tLASSO: least absolute shrinkage and selection operator.
uICD-9 or -10: International Classification of Diseases, 9th or 10th Revisions.
vPKN2: protein kinase N2.
wPTK2: protein tyrosine kinase 2.
xALPP: alkaline phosphatase, placental.
yPAS: pediatric asthma score.
zMAE: masked autoencoder.
aaIgE: immunoglobulin E.
abNLP: natural language processing.
acPAC: predetermined asthma criteria.
adAPI: Asthma Predictive Index.
aeTh2: T helper 2 cells.

Studies that attempted to predict asthma diagnosis included a
range of features, ML models, and metrics [32,41]. One study
used demographic data such as race, sex, ethnicity, and language
spoken, alongside medical history factors such as age at first
and last asthma diagnoses and the number of nonasthma-related
clinical visits, as well as geographic information such as the
state of residency at the time of the first asthma diagnosis and
insurance details, including Medicaid enrollment [32]. Another
study focused on using patients’medical history and medication
use, along with vital sign data, to predict the presence of asthma

and generate a novel PAS [41]. Various ML models were used,
including naive Bayes, k-nearest neighbors, logistic regression,
RFs, ANNs, and XGBoost, with ANNs and XGBoost showing
the best performance. The metrics used to evaluate these models
included mean average NPV specificity area, median average
NPV specificity area, precision, recall, F1-score, and accuracy.

To identify potential risk factors for asthma-related outcomes,
particularly focusing on the severity of symptoms and lung
function, various ML models were used [33,34]. One study
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examined a range of variables, including medical history and
medication use, such as asthma diagnosis, current wheeze,
asthma severity, and lung function, alongside risk factors such
as environmental tobacco smoke, pet ownership, length of
breastfeeding, day-care attendance, presence of older siblings,
and family history of asthma. K-means clustering was used to
identify patterns and categorize risk factors associated with
different asthma outcomes [33]. Evaluation metrics included
forced vital capacity and forced expiratory volume in the first
second, with specific attention to infrequent exacerbations and
early-onset frequent exacerbations. Shorter breastfeeding
duration emerged as the strongest risk factor, with the forced
expiratory volume in the first second/forced vital capacity ratio
in the frequent exacerbation group being 85.1% at 8 years old
[33]. Another study focused on demographic data, such as sex,
race, age, and grade, along with family history variables,
including job status, health status, and education [34]. The study
also considered insurance information and risk factors such as
home conditions (eg, presence of carpets or tile flooring and
home location and year), animal triggers, home-related
ventilators, and school characteristics. Using RFs and decision
trees, the study identified key contributors to asthma and
allergy-related symptoms. The metrics used included prevalence
ratios. Significant factors for asthma included a family history
of rhinitis (relative importance of 10.40%), plant pollen trigger
(relative importance of 5.48%), and bedroom carpet (relative
importance of 3.58%). For allergy-related symptoms, important
factors were plant pollen trigger (relative importance of
10.88%), higher paternal education (relative importance of
7.33%), and bedroom carpet (relative importance of 5.28%)
[34].

To identify and classify asthmatic sounds, particularly focusing
on wheezing and cough patterns, various ML models were used
through a combination of audio features, demographic, and
clinical data [36,37]. One study focused on differentiating
between wheezing and nonwheezing sounds using a decision
tree model [36]. The key features analyzed included audio
characteristics such as the frequency, intensity, and duration of
wheezing sounds, along with demographic data such as age.
The model’s performance was evaluated using metrics such as
sensitivity, specificity, positive predictive value, and NPV. The
decision tree model achieved a sensitivity of 100%, specificity
of 95.7%, positive predictive value of 90.3%, and NPV of 100%,
demonstrating its high accuracy in identifying wheezing sounds
among pediatric patients [36]. Another study aimed to classify
and differentiate asthmatic coughs from normal voluntary
coughs using a Gaussian mixture model-universal background
model [37]. This study incorporated audio features such as
mel-frequency cepstral coefficients and constant-Q cepstral
coefficients, along with demographic data (age, sex, race, and
weight) and clinical parameters (temperature, respiratory rate,
heart rate, and shortness of breath). In addition, medical history
factors such as asthma, allergic rhinitis, and recurrent wheezing
were included. The model’s effectiveness was measured using
sensitivity and specificity, achieving sensitivity of 82.81% and
specificity of 84.76% [37]. These metrics indicate the model’s
robustness in accurately classifying asthmatic coughs and
distinguishing them from normal coughs.

Common Limitations in the Reviewed Studies
A recurring theme in the limitations reported by the included
studies pertains to challenges with data quality and
completeness. Issues such as missing, incomplete, or limited
data availability from medical records and health surveys were
highlighted in several studies [34,38,41-43]. These data
constraints can significantly impact the robustness and
generalizability of the study findings. In the context of predicting
asthma exacerbations, 3 studies specifically cited deficiencies
in electronic health records (EHRs) [30,41,42] and pointed out
the lack of critical variables in EHRs, such as socioeconomic
status and adherence to treatment. These deficiencies arose from
variables not being commonly recorded in EHRs. The absence
of these variables can limit the depth and accuracy of predictive
modeling, thereby affecting the models’ performance and
generalizability. Another notable limitation was the issue of
imbalanced data sets [30-32], which refers to situations where
the number of observations in different classes is
disproportionately distributed. For example, if there are
significantly more cases of nonasthmatic patients compared to
patients with asthma, this imbalance can lead to biased or
skewed models that do not perform well across all classes. Small
sample sizes, which can affect the statistical power and validity
of the findings, were also a concern in a few studies
[25,31,33,40]. A small sample size generally refers to a data set
that is not large enough to yield statistically significant results
or reliable conclusions. This can vary depending on the study
design and statistical methods used, but typically, small sample
sizes limit the ability to generalize findings to a larger
population. In addition, limitations were identified in studies
focusing on wheezing and asthmatic cough recognition
algorithms. For example, a study developed a wheeze detection
device for use in home environments, raising questions about
its clinical value because of the specific context of its intended
application [36]. Similarly, another study [37] on an asthmatic
cough recognition algorithm highlighted that its validity and
accuracy depended on the correct labeling of coughs by
attending physicians. These limitations underscore the need for
improved data quality and data collection processes to enhance
the reliability and applicability of ML models in pediatric asthma
research.

Discussion

Principal Findings
This scoping review successfully identified 15 peer-reviewed
studies published since 2019, focusing on ML models in
predicting pediatric asthma outcomes. Model use was diverse:
logistic regression (7 studies), RFs (6 studies), gradient boosting
(4 studies), ANNs (3 studies), decision trees (2 studies), NLP
(2 studies), and Gaussian mixture model (1 study), with area
under the curve ranging from 0.62 to 0.88. Most studies (n=8,
53%) had a low to moderate risk of bias, and they were
evaluated using PROBAST.

Comparative Analysis of ML Models
Among traditional ML models, logistic regression has
demonstrated robustness, particularly in predicting
hospitalization needs in pediatric asthma cases [30-33,35,38,43].
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However, comparing logistic regression to RFs reveals that the
latter offers superior performance in certain scenarios. For
instance, RFs exhibited a higher area under the curve at the
1-hour postarrival time point in predicting hospitalization needs
[43].

Gradient boosting models, particularly XGBoost, showed
promise in certain scenarios. For example, in predicting early
childhood asthma persistence, XGBoost matched the accuracy
of logistic regression [32]. However, these models still lag
slightly behind logistic regression and RFs in classifying asthma
types, highlighting the potential differences in model efficacy
across various applications.

The application of ANN provided promising results in predicting
ED visits and asthma readmissions [30,38]. However, their
performance, especially in complex clinical settings, warrants
additional exploration and comparison with more conventional
models. Decision trees, applied in more niche areas such as
environmental risk assessment and wheeze sound recognition,
demonstrated high accuracy and specificity [34,36]. NLP
models, used within EHRs, helped early identification of
pediatric asthma criteria [25,42], and Gaussian mixture models
were applied to differentiate between patients with asthma and
nonasthmatic patients through auditory recognition of types of
coughs [37].

Application of Predictive Models Across Different
Outcomes
Among the 15 studies, key outcomes include predicting asthma
exacerbations requiring urgent care, classifying asthma
phenotypes by identifying allergic versus nonallergic asthma
and severity levels, predicting asthma diagnoses and calculating
PAS, and identifying potential risk factors such as symptom
severity and lung function. In addition, sound-based diagnosis
studies focused on distinguishing wheezing and differentiating
asthmatic from normal coughs. One study [39] developed
predictive models for pediatric asthma exacerbations using
sociodemographic data, comorbidities, medication prescriptions,
prescribed asthma controller plans, and patient service use
history. This algorithm functioned as a potent tool capable of
identifying children at risk of asthma exacerbations.
Consequently, it signaled when preventive measures would be
valuable to implement. Several studies used ML models to
predict hospitalization needs and readmission risks using
demographic variables. The studies by Sills et al [43] and Hogan
et al [38] used ML models using varying features, including
demographic variables such as sex, age, and race to predict
hospitalization needs and readmission risks. Sills et al [43]
demonstrated the potential of 2 distinct ML models to predict
hospitalization in pediatric asthma cases, highlighting the
models’utility as supportive tools for clinical decision-making.

Similarly, Hogan et al [38] used an ANN algorithm to predict
asthma readmissions within 180 days after discharge, finding
that ANN outperformed traditional models in identifying
readmission predictors. AlSaad et al [30] and Gorham et al [35]
conducted studies focusing on predicting ED visits using data
from EHRs/electronic medical records. Notably, the studies
found that increased access to primary care with regular
follow-ups resulted in fewer ED visits, suggesting that more

frequent visits allowed for better assessment and management
of asthma. Their findings suggest that ML models can
effectively identify children with asthma who are at higher risk
of repeated ED visits. Given the challenges associated with
frequent ED use in emergency care, these prediction models
emerge as valuable tools in enhancing asthma management and
assisting in clinical decision-making.

We also examined the role of ML in asthma diagnosis in a
pediatric population. One study [37] developed an ML model
to distinguish between asthmatic and normal coughs by creating
a database of cough sounds from asthmatic and nonasthmatic
children. Another study [36] focused on an ML-based wheeze
detection algorithm, analyzing lung sounds recorded through
stethoscopes. Both these studies exemplify the use of ML in
identifying asthma symptoms accurately. In addition, an ML
algorithm was explored to automate asthma severity scoring,
aiming to create a pediatric asthma respiratory score from vital
sign data [41]. Additional research [42] used an NLP model to
identify asthma early in children, and another study [25]
developed the Asthma Guidance and Prediction System using
ML and NLP to enhance asthma management programs and
reduce asthma exacerbations. These studies collectively
demonstrate the considerable potential of ML in improving the
diagnosis, severity assessment, and management of pediatric
asthma.

In examining asthma phenotypes, several studies have leveraged
ML to categorize different characteristics of asthma. Two studies
implemented various ML techniques [31,32], focusing on EHR
data to classify asthma types. One study [31] aimed to
distinguish between allergic and nonallergic asthma, whereas
another study [32] sought to predict persistent versus transient
asthma. Similarly, 2 studies [25,42] used EHR data and applied
an NLP algorithm to identify pediatric asthma subgroups. This
capability to distinguish between different types of asthma can
significantly inform clinical decisions and guide parents in
choosing appropriate asthma treatments, as highlighted by others
[32].

Further support for the use of ML in understanding asthma
phenotypes and allergies comes from the studies of Deng et al
[34] and Krautenbacher et al [40], each adopting a unique
approach. Deng et al [34] used ML models to assess risk factors
in home and school environments affecting asthma and allergies.
In contrast, Krautenbacher et al [40] developed a unique ML
method to enhance the prediction of childhood asthma
phenotypes, specifically distinguishing between allergic and
nonallergic asthma, using various inputs such as genotypes,
questionnaires, and diagnostic tools. Both studies effectively
demonstrated the potential of ML models in identifying asthma
and allergy risk factors as well as in improving the classification
of childhood asthma types. Similarly, another study [33] applied
ML to analyze wheeze exacerbation trajectories in children
using medical record data, revealing diverse exacerbation
patterns, early life risk factors, and asthma outcomes. This study
aligns with the others in using ML to discern patterns predictive
of childhood asthma. Jeddi et al [46] further emphasize the
significance of these findings, noting that the ability to identify
factors associated with childhood asthma via ML can help
predict children considered susceptible. This prediction, in turn,
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enables the implementation of targeted interventions to prevent
the onset of the disease.

Future Directions and Key Considerations
Applying ML models to predict asthma outcomes in children
involves several critical considerations to ensure accuracy,
reliability, and applicability. The basis of any ML model is the
data it is trained on. It should be comprehensive and include
variables such as age, sex, family medical history, environmental
exposures (such allergens, pollutants, and community viral
loads), lifestyle factors (diet and physical activity), and clinical
data (symptoms, medication use, lung function tests, etc).
Several studies highlighted missing or incomplete data in
medical records and health surveys [34,38,41-43], which
underscores the importance of robust strategies for handling
such data challenges. For example, studies have demonstrated
that simple imputation methods, considering informative
missingness, can be effective in managing missing numerical
data in EHR for ML [47]. In addition, research on imputing
missing values in laboratory data from EHRs has shown that
the pattern of missingness is typically nonrandom and closely
related to patients’ comorbidities, suggesting that multilevel
imputation algorithms are more effective than cross-sectional
methods [48].

Another point to consider is that asthma is a chronic condition
with variable progression over time. Incorporating longitudinal
data, which means tracking patient data over time, can help the
model recognize patterns and predict future exacerbations or
improvements. In addition, there is limited information on the
choice of ML models across different age groups within the
pediatric population. This gap highlights the need for future
research to specifically address the performance and
applicability of ML models in different pediatric age groups.
This approach could provide valuable insights into age-specific
predictive features and model adjustments.

Beyond accuracy, the model must also be interpretable [49].
Clinicians and patients should be able to understand how and
why a particular prediction was made, which builds trust and
ensures that the model’s findings are useful in real-world clinical
decision-making. The model should also integrate seamlessly
into existing clinical workflows. This involves considering how
predictions will be delivered and their impact on clinical
decision-making and ensuring they are in a format that health
care providers can understand and easily incorporate into their
existing decision-making processes. Previous research has
shown that user-centered design is essential for successful
implementation. For instance, a study involving 14 clinicians
highlighted the need to identify patients at high risk and take
proactive measures to manage asthma effectively [50].
Clinicians emphasized the importance of clear, actionable
insights from the tool and understanding the underlying reasons
for predictions. Barriers to implementation included usability

and workflow integration challenges; the need for clear
algorithm explainability; and ensuring the tool’s acceptability,
adoption, and sustainability through proper design and training
[50]. By involving clinicians in the design process, the tool was
tailored to meet their needs, which underscores the importance
of user-centered design in developing effective clinical decision
support tools.

Strengths of this review included a comprehensive and
systematic search across multiple databases, along with
establishing clearly defined inclusion and exclusion criteria.
The structured study selection process added robustness to the
review. In addition, the use of the PROBAST tool for risk of
bias assessment augmented the credibility of the review [44].
However, the review also had limitations that should be
acknowledged. Despite a broad and inclusive search strategy
designed to capture all subtypes of ML related to childhood
asthma, some relevant studies might not be published in the
indexed journals included in our search databases, and thus,
there remains a possibility that some pertinent articles may have
been inadvertently excluded.

This review highlights the potential of ML in transforming
pediatric asthma care, from predicting exacerbations to
characterizing asthma types. However, it also underscores the
need for improved data quality, larger and more balanced data
sets, and more rigorous validation to ensure these tools are
clinically valuable. The exploration of varied ML techniques
across studies offers a road map for future research to build
more accurate, reliable, and applicable models for pediatric
asthma management.

Conclusions
This scoping review provides a broad overview of ML
applications used to predict asthma-related outcomes in children.
We reviewed a diverse range of studies focused on the design,
training, testing, and interpretation of ML models and observed
that using ML in childhood asthma is an emerging field that
has seen significant growth over the past few years. This recent
surge in research highlights the evolving nature and increasing
interest in applying ML to improve pediatric asthma outcomes.

By leveraging data from multiple sources, ML approaches have
made strides in identifying distinct asthma phenotypes, paving
the way for more tailored and effective treatment strategies in
clinical practice. However, the field faces ongoing challenges,
particularly regarding minimizing missing data, ensuring robust
model validation, and achieving interpretability. In addition,
integrating these models smoothly into clinical workflows
remains a key obstacle. While ML holds considerable promise
in pediatric asthma research, the field is still evolving. To fully
realize its potential, further research is needed to address these
challenges and enhance the practical application of ML models
in clinical settings.
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NPV: negative predictive value
PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews
PROBAST: Prediction Model Risk of Bias Assessment Tool
RF: random forest
SVM: support vector machine
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