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Abstract

Background: Lung disease is a severe problem in the United States. Despite the decreasing rates of cigarette smoking, chronic
obstructive pulmonary disease (COPD) continues to be a health burden in the United States. In this paper, we focus on COPD in
the United States from 2016 to 2019.

Objective: We gathered a diverse set of non–personally identifiable information from public data sources to better understand
and predict COPD rates at the core-based statistical area (CBSA) level in the United States. Our objective was to compare linear
models with machine learning models to obtain the most accurate and interpretable model of COPD.

Methods: We integrated non–personally identifiable information from multiple Centers for Disease Control and Prevention
sources and used them to analyze COPD with different types of methods. We included cigarette smoking, a well-known contributing
factor, and race/ethnicity because health disparities among different races and ethnicities in the United States are also well known.
The models also included the air quality index, education, employment, and economic variables. We fitted models with both
multiple linear regression and machine learning methods.

Results: The most accurate multiple linear regression model has variance explained of 81.1%, mean absolute error of 0.591,
and symmetric mean absolute percentage error of 9.666. The most accurate machine learning model has variance explained of
85.7%, mean absolute error of 0.456, and symmetric mean absolute percentage error of 6.956. Overall, cigarette smoking and
household income are the strongest predictor variables. Moderately strong predictors include education level and unemployment
level, as well as American Indian or Alaska Native, Black, and Hispanic population percentages, all measured at the CBSA level.

Conclusions: This research highlights the importance of using diverse data sources as well as multiple methods to understand
and predict COPD. The most accurate model was a gradient boosted tree, which captured nonlinearities in a model whose accuracy
is superior to the best multiple linear regression. Our interpretable models suggest ways that individual predictor variables can
be used in tailored interventions aimed at decreasing COPD rates in specific demographic and ethnographic communities. Gaps
in understanding the health impacts of poor air quality, particularly in relation to climate change, suggest a need for further
research to design interventions and improve public health.
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Introduction

Background
Lung disease is a severe problem in the United States. According
to the Centers for Disease Control and Prevention (CDC),
asthma is responsible for at least 3000 deaths per year and
chronic obstructive pulmonary disease (COPD) is responsible
for at least 150,000 deaths per year. COPD is a progressive lung
disease, encompassing chronic bronchitis and emphysema,
which is characterized by airflow limitation and breathing
difficulties. Asthma and COPD can co-occur (asthma-COPD
overlap), with increased risk of mortality [1] and diminished
disease-related quality of life [2]. This is from a variety of
factors, some under individual control, such as cigarette
smoking, and others not under individual control, such as
ambient air pollution.

Cigarette smoking has been trending downward in recent years,
thanks in part to public health advertisement campaigns.
Nevertheless, air quality can be dangerously poor at times,
which exacerbates lung health problems [3], and the impacts
can be particularly acute in populations considered vulnerable.
Technologically, there are tools that help individuals avoid poor
air quality. For example, there are mobile phone apps that track
air quality. They notify their owners on days when air quality
is dangerously poor, advising them to stay indoors or avoid
strenuous outdoor exercise. The effectiveness of such apps is
ambiguous thus far [4,5].

The rest of the paper is organized as follows. We first review
prior work regarding the possible factors contributing to COPD
in adults. We then describe our methods, including data sources
for the variables of interest and descriptive statistics. Following
this, we will describe and interpret the results of our multiple
linear regression (MLR) and machine learning (ML) models.
We conclude by describing the overall research contributions
as well as limitations and future directions.

Prior Work
There is substantial literature on factors contributing to COPD,
including a wide variety of environmental, economic, and
demographic variables; the etiology of COPD is multifactorial,
with smoking being the most well-known contributing factor.
Furthermore, the combination of environmental pollutants and
cigarette smoke has shown synergistic effects, accelerating the
decline in lung function and worsening COPD [6,7]. In addition,
occupational exposures, for example, to coal dust, arsenic, or
diesel fumes, or to home exposures, such as gas stoves, wood
stoves, kerosene heaters, and fireplaces, contribute to overall
COPD outcomes. When combined with persistent ambient air
pollution, the risk and severity of COPD will likely increase
[8].

Pollutants and copollutants are associated with decreased lung
function and can lead to COPD. The loss can range from mild,
such as allergies, to severe, that is, mortality. Air quality varies
widely throughout the United States because of pollutants and
copollutants, and climate change may be worsening it,
particularly for populations considered vulnerable [9]. Health
disparities due to poor quality air and other stressors are well

known [10-12]. Ambient air pollution in poorer neighborhoods
tend to be exacerbated by additional copollutants, heat stress,
and aeroallergens. Air quality index (AQI) includes the totality
of pollutants and copollutants.

ML methods have been applied increasingly to public health
and medical problems. For example, ML has been used to
support the public health response to COVID-19 through
surveillance, case identification, contact tracing, and evaluating
interventions [13]. ML methods have been used as a supportive
tool to recognize cardiac arrest in emergency calls [14]. In that
study, Zicari et al [14] developed a general protocol with a
collaborative team to ensure that the ML tool was domain- and
context-sensitive as well as abiding by ethical guidelines, thus
obtaining trustworthiness. ML has been also used to improve
early and accurate stroke recognition during emergency medical
calls [15].

ML methods have been used to study COPD, in particular. For
example, ML methods have been used to develop a prediction
system using lifestyle data, environmental factors, and patient
symptoms for the early detection of acute exacerbations of
COPD within a 7-day window [16]. Another study on acute
exacerbations of COPD compared several ML methods and
found that a decision tree classifier was best for assessing patient
severity and guiding treatment strategy [17]. In another study,
to improve mortality prediction from COPD, a random forest
was used to identify the most important imaging features [18].
Gradient boosted trees (GBTs) have been used to predict lung
function values from computed tomography images obtained
from patients with COPD and those without COPD [19]. Deep
learning has been effective in analyzing images diagnostic of
COPD [20]. Finally, research using a generalized linear model
found a complex relationship between rural living and
COPD-related outcomes in US veterans [21]. Thus, a variety
of ML models have been successfully applied for use in public
health scenarios in general and COPD in particular. The one
that ultimately works best in a given situation depends on many
factors.

Different races and ethnicities may have different baseline rates
of disease due to various factors, including historical
misdiagnosis and mistreatment of various racial or ethnic groups,
which leads to differential outcomes [22]. There may be
outcome, equity, and counseling differences by gender as well
as race or ethnicity in the diagnosis and treatment of COPD
[23,24].

We had three general expectations of COPD in our models:

1. Cigarette smoking will have the highest impact on COPD
rates.

2. AQI will have a strong impact on COPD rates.
3. There will be differences in COPD rates based on racial or

ethnic demographics.

Methods

Overview
This paper used MLR and ML methods to predict COPD at the
core-based statistical area (CBSA) level [25]. At the time of
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this study, there were 388 metropolitan and 541 micropolitan
statistical areas in the United States. The data sources were
obtained from data repositories of 3 official US agencies,
specifically from the CDC. We gathered, integrated, and checked
them for data quality. By combining different variables from
this variety of data sources, we aimed to obtain a uniquely high

accuracy model, while simultaneously reducing biases or flaws
that may be attributable to individual data sources. We further
checked for missing values (ie, NULL or NA) in every variable.
We checked for data correctness by checking the plots of the
distributions for every variable, looking for impossible or
outlying values. Table 1 shows the data sources used.

Table 1. Data sources.

ReferenceSource

[26]National Center for Health Statistics

[27]Chronic Disease Indicators data

[28]US Chronic Disease Indicator, stratification values

Data were collected for all CBSAs that were available from
2016 to 2019. All data obtained from the CDC were contributed
voluntarily at the individual level and aggregated to remove all
personally identifiable information [29].

The COPD rates are for 2019, whereas all the predictor variables
are averaged over the timespan from 2016 to 2018. As such,
the models obtained are predictive over time. The data collection
result was 517 (56%) of the 929 CBSAs, with proportionally
more from the 388 metropolitan statistical areas than from the
541 micropolitan statistical areas. The response variable is the

percentage of the CBSA having COPD. We modeled all factors
as random variables directly contributing to COPD, which is
measured as the proportion (percentage) of the population
having COPD. Race or ethnicity was also modeled as percentage
of the population rather than as categorical variables. All
variables in Table 2 are averaged as mean, except for household
income, which was averaged as median.

In Figure 1, we observe that some variables (ie, population,
gross domestic product [GDP], GDP per capita, and median
household income) are skewed in their distribution.

Table 2. Main variables and descriptive statistics and average within core-based statistical areas.

Values, rangeValues, mean (SD)Values, median (IQR)Years

7351-6,633,096191,892 (408,308)96,811 (48,763-180,484)2016-2018Population (n)

447,355-3,218,209,69564,223,036 (212,975,821)13,126,907 (2,562,704-
39,046,120)

2016-2018GDPa (US $)

27,842-119,33254,736 (11,319)52,632 (46,867-60,494)2016-2018Median household income (US $)

16.86-4731.50253.77 (479)100.07 (47.83-277.17)2016-2018GDP per capita (US $)

9.00-95.0038.02 (10)38.67 (34.00-43.00)2016-2018Air quality index

8.41-29.5917.29 (3)17.12 (15.33-19.28)2016-2018Smoking rate

3.87-35.5614.36 (4)13.80 (10.92-17.12)2016-2018Poverty rate (all ages)

1.97-20.934.71 (2)4.52 (3.67-5.43)2016-2018Unemployment rate

8.77-65.7524.22 (8)22.91 (17.94-27.96)2016-2018Education rate

22.1-10084.6 (0.129)87.6 (78.6-92.8)2016-2018White (%)

0.3-1009.3 (0.124)4 (1.5-12.5)2016-2018Black (%)

0.1-45.92 (0.044)0.7 (0.4-1.7)2016-2018AI or ANc (%)

0.2-42.82.8 (0.041)1.6 (0.9-3)2016-2018Asian (%)

0.0-12.90.3 (0.01)0.1 (0.1-0.2)2016-2018NH or PId (%)

0.9-95.513.3 (0.164)7 (3.9-14.9)2016-2018Hispanic (%)

3.2-156.871 (1.511)6.7 (5.7-7.9)2019COPDb rate (%)

aGDP: gross domestic product.
bCOPD: chronic obstructive pulmonary disease.
cAI or AN: American Indian or Alaska Native.
dNH or PI: Native Hawaiian or Pacific Islander.
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Figure 1. Population, gross domestic product (GDP), GDP per capita, and median household income.

Therefore, we made a log transformation of these variables (ie,
logPopl, logGDP, logGDPpc, and logHHI) to make them less

skewed, and we show a heat map of correlations of them with
the other variables in Figure 2.

Figure 2. Correlations among main variables. COPD: chronic obstructive pulmonary disease; GDP: gross domestic product.

We see a range of correlations, from very negative (green) to
negative (orange) to positive (purple) to very positive (pink).
In the rightmost column, we see the correlations between the
response variable, COPD rate, and the other variables, ranging

from very positive (smoking rate) to moderately positive
(poverty and unemployment rates) to moderately negative
(education and logged household income) to slightly negative
(log of GDP, log of population, log of GDP per capita, and
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AQI). Given these correlations, we are likely to find good
predictive models, but we need to check for multicollinearity
in any linear model that we identify.

To understand and model COPD, one has to consider the
consistently largest contributing factor: cigarette smoking.
Research tends to either control for cigarette smoking or exclude
it entirely. In this paper, we chose to include cigarette smoking,
accounting for it in our models, but also to examine other factors
to compare the magnitudes of influence among the various

factors. We aimed to model a variety of factors, including
cigarette smoking, to arrive at the model that predicts COPD
with the greatest accuracy.

Statistical Analysis

Overview
Our MLR baseline model in R (version 4.2.3) yielded the output
in Table 3, which is sorted by absolute value of the t value, from
high to low.

Table 3. Multiple linear regression.

P valuet test (df=503)SEEstimate

<.00111.0652.93032.4000(Intercept)

<.00116.6350.0150.2570Smoking_Rate

<.001−10.6380.264−2.8100Log_HH_Income

<.001−10.2490.234−2.3900Hispanic_percentage

<.001−6.6270.005−0.0334Education_Rate

<.001−3.7260.778−2.9000AI_or_AN_percentagea

<.001−3.5580.356−1.2700Black_percentage

<.001−3.5584.430−15.8000NH_or_PI_percentageb

.0342.1260.0350.0741Log_GDP

.04−2.0600.358−0.7380White_percentage

.0471.9930.0230.0456Unemployment_Rate

.0471.9881.2502.4800Asian_percentage

.1051.6260.0550.0899Log_Population

.9220.0980.0030.0003Air_Quality_Index

aAI_or_AN: American Indian or Alaska Native.
bNH_or_PI: Native Hawaiian or Pacific Islander.

The model has residual SE 0.658 on 503 df. The multiple R2 is

0.8152 and adjusted R2 is 0.8105. The F-statistic is 170.7 on 13
and 503 df (P<.001). The variance inflation factors were
checked, with all values <5 indicating low multicollinearity.

There are 7 predictors of high statistical significance: smoking
rate, Black percentage, Native Hawaiian or Pacific Islander
percentage, American Indian or Alaska Native percentage,
education rate, Hispanic percentage, and log of household
income. Smoking rate has a positive association with COPD,
with every additional percentage increase associated with a
0.257% increase in the COPD rate. The other 6 highly
significant predictors have a negative association. Every
percentage increase in the log of household income lowers the
COPD rate by 2.81%. The Hispanic percentage is nearly as
strong; every percentage increase corresponds to a drop of
2.39% in COPD rate. American Indian or Alaska Native is a
bit stronger in its coefficient estimate; every percentage point
increase corresponds to a drop of 2.9% in COPD rate. Every
percentage point increase in Native Hawaiian or Pacific
Islanders corresponds to a drop of 15.8%, which is much
stronger. Every percentage point increase in Black percentage
corresponds to a drop of 1.27% in COPD rate. Education rate

has a strongly statistically significant relationship, but a small
percentage point impact: every percentage increase corresponds
to a decrease of 0.0334% in COPD rate. The remaining 4
predictors—White percentage, GDP (logged), unemployment
rate, and Asian percentage—are far less statistically significant
and, therefore, should be interpreted with caution.

Linear models are simpler than ML models, and they are
sometimes perfectly adequate for explaining a phenomenon.
They are easier to interpret, communicate, and implement as
new policy. They make statistical assumptions, which can be
verified. Linear regression is certainly a good place to start.
However, we argue that one should not stop there because an
ML model can capture substantial variance from nonlinear
relationships (if there are any) in the data and thus produce a
more accurate model. By capturing additional variance, the
model can capture subtler effects and relationships due to
interactions, context, and tipping points. This is crucial because
public health practice tends to use simple if-then rules, that is,
decision trees. ML models can add nuance to those decision
trees based on the captured nonlinearities. Although an adjusted

R2 of 0.8105 looks quite strong, we can perhaps do better with
ML methods [18-21].
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The 7 ML methods evaluated in this paper are lasso regression,
ridge regression, generalized additive model, support vector
machine, artificial neural network, random forest, and GBT.
These methods were selected for their known strengths in
minimizing errors of bias or errors of variance, that is, their
ability to fit data well on test data without overfitting. They also
represent the range of algorithms commonly used in ML
prediction, from methods established in classical statistics to
more modern methods derived from computer science. They
are commonly used because they are accurate and well
understood. Trying a variety of methods is a common practice
because the different methods make different statistical
assumptions, which may enhance or inhibit optimal
performance. All methods were available as R packages for R
(version 4.2.3). We summarize each method in terms of its main
pros and cons:

Lasso Regression (L1 Regularization)
Lasso regression is an MLR method that incorporates
regularization to perform variable selection. It minimizes the
sum of squared errors between predicted and actual values,
while adding a penalty term based on the absolute value of
coefficients multiplied by a tuning parameter. Doing so shrinks
some coefficients to exactly 0, effectively performing feature
selection by excluding less important variables from the model.
This reduces model complexity and minimizes multicollinearity.
This is a standard refinement of MLR (R package glmnet).

Ridge Regression (L2 Regularization)
Ridge regression is an MLR technique that adds a penalty term
to the objective function to reduce the coefficients of less
important predictors and guard against overweighting the most
important predictors. While it retains all predictors in the model,
ridge regression can help improve the robustness of the model
in the presence of correlated predictors by reducing
multicollinearity. This is a standard refinement of MLR (R
package ridge).

Generalized Additive Model
The generalized additive model is a nonparametric
generalization of MLR, which allows for nonlinear terms and
coefficient regularization while maintaining interpretability.
Each term is a function of Xn rather than simply a numeric
coefficient multiplied with Xn. As with MLR, all the terms are
added together. Although overfitting can occur, regularization
and cross-validation help to minimize it (R package mgcv).

Support Vector Machine
Support vector machine is a technique that transforms the data
into a high-dimensional variable space using a kernel function,
fitting a function that best fits the data while allowing a certain
margin of error (epsilon) and maintaining robustness against
outliers. Epsilon tubes can provide a visual representation of
the model’s uncertainty. Points within the tube are considered
well predicted, while those outside represent errors. A
regularization parameter controls the trade-off between accuracy
and complexity (R package e1071).

Artificial Neural Network
Artificial neural network is a generalization of MLR with hidden
layers of nodes between input and output nodes; it may result
in overfitting. Depending on the number of hidden layers, nodes
per layer, and the activation function used to convert inputs to
outputs, an arbitrarily complex model can be fit. This can be
thought of as a simplified version of a human brain, in which
input and output nodes are separated by ≥1 layers of hidden
nodes. Prediction error causes the weights of the hidden nodes
to be adjusted until minimal error is achieved (R package
neuralnet).

Random Forest
Random forest is an ensemble technique to fit a large number
of a bootstrap-sampled aggregation (bagging) of trees by
considering a random subset of variables at each tree split.
Intuitively, a random forest is a blending of a large number of
decision trees, the “wisdom of the forest.” The random subset
of variables restriction is done to prevent strong variables from
dominating the weaker variables. A random forest tends to
perform very well but is difficult to interpret (R package
RandomForest).

Gradient Boosted Trees
GBT is an ensemble of sequential trees that focuses on the errors
of the previous tree. It is able to find interaction effects
implicitly. It uses gradient descent search to rapidly minimize
error via an arbitrary, differentiable loss function. It uses many
trees to help ensure that the local minimum error found is the
global minimum. Intuitively, this builds a strong predictive
model by combining many weak models, each correcting the
errors of the previous one (R package XGBoost).

Our ML approach followed best practices. We randomly
partitioned the data set into train (311/517, 60%), cross-validate
(103/517, 20%), and test (103/517, 20%) subsets. We checked
for outliers, multicollinearity, and target leakage to ensure valid
models [30].

Ethical Considerations
This research did not involve human subjects at the individual
level and therefore did not require institutional review board
approval. Our data were collected from CDC sources at the
level of CBSA. All sources were free of personal identifying
information, because the CDC is legally required to ensure the
protection of the data. All data were collected and aggregated
in a non–personal identifying information manner. The results
of our analysis do suggest communicating with different racial
and ethnic groups differently, tailoring the implications directly
to patients as well as indirectly to their families, communities,
and health care providers in a race- or ethnicity-sensitive
manner.

Results

In Table 4, we describe the results of the ML models of COPD
by various accuracy metrics. For the accuracy metrics, we used
3 standard measures of predictive accuracy in addition to

variance explained (adjusted R2): root mean square error
(RMSE), mean absolute error (MAE), and symmetric mean
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absolute percentage error (SMAPE) [31,32]. We performed a
grid search over all the main numeric parameters for a given
method to find the optimal combination of parameter values
[33]. A grid search tries all combinations of parameters from a

minimum to a maximum value by some step size. Those
minimum, maximum, and step sizes are determined from typical
default values and best practices. The best metrics in Table 4
are indicated by italics.

Table 4. Machine learning models versus multiple linear regression.

Symmetric mean absolute percent-
age error

Mean absolute errorRoot mean square errorAdjusted

R2
Method

TestCVTrainTestCVTrainTestCVaTrain

6.9566.5436.4730.456 b0.4450.4330.5570.5980.5500.857Gradient boosted tree
(XGBoost, loss func-
tion=least squares, learning
rate=0.05, and maximum
tree depth=10)

6.9896.4436.5150.4620.4340.4350.5560.5580.5550.858Support vector machine
(Nystroem kernel and loss
function=Poisson de-
viance)

7.3396.8196.3150.4790.4620.4200.5960.6140.5340.836Random forest (maximum
trees=500, maximum
depth=none, and maximum
leaves=100)

7.1826.9286.8560.4680.4670.4550.5800.6090.6010.845Neural network (2 layers:
512, 512 units; regulariza-
tion via random dropout
rate=0.05 and activation
function=prelu)

7.2127.5027.6190.4880.5080.5150.6210.6580.6290.822Generalized additive mod-
el (learning rate=0.3, max-
imum bins=100, and loss
function=least squares)

7.9867.3466.9860.5270.4830.4670.6410.6180.5890.810Ridge regression

8.8248.5448.4250.5970.5930.5850.7240.7780.7500.758Lasso regression

9.6668.4037.2050.5910.5480.4740.7490.6990.6200.811Multiple linear regression

aCV: cross-validation.
bValues in italics represent the best metrics.

The ML methods were superior to MLR on most metrics.

Support vector machine was the best on adjusted R2 and RMSE,
slightly superior to GBT, but GBT was superior by a larger
margin on MAE and SMAPE. Therefore, we chose GBT as the
best overall method. In Multimedia Appendix 1, we show the
variable importance plot for the GBT model. Variable
importance plots are a common first way to peer inside a
“black-box method” and understand the relative importance of
the variables used within it [34].

The top five variables in terms of impact were (1) smoking rate
and (2) household income, followed by (3) American Indian or
Alaska Native percentage, (4) education rate, and (5)
unemployment rate. Black percentage was sixth, Hispanic
percentage was seventh, and there was only a small impact from
the remaining variables: White percentage, AQI, Asian

percentage, Native Hawaiian or Pacific Islander percentage,
population, and GDP. Relative to the MLR, smoking rate,
household income, education rate, and Black percentage
remained the same in terms of rank importance. Hispanic
percentage dropped from third to seventh rank; American Indian
or Alaska Native percentage rose from fifth to third rank; and
unemployment rate rose sharply, from 10th to 5th in importance.
Native Hawaiian or Pacific Islander percentage dropped sharply,
from 7th to 11th in rank.

Figure 3 shows the lift plot, and Figure 4 shows the predictive
residual plot. The lift plot shows observations sorted by
predicted value deciles. The ratio of the observed outcome to
the expected outcome was calculated and plotted. The predictive
residual plot shows the differences between observed and
predicted values.
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Figure 3. Lift plot showing chronic obstructive pulmonary disease rate as a function of 10 decile bins; predicted values are in blue and actual values
are in red. COPD: chronic obstructive pulmonary disease.

Figure 4. Prediction residuals.

In addition to the variable importance plot, other plots were
used to gain an understanding of ML models: local interpretable
model-agnostic explanations (LIME) models and SHAP
(Shapley additive explanations) plots [35-37]. We chose SHAP
plots because they are based on a cooperative game-theoretical
foundation, showing every combination of the variables in the
model and how they work together to predict the outcome
variable. Figure 5 shows the SHAP plot for all the GBT’s
variables.

The top 5 variables (smoking rate, household income, American
Indian or Alaska Native percentage, education rate, and
unemployment rate) have substantially more impact on COPD
percentage than the remaining variables. We show the top 5
variables as well as the next 4 as individual SHAP plots of the
GBT in Figure 6. All 9 plots show significant nonlinearities.

Smoking had the greatest impact: as the smoking rate increased,
the COPD rate also rose substantially, following a steeply
curved, nearly exponential relationship. Median household
income had the second highest impact, an almost linear (and
negative) relationship. The greater the household income, the
lower the COPD rate. This could indicate better insurance
coverage, better health care access, higher quality health care
(ie, prevention or treatment), lower occupational exposure, or
lower home exposure (eg, gas stoves). The next variable was
American Indian or Alaska Native percentage, indicating a
negative but nonlinear relationship with COPD rate: a steep
drop followed by a gradual tapering. This represents a significant
protective influence shown for the American Indian or Alaska
Native community, which has not yet been noted in the
literature.
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Figure 5. SHAP (Shapley additive explanations) values for all features (variables). AI: American Indian; AN: Alaska Native; GDP: gross domestic
product; NH: Native Hawaiian; PI: Pacific Islander.

Figure 6. SHAP (Shapley additive explanations) plots for the 9 most important variables. AI: American Indian; AN: Alaska Native.

The next variable, education rate had a negative, curvilinear
relationship. The more educated the population, the lower the
COPD rate. The explanation could be similar to that of income:
better insurance coverage or health care access, better quality
of health care, lower occupational exposure, or lower home
exposure [38]. The next variable was unemployment rate, with
a sharply positive but flat relationship with COPD rate. The

next variable was Black percentage, with an initial positive
relationship with COPD rate but then a reversal to a negative,
linear relationship.

The next variable, Hispanic percentage, showed a negative linear
relationship with COPD rate. This represents a significant
protective influence shown for people in the Hispanic
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community, which is consistent with the literature [39-45]. The
next variable was White percentage, showing a slightly negative
relationship with COPD rate. Finally, the last variable was AQI
(higher value being worse), which shows an initial positive
relationship with COPD rate, peaking around 38. This may be
a critical point, after which people take precautions not to be
exposed to the low-quality air.

Discussion

Principal Findings
We had three general expectations, which were largely met:

1. The impact of cigarette smoking was the largest in all
models.

2. The AQI had an impact in the best ML model, but it was
smaller than expected.

3. There were substantial racial or ethnic differences,
particularly among American Indian or Alaska Native,
Black, and Hispanic communities.

Consistent with the literature, we found that smoking remains
the most significant risk factor for COPD, with research
consistently demonstrating a strong association between
smoking status and COPD prevalence. In our MLR, we found
that smoking rate is the strongest predictor of COPD rate. We
found the same result in our GBT but also found that the
smoking rate has a curvilinear, almost exponential, relationship
with COPD. The Rotterdam study, a large-scale
population-based cohort study, found that current and former
smokers had a substantially higher risk of developing COPD
compared to never smokers [46]. A nationwide population-based
cohort study in South Korea demonstrated that smoking
cessation after COPD diagnosis was associated with lower
all-cause and cause-specific mortality [47].

Notably, 3 of the 4 next most important variables, in terms of
impact in our GBT, are socioeconomic variables: household
income (rank 2), education rate (rank 4), and unemployment
rate (rank 5). In the MLR, we found that household income
(logged) had the second highest impact. In the GBT, household
income had the second highest impact, but the tipping point
was around US $40,000, after which higher income had a linear,
negative relationship with COPD. Education rate had a strongly
negative, curvilinear relationship with COPD. Unemployment
rate had a sharply positive relationship with COPD, but then
peaked at 5% unemployment, after which it plateaued.

These results are largely consistent with the literature on
socioeconomic factors and smoking behavior, suggesting an
indirect relationship with COPD via smoking. A study
examining smoking among adolescents in 6 European cities
found that disposable income was positively associated with
smoking [48]. Conversely, lower socioeconomic status was
associated with higher COPD prevalence because in addition
to lower education and income, there may be environmental
pollutants, occupational hazards, or barriers to COPD screening,
diagnosis, and treatment [49]. In contrast with the literature,
our SHAP plots show mostly nonlinear relationships with
COPD. Household income showed a tipping point at US

$40,000, after which the negative relationship with COPD was
nearly linear.

Ethnic or racial variables accounted for 3 of the top 7 variables
in the GBT: American Indian or Alaska Native percentage (rank
3), Black percentage (rank 6), and Hispanic percentage (rank
7). The greater the size of those minority populations, the lower
the COPD rate. Our SHAP plots show significant tipping points
(nonlinearities) for American Indian or Alaska Native percentage
and Black percentage and a mostly linear relationship for
Hispanic percentage. Consistent with the literature, all 3
variables show a strongly negative association with COPD.

The regression and GBT models show that in addition to
strongly protective impacts for lower cigarette smoking and
higher household income, there are protective impacts for larger
American Indian or Alaska Native and Hispanic populations as
well as a nonlinear impact on larger Black populations. Higher
education rate and lower unemployment rate are also protective,
whereas AQI shows mixed effects. These results have
implications for private health care practitioners, public health
care officials, and health care policy makers who aim to reduce
COPD rates. Such policies and programs should not assume
high digital literacy [50,51]. System designers could use SMS
text messaging, social media, and interactive voice response
systems. This would be appropriate for those with lower
household income or lower education levels. To design
culturally appropriate visual cues and messaging to different
racial or ethnic groups, members of the various communities
should be included in the design process [52,53]. In sum, the
user interface should exhibit high ease-of-use—using
gamification, storytelling, and peer support—consistent with
cultural norms.

Several studies have identified ethnic and racial disparities in
COPD prevalence and risk among smokers. One study found
that racial and ethnic minority individuals, particularly African
Americans and Hispanics, had a lower prevalence of airflow
obstruction than non-Hispanic White individuals, even after
adjusting for smoking status and other risk factors [54]. This
finding was supported by another study that observed lower
COPD risk in ethnic minority groups compared to White
individuals, despite similar smoking intensities [55]. A larger
minority population means a larger peer support network for
prevention and cessation of smoking and a larger peer
community to recommend COPD screening, diagnosis, and
treatment, which is particularly useful in a health care system
that has implicit racial or ethnic bias [50,56].

There are varying levels of patient trust and implicit bias in
health care practitioners themselves [57], which contributes to
health outcome differences. From a population communication
perspective, messaging regarding the risks of
COPD—particularly the avoidance or cessation of cigarette
smoking—should be sensitive to community context, engaging
trusted local authorities to optimize the chances of patient
engagement [58]. Health care practitioners could partner with
trusted local authorities and community leaders regarding
smoking prevention and cessation as well as respiratory health
in general to decrease COPD risk. Health care practitioners and
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educators should communicate to different populations in
culturally sensitive ways [59,60].

Educational materials and behavior change strategies may need
to be customized according to different risk factors, beliefs,
preferences, and technographics of different subpopulations
[50,51]. On a basic level, people with lower levels of education
or household income could be directed via phone geolocation
to their local health care and to their community leaders for
in-person guidance and support. Local leaders could then inform
them about local smoking cessation programs and apps or
websites that monitor air quality in their community. Trusted
local authorities are helpful entry points in those communities,
after which peer support and network effects spread the
information.

AQI was not significant in the MLR, but it was significant in
the GBT, albeit not as strongly as we expected. It could be that
the AQI is more of a diffuse, macrolevel environmental factor
that fluctuates over time, making some CBSAs worse on
average, but with wide volatility, for example, as weather and
wind directions change [61,62]. Therefore, AQI could have
more of an indirect or interaction effect with other variables.
Combining campaigns on smoking prevention with campaigns
on air quality could create a holistic public health strategy,
particularly—as our findings suggest—in communities
considered vulnerable, that is, communities with lower
education, higher unemployment, and lower household income.
Subsidies for households in communities considered vulnerable
to convert to more efficient, cleaner home heating and cooling
methods would improve their home’s air quality at a lower cost
[63]. Research suggests that engaging communities in targeting
their air quality issues can lead to more positive outcomes in
both air quality and public health [64-66].

There is a small but growing body of research that uses ML
models in health care and medicine. There is recognition that
the models can be highly accurate, but there is no consensus
yet on how to interpret the results in a way that meshes
seamlessly with clinical practice. The following examples
provide an overview.

Elshawi et al [67] compared model-agnostic explanations using
2 techniques, LIME and Shapley values, to interpret a ML model
for predicting hypertension risk. LIME uses small subsets of
the data, which may be idiosyncratic, to provide intuitive
explanations, that is, rules. Shapley values are more theoretically
sound and global, using all the available data, and are, therefore,
less idiosyncratic than LIME, but they do not provide LIME’s
simple, linear explanations [67].

Hakkoum et al [68] conducted an extensive literature review of
ML interpretability in medicine published between 1994 and
2020. The review found that there was no consensus on
evaluation metrics or frameworks to assess the quality and utility
of the interpretability methods [68]. The highest performing
ML models did not translate easily into clinical rules.

Meng et al [69] reviewed the interpretability and fairness
evaluation of deep learning models on MIMIC-IV data set, a
large, publicly available benchmark for developing and
evaluating the interpretability of high-performing ML models

that use sensitive demographic features. The review found that
existing interpretation methods, for example, variable
importance rankings, provide partial explanations without fully
elucidating the model’s complex decision logic.

In sum, there is no consensus on the best way to interpret
high-performing ML models in health care. There are always
trade-offs between accuracy and interpretability or
explainability. We chose to use Shapley values because they
represent the frontier in explainability, and they are similar to
interpreting a multiple regression, interpreting 1 variable at a
time, without the assumptions of linear models. In addition,
Shapley values allow for nonlinear relationships between each
independent (predictor) variable and the dependent variable.
Variable importance plots in conjunction with Shapley values
help us to identify the most important variables and characterize
their relationships with COPD.

Our best MLR model had variance explained of 81.1%, MAE
of 0.591, and SMAPE of 9.666. Our best ML model was the
GBT, with variance explained of 85.7%, MAE of 0.456, and
SMAPE of 6.956. The GBT explains most of the
variance—4.6% more than the best MLR—with far less
predictive error. The GBT’s SMAPE (6.956) was 28% lower
than that of the MLR’s SMAPE (9.666). Similarly, the GBT’s
RMSE was 26% lower than the MLR’s RMSE, and its MAE
was 23% lower than that of the MLR. Real-world predictive
accuracy should be similar to that found in the test data set
because the test data were never used in the GBT’s model
development.

Our GBT performed strongly on the test data, with very little
performance deterioration on the test data versus performance
on the training and validation data. This demonstrates that the
GBT model does not overfit the data. To interpret the GBT, we
used a variable importance plot [34,70,71] and SHAP plots
[72,73]. SHAP plots are useful for interpreting the strength of
the pairwise relationships between predictor variable and COPD
rate, showing the added nuances of the curvilinear plots. By
doing so, we rendered transparent the “black-box model”
[74-76], thus preserving interpretability and actionability, in
addition to adding nonlinear nuance.

Limitations and Future Directions
This research has a few limitations. The data were obtained
from 517 (56%) of the 929 CBSAs. We assumed that this was
an adequate sample and that the remaining CBSAs that did not
report the data were similar to those that did. Alternatively, it
could be that the CBSA that did not report COPD rates did so
because the rates were low, that is, COPD was not considered
a major problem by the local public health officials. Data
covering additional demographic variables, such as gender and
age, in addition to occupational exposures and physical exercise,
could be gathered [77-79]. Future research could develop
separate models stratified by demographic variables such as
race or ethnicity, assuming there are sufficient data for each
categorical class. There could also be geopolitical variations in
terms of population density as well as demographics,
psychographics [80], and technographics [81,82].
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Future data collection could focus on understanding racial or
ethnic disparities. By collecting data more intensively from the
minority populations, we could go deeper into understanding
how their rates of COPD drop so dramatically. Is it related to
active peer recommendations for better self-care in a
predominantly White health care system and population? Is it
related to successfully tailored smoking prevention or cessation
programs? Data pertaining to answering these more specific
questions could be collected to enhance our understanding of
how best to tailor communications to different demographic or
ethnographic groups.

All our models were structured as direct effects. We applied
MLR and ML methods with data from CBSAs, which have
significant variation in terms of health care access and quality.
Using these models as a foundation, we should recognize the
interconnectedness (ie, direct, indirect, and interactive) of
pollutants and copollutants to fully understand COPD’s complex
etiology. Future research could model interaction, moderating,
or mediating effects, perhaps with a structural equation model,
to identify the direct and indirect effects of COPD, for example,
showing how asthma may lead to COPD or to asthma-COPD
overlap [77].

There are many research knowledge gaps in the health impacts
of extreme air pollution, including the effects of interactions
between temperature and air pollution on respiratory health due
to climate change [83]. Future research directions could focus
on modeling the direct and indirect links between environmental
exposures and COPD. On the basis of those results, we could
design interventions, such as air quality warning systems, to
mitigate their impact. The findings would underscore the
opportunities for public health regulations, public-private sector
partnerships, private company entrepreneurship, and global
initiatives to reduce environmental exposures.

Greenhouse gas emissions may exacerbate overall air quality
[84-88], contributing indirectly to COPD. Future research could
collect data on new, additional variables pertaining to climate
change [89]. Wildfires, which are increasingly common, produce
more carcinogens in the air, including high levels of particulate
matter. This can directly decrease air quality or copollute with
other ambient pollutants [90]. These problems have been shown
to increase the odds of lung cancer [91], and it is plausible that
they can also contribute to COPD.

The association between COPD and environmental pollutants,
including tropospheric ozone, nitrogen dioxide, sulfur dioxide,

and occupational exposures, has been extensively investigated
[8,91-94]. Coarse, fine, and ultrafine particulate matter have
been studied extensively and linked to systemic oxidative stress,
inflammation [95], atherosclerosis [96], and mortality [97] in
the United States [98,99] and China [100-102]. Tropospheric
ozone exposure by itself has been linked to impaired lung
function and increased COPD-related hospital admissions
[103-105]. Similarly, elevated levels of nitrogen dioxide and
sulfur dioxide, which are common in cities and industrial work
sites, have been linked to an increased risk of COPD in the
general population [106,107] and older adults [108]. In sum,
data pertaining to ambient pollution, for example, particulate
matter, sulfur dioxide, and carbon monoxide, could be useful
additional copollutant data to include in future models
[6,86-88,91,109-111].

Conclusions
Our novel contributions in this paper include the following: (1)
integration of multiple publicly available CDC data sources,
(2) development of highly accurate models using linear and
nonlinear methods, and (3) interpretation of the variable impacts
for the best model. Smoking was the number 1 variable
impacting the COPD rate, which was expected. Household
income was the second most influential predictor variable. Four
economic factors spanned the full range of influence, from large
(household income) to moderate (education rate) to small
(unemployment rate and GDP). The race or ethnicity variable
also had a range of impacts, from moderately high (American
Indian or Alaska Native percentage) to moderate (Black or
Hispanic percentage) to small (White, Asian, or Native Hawaiian
or Pacific Islander percentage).

This research demonstrates the power of ML methods in general
and a GBT, which produced a highly accurate model of COPD
rates. The computational complexity of a GBT enables it to
obtain high accuracy, but health care policy makers may be
reluctant to adopt it unless they can obtain a rule-based
explanation. Furthermore, clinicians typically want to be able
to explain, justify, and communicate results to others in an
intuitive manner. Finally, there may be legal, auditing, or
regulatory requirements concerning transparency. If the method
is audited, and it cannot be clearly explained, there may be
serious legal or financial consequences [72]. Consequently, it
is important to have explainable models to open the “black box,”
rendering them interpretable and actionable [75,76]. This
research shows that it is possible to do so.
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LIME: local interpretable model-agnostic explanations
MAE: mean absolute error
ML: machine learning
MLR: multiple linear regression
RMSE: root mean square error
SHAP: Shapley additive explanations
SMAPE: symmetric mean absolute percentage error
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