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Abstract

Background: The cost of health care in many countries is increasing rapidly. There is a growing interest in using machine
learning for predicting high health care utilizers for population health initiatives. Previous studies have focused on individuals
who contribute to the highest financial burden. However, this group is small and represents a limited opportunity for long-term
cost reduction.

Objective: We developed a collection of models that predict future health care utilization at various thresholds.

Methods: We utilized data from a multi-institutional diabetes database from the year 2019 to develop binary classification
models. These models predict health care utilization in the subsequent year across 6 different outcomes: patients having alength
of stay of >7, =214, and =30 days and emergency department attendance of >3, =5, and =10 visits. To address class imbalance,
random and synthetic minority oversampling techniques were employed. The modelswere then applied to unseen datafrom 2020
and 2021 to predict health care utilization in the following year. A portfolio of performance metrics, with priority on area under
the receiver operating characteristic curve, sensitivity, and positive predictive value, was used for comparison. Explainability
analyses were conducted on the best performing models.

Results: When trained with random oversampling, 4 models, that is, logistic regression, multivariate adaptive regression splines,
boosted trees, and multilayer perceptron consistently achieved high areaunder the receiver operating characteristic curve (>0.80)
and sensitivity (>0.60) across training-validation and test data sets. Correcting for class imbalance proved critical for model
performance. Important predictors for all outcomes included age, number of emergency department visits in the present year,
chronic kidney disease stage, inpatient bed days in the present year, and mean hemoglobin A, levels. Explainability analyses
using partial dependence plots demonstrated that for the best performing models, the learned patterns were consistent with
real-world knowledge, thereby supporting the validity of the models.

Conclusions: We successfully developed machine learning models capable of predicting high service level utilization with
strong performance and valid explainability. These models can be integrated into wider diabetes-related population health
initiatives.

(IMIR Al 2024;3:€58463) doi: 10.2196/58463
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Introduction

In recent years, high-income countries worldwide have seen a
consistent risein health care expenditure. Singapore, mirroring
this trend, has experienced a steady increase in health care
spending relative to its gross domestic product [1]. To address
this, Singapore is undergoing a transformative health system
initiative known as Healthier SG [2], which is an initiative to
pivot the health system toward preventive care and population
health management.

Parallel to these efforts, there is a burgeoning interest in
leveraging machine learning for individual-level health
utilization predictions. I dentifying prospective high utilizers of
health care services could unlock opportunities for targeted
interventions. These interventions are poised not only to enhance
individual health outcomes but also to reduce long-term health
care utilization and system costs. Existing research suggests
that a disproportionate amount of health care spending is
concentrated among a small group of costly patients known as
the high-need, high-cost (HNHC) patients—often defined as
those who account for the top 5% of the annual health care costs
[3,4]. These patients were believed to present an opportunity
for cost reduction [5].

However, the potential for cost savings in caring for HNHC
patients is often less than anticipated [6]. This is due to the
diverse nature of these patients who can be subdivided into 3
categories: persistent and refractory HNHC patients, individuals
who experience a 1-time catastrophic health event, and patients
with multiple chronic conditions but amenable to disease
management programs[6,7]. Notably, the latter group presents
themost viable opportunity for impactful intervention. Persistent
and refractory HNHC patients are those with severe and chronic
diseases who require ongoing and expensive care. For these
patients, disease management programs often do not result in
significant reduction in health utilization and financial savings.
For patients with 1-time catastrophic health events such as
accidents, these events are difficult to predict and therefore not
amenable to any intervention [6,7]. Therefore, targeting the
small cohort with multiple chronic conditions but amenable to
disease management programs represents alimited opportunity
to reduce health care costs [6].

Given these complexities, there is a need to refine the approach
to predicting and managing high health care utilization. One
strategy could beto expand the predictive scope beyond HNHC
patients or explore other indicators. Relatedly, the total length
of stay (LOS) and frequency of emergency department (ED)
visits per calendar year may provide a better indication of
service-related health care utilization and the intensity of
inpatient resource use [8].

This study aimsto devel op prediction modelsto forecast annual
inpatient bed daysand ED utilization across varying thresholds;
presently, such models are not availablein our hospital system.
We utilized the Singapore Health Services (SingHealth) Diabetes
Registry (SDR), a comprehensive clinical database of patients
with diabetes within our hospital system to develop predictive
models. Our objective is to create clinically relevant and

https:/ai jmir.org/2024/1/e58463

Tanet a
actionable models that can be integrated into wider
diabetes-related population health initiatives [9].

Methods

Study Setting

We used data from the multi-institutional SDR, previously
described in detail [10]. SingHealthisthelargest of the 3 public
health care clustersin Singapore and manages 4 acute hospitals,
5 national speciaty centers, 3 community hospitals, and a
network of 10 primary care polyclinics. SDR was initiated in
2015 and populated retrospectively and prospectively from
across SingHealth's electronic medical records and clinical
databases to cover the period of 2013 to 2022.

Outcome Variables

As SDR primarily consists of clinical data from electronic
medical recordsand lacksfinancia information, wefocused on
service-related health care utilization metrics. To this end, we
developed models to predict utilization across 6 different
thresholds (per calendar year), specifically for total LOS at >7,
>14, and >30 days and for ED attendance =3, =5, and =10 visits;
thus, 6 sets of (binary classification) models were constructed.
Currently, there are no standard definitions for long inpatient
LOS or high ED attendance.

For total LOS, we set arbitrary thresholds corresponding to 1
week, 2 weeks, and 1 month. These thresholds were chosen to
reflect varying degrees of health care utilization in ours and
possibly other health care systems, corresponding to different
levels of patient care needs and resource allocation. Inpatient
stays between 1 and 2 weeks represent short-term stays,
potentially indicative of acute or less severe conditions. In
contrast, stayslonger than 2 weeks and those extending beyond
1 month represent increasingly prolonged stays, often associated
with more severe or complex health issues, especialy in the
latter. These distinctions are critical for understanding and
managing different patient care strategies. They also represent
varying levels of health care management and resource planning,
aswe intend to devel op disease management programs around
thesethresholdsin thefuture. Regarding ED attendance, arecent
systematic review indicated that >3 was the most common
definition for high ED attendance but noted that definitions
could extend to 30 or morevisits[11]. Accordingly, we defined
high ED attendance by using the 3 aforementioned thresholds,
with >3 visits as the minimum criterion. This approach may aid
in planning interventions to prevent escalation to higher levels
of utilization.

Explanatory Variables

The SDR data set facilitated an examination of the effects of
sociodemographic  indicators, health indicators, and
diabetes-related complications. Our methodology for
ascertaining diabetes-rel ated complications has been published
previously [12] and detailed in Table S1 of Multimedia
Appendix 1. The models incorporated 24 variables detailed in
Table S2 of Multimedia Appendix 1. Thesevariablesarereadily
derived from electronic medical records during admissions, ED
visits, inpatient and outpatient clinical consultations, and are
based on local clinical guidelines [13]. These variables offer a
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comprehensive view of the patients from demographic, social,
clinical, and utilization perspectives.

Inclusion and Exclusion Criteria

This study utilizes data from SDR spanning 2019 to 2022, as
this was the period when comprehensive health care utilization
data were available. We included patients aged 18 years and
older diagnosed with type 2 diabetes mellitus. Patients with
missing variables were excluded from this study, as we did not
perform dataimputation, and most machine learning algorithms
do not support missing values.

Handling Unbalanced Data

Our data set demonstrated significant class imbalance in
inpatient and ED utilization, which can bias models toward the
majority class, hinder theidentification of the high utilizers (the
minority class) [14], and result in subpar model performance.
In this study, we utilized oversampling, a data-level method to
addressthe classimbalance. Specifically, we used the synthetic
minority  oversampling  technique-nominal  continuous
(SMOTE-NC) [15] from thethemis package[16]. SMOTE-NC,
a variant of the SMOTE family of algorithms, generates new
examples of the minority class by interpolating between several
minority class instances that lie relatively close to each other
[17]. SMOTE-NC is effective with mixed numerical and
categorical data. We applied SMOTE-NC with k=5 and k=3
settings, where k denotes the number of nearest neighbors used
to generate new examples of the minority class. Additionally,
we used the upSample agorithm from the caret package [18]
for random oversampling and compared it with no oversampling.
All oversampling techniques achieved equal representations of
both classesin our training data set (ie, equal number of patients
with and without the outcome in the training data set).

Performance I ndicators

We assessed model performance by using areaunder the receiver
operating characteristic curve (AUC), sensitivity (recall), and
positive predictive value (PPV). Sensitivity (recall) allowed us
to identify whether the models were able to correctly identify
patients with the outcomes of interest. PPV provided us with
an understanding of the quality of the positive prediction made
by the model. Additionally, we have reported the area under
the precision-recall curve, sensitivity, specificity, and F;-score
in Multimedia Appendix 1. The area under the precision-recall
curve is preferred over AUC for rare outcomes, as it more
accurately reflects model performance [19]. We & so evaluated
the confusion matrix during model development.

Machine Learning Modes

We built 7 predictive models using R software (version 4.3.1;
R Foundation for Statistical Computing) and the tidymodels
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package [20]: logistic regression, random forest, boosted trees,
multilayer perceptron (MLP), k-nearest neighbor, multivariate
adaptive regression splines (MARS), and Bayesian additive
regression trees. SDR data from 2019 were randomly split into
training (75%) and validation (25%) data sets, with no overlap
between the data sets. Since the training data set was large
(n=75,375), we did not perform cross-validation during model
training. No hyperparameter tuning was performed, astheintent
of the study was to build baseline models to understand the
problem and data set while prioritizing model simplicity and
interpretability. The trained model s were then tested on unseen
data from 2020 and 2021 (ie, the model utilized 2020 data to
predict 2021 outcomes and 2021 datato predict 2022 outcomes).
Although the data sets originate from the same registry, they
reflect distinct utilization patterns across different years,
ensuring temporal independence between them.

Explainability

For top-performing models, model interpretation was determined
using model-specific variable importance scores with the vip
package [21] and permutation feature importance plots using
the DALEX package [22,23]. Additionally, for thetop variables
identified through these methods, partial dependence plots
(PDPs) were generated using the DALEX package and the
unseen validation data set to visualize the relationship between
key predictor variables and the probability of the outcome
occurring.

Ethics Approval

Ethics approval was obtained from the SingHealth Centralized
Ingtitutional Review Board prior to initiating this study
(reference: 2022/2133). Asall participant datawere deidentified,
awaiver for participant consent was also obtained.

Reporting Checklist

Wefollowed the consolidated reporting guidelinesfor prognostic
and diagnostic machine learning modeling studies [24] (Table
S3in Multimedia Appendix 1).

Results

Characteristics of the Data Sets

After removing patients with missing data from the registry in
2019, the training data set contained 100,500 (74.6%)
individuals of the 134,670 patients in SDR in 2019. The test
setsin 2020 and 2021 comprised 77.3% (108,886/140,859) and
80.7% (111,004/137,584) of the total SDR cohorts for the
respective years. The characteristics of the patientsincluded in
thetraining-validation and 2 test data sets are described in detail
in Table 1.
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Table 1. Demographics, comorhidities, and utilization characteristics of the training and test data sets.

Data set description Test 2021-2022 (n=137,584)

Training and validation® 2019-2020 ~ Test 2020-2021

(n=134.670) (n=140,859)
Data set size, n (% of total registry) 100,500 (74.6) 108,886 (77.3) 111,004 (80.7)
Female gender, n (%) 48,887 (48.6) 52,210 (48) 53,148 (47.9)
Ageon January 1 at the start of the year (years)
Mean (SD) 66.4 (11.8) 66.7 (11.9) 66.5 (12.2)
Median 67 67 67
Ethnicity, n (%)
Chinese 71,132 (70.8) 76,479 (70.2) 76,627 (69)
Malay 14,903 (14.8) 16,277 (15) 17,144 (15.4)
Indian 10,119 (10.1) 11,267 (10.4) 11,788 (10.6)
Other 4346 (4.3) 4863 (4.5) 5445 (4.9)
Housing type, n (%)
1- and 2-room public housing 7502 (7.5) 8214 (7.5) 10,086 (9.1)
3-room public housing 24,976 (24.9) 26,741 (24.6) 24,779 (22.3)
4-room public housing 32,089 (31.9) 34,933 (32.1) 36,540 (32.9)
5-room public housing and 25,769 (25.6) 27,942 (25.7) 29,220 (26.3)
executive flats
Private condominium 6268 (6.2) 6843 (6.3) 6607 (6)
Private landed housing 3896 (3.9) 4213 (3.9) 3772 (3.4)
Livesin arental block 6641 (6.6) 7290 (6.7) 7294 (6.6)
Comorbidities, n (%)
Hypertension 87,931 (87.5) 97,149 (89.2) 99,597 (89.7)
Hyperlipidemia 95,679 (95.2) 105,108 (96.5) 107,638 (97)
Diabetes mellitus medications, n (%)
None 18,125 (18) 20,712 (19) 18,426 (16.6)
Oral medications only 57,413 (57.1) 64,571 (59.3) 61,516 (55.4)
Insulin only 2809 (2.8) 2264 (2.1) 3216 (2.9)
Oral and insulin 22,153 (22) 21,339 (19.6) 27,846 (25.1)
Diabetes-related complications, n (%)
Ischemic heart disease 25,097 (25) 27,663 (25.4) 30,656 (27.6)
Ischemic stroke 9401 (9.4) 10,563 (9.7) 11,305 (10.2)
Hemorrhagic stroke 1449 (1.4) 1801 (1.7) 1998 (1.8)
Peripheral arterial disease 3910 (3.9) 4577 (4.2) 5198 (4.7)
Major lower-extremity amputation 138 (0.2) 173(0.2) 182 (0.2)
Minor lower-extremity amputation 339(0.3) 340 (0.3 426 (0.4)
Diabetic foot and peripheral 2718 (2.7) 3180 (2.9) 3524 (3.2)
angiopathy
Diabetic eye complications 13,067 (13) 13,116 (12.1) 14,479 (13)
Nephropathy 49,139 (48.9) 53,737 (49.4) 54,359 (49)
Chronic kidney disease stage, n (%)
1(eGFR 290) 35,176 (35) 36,603 (33.6) 37,188 (33.5)
2 (eGFR 60-89) 41,705 (41.5) 45,216 (41.5) 45,755 (41.2)
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Data set description Training and validation?2019-2020  Test 2020-2021 Test 2021-2022 (n=137,584)
(n=134.670) (n=140,859)
3A (eGFR 45-59) 11,563 (11.5) 12,667 (11.6) 12,802 (11.5)
3B (eGFR 30-44) 6760 (6.7) 7696 (7.1) 7835 (7.1)
4 (eGFR 15-29) 3215 (3.2) 3805 (3.5) 4016 (3.6)
5 (eGFR<15) 2081 (2.1) 2899 (2.7) 3408 (3.1)
Dialysis 1400 (1.4) 1903 (1.8) 2269 (2)

Utilization char acteristics
Inpatient utilization (present year)
Mean (SD) 3.09 (11.3) 341 (11.7) 3.96 (13.6)
Median 0 0 0
Inpatient bed days (present year), n (%)

0 77,170 (76.8) 81,559 (74.9) 80,770 (72.8)
1-2 6034 (6) 6752 (6.2) 7168 (6.5)
36 6693 (6.7) 7701 (7.1) 8500 (7.7)
7-13 4464 (4.4) 5432 (5) 5982 (5.4)
14-29 3592 (3.6) 4315 (4) 4855 (4.4)
=30 2547 (2.5) 3127 (2.9) 3729 (3.4)
Inpatient bed days (subsequent year)
Mean (SD) 2.39 (10.3) 2.79 (12.2) 3.22 (14)
Median 0 0 0

Inpatient bed days category (subsequent year), n (%)

0 83,759 (83.3) 90,022 (82.7) 89,577 (80.7)
1-2 4078 (4.1) 4214 (3.9) 4561 (4.1)
36 4477 (4.5) 5015 (4.6) 5619 (5.1)
7-13 3353 (3.3) 3729 (3.4) 4292 (3.9)
14-29 2740 (2.7) 3222 (3) 3722 (3.4)
=30 2093 (2.1) 2684 (2.5) 3233 (2.9)
Emergency department utilization (present year)
Mean (SD) 0.53 (1.4) 0.54 (1.4) 0.57 (1.6)
Median 0 0 0

Emergency department visit category (present year), n (%)

0 visits 71,584 (71.2) 76,261 (70) 75,376 (67.9)
1-2 visits 23,487 (23.4) 27,143 (24.9) 29,671 (26.7)
3-4visits 3883 (3.9) 3938 (3.6) 4343 (3.9)
5-9 visits 1348 (1.3) 1358 (1.3) 1403 (1.3)
>10 visits 198 (0.2) 186 (0.2) 211(0.2)

Emergency department utilization (subsequent year)
Mean (SD) 0.40 (1.3 0.40 (1.4) 0.48 (1.4)
Median 0 0 0
Emergency department visit category (subsequent year), n (%)

Ovisits 78,849 (78.5) 85,162 (78.2) 82,269 (74.1)

1-2 visits 17,794 (17.7) 19,434 (17.9) 23,273 (21)

3-4visits 2716 (2.7) 3060 (2.8) 3817 (3.4)
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Data set description

Training and validation® 2019-2020

Test 2020-2021 Test 2021-2022 (n=137,584)

(n: 134,670) (n= 140,859)
5-9 visits 996 (1) 1064 (1) 1455 (1.3)
>10 visits 145 (0.1) 166 (0.2) 190 (0.2)

#The data set was randomly partitioned into training and validation data setsin a 75% to 25% ratio (respectively), with no overlap between the 2 data

sets. n=total registry size.
beGFR: estimated glomerular filtration rate in mL/min/1.73 m-.

Acrossthe data sets, 47.9%-48.6% of the patientswerefemales.
The mean age was between 66.4 and 66.7 years, and themedian
was consistently 67 years. The proportions by ethnicities were
consistent across the 3 data sets with approximately 70%
Chinese, 14% Malay, 10% Indian, and 4% other races. The
ethnic distributions observed closdly resembled the Singaporean
population [25]. Across the data sets, most individuals lived in
public housing, with the largest proportion being 4-room public
housing (approximately 32%). Owing to the public housing
infrastructure in Singapore, approximately 6.6% of the patients
live in an apartment block with rental housing. Acrossthe data
sets, the proportion of patients with hypertension was
87.5%-89.7%, whereas the proportion of patients with
hyperlipidemia was 95.2%-97%. The most common
diabetes-related complication was nephropathy (prevalence of
48.9%-49.4% across the data sets) followed by ischemic heart
disease (prevalence of 25%-27.6%) and then diabetic eye
complications (prevalence of 12.1%-13%). Relatedly,
65%-66.5% of the patientsin the data sets had stage 2 chronic
kidney disease (CKD) and above. When contrasted with the
preval ence of nephropathy (our definition of nephropathy was
estimated glomerular filtration rate <60 mL/min/1.73 m? or
urine abumin creatinine ratio =30 mg/g or urine
protein/creatinine ratio =0.20 g/g), it suggests that a significant
proportion of patients had stage 1 CKD and proteinuria.

The mean present year inpatient utilization across the data sets
was 3.08%-3.96%. Compared to the present year, the subsequent

https:/ai jmir.org/2024/1/e58463

year'sinpatient utilization was less. The mean present year ED
utilization was 0.53-0.57 visits per patient. Compared to the
present year, the subsequent year’sED utilization wasless. The
median utilization for present and next year’s inpatient and ED
utilization was zero across all data sets, indicating that the
utilization characteristics were extremely skewed.

Effectsof Sampling Techniqueon M odel Performance

The key model performance indices for the models using
different oversampling techniques and no oversampling are
presented in Figures 1-2 (Figures 1-2 in Multimedia Appendix
2) and Table S4in Multimedia Appendix 1. For all the outcomes
studied, models trained with random oversampling had similar
AUC values to models trained with no oversampling, models
trained with SMOTE-NC (k=3) had lower AUC vaues, and
models trained with SMOTE-NC (k=5) had the lowest AUC.
With regard to sensitivity, modelstrained with no oversampling
had markedly lower sensitivity but higher PPVs. Thisindicates
that models trained with no oversampling could not correctly
identify patients with the outcomes of interest. Thisis further
confirmed in our analysis of the confusion matrixes of these
model strained. We observed that these model s assigned almost
all the patients as not cases (ie, did not have the outcomes the
next year) and therefore were not useful. Models trained with
no oversampling and SMOTE-NC (k=5) were not included in
further analyses.
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Figure 1. Comparing between different oversampling techniques to predict inpatient bed days. A. Predicting =7 inpatient bed days in subsequent year.
B. Predicting 214 inpatient bed daysin subsequent year. C. Predicting =30 inpatient bed daysin subsequent year. AUC: areaunder the receiver operating
characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines; MLP:
multilayer perceptron; PPV: positive predictive value; SMOTE-NC: synthetic minority oversampling technigque-nominal continuous. A higher-resolution

image of thisfigure is available in Multimedia Appendix 2.
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Figure2. Comparing between different oversampling techniquesto predict emergency department visits. A. Predicting =3 emergency department visits
in subsequent year. B. Predicting =5 emergency department visits in subsequent year. C. Predicting 210 emergency department visits in subsequent
year. AUC: area under the receiver operating characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS:
multivariate adaptive regression splines, MLP: multilayer perceptron; PPV: positive predictive value; SMOTE-NC: synthetic minority oversampling
technique-nominal continuous. A higher-resolution image of thisfigure is available in Multimedia Appendix 2.
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3-4, Figures 3-4 in Multimedia Appendix 2, Figures S1-S2 and
Model Performance on Test Data Sets Tables S5-S6 in Multimedia Appendix 1). When trained with
Asmodelstrained with random oversampling and SMOTE-NC,  random oversampling, 4 models, that is, logistic regression,
where k=3 had the best AUC and sensitivity, we conducted MARS, boosted trees, and MLP had consistently high AUCs
additional analyses to evaluate their performance by testing  acrossvalidation and test data sets. The AUC valueswere higher
them on 2 test data sets of 2020-2021 and 2021-2022 (Figures  for outcomes reflecting higher utilization (ie, 230 inpatient bed
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days and =10 ED visits in subsequent year). These 4 models
consistently had the highest sensitivity values, with sensitivity
>0.65 for all outcomes except predicting 210 ED visitsin the
subsequent year. This suggests that these 4 models were able
to correctly identify at least 65% of the patients with the
outcome. All models, except for random forest, had similar but
low PPVs across the 2 data sets.

When trained with SMOTE-NC (k=3), most models except for
k-nearest neighbor and Bayesian additive regression trees
models had good AUC (>0.75) across the 2 test data sets.
Models had higher AUC values for outcomes reflecting higher
utilization, that is, 230 inpatient bed days and =10 ED visitsin
the subsequent year. Compared to models trained with random
oversampling, models trained with SMOTE-NC (k=3) had a

https:/ai jmir.org/2024/1/e58463
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wide distribution of sensitivity values, with logistic regression
and MLP having similar and consistently high sensitivity values
for all outcomes except predicting =10 ED visits in the
subsequent year. Models trained with SMOTE-NC (k=3) had
a wider distribution of PPV values than models trained with
random oversampling.

When comparing the performance of models trained with the
2 oversampling techniques, we observed that random
oversampling resulted in marginally higher AUC and sensitivity
values (Figures 3-4). The narrow distribution of PPV valuesin
model strained with random oversampling suggeststhat random
oversampling resulted in more consistent quality of positive
predictions across the best performing models.
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Figure 3. Performance of models trained using random oversampling to predict inpatient bed days. A. Predicting =7 inpatient bed days in subsequent
year. B. Predicting 214 inpatient bed days in subsequent year. C. Predicting =30 inpatient bed days in subsequent year. AUC: area under the receiver
operating characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines;
MLP: multilayer perceptron; PPV: positive predictive value. A higher-resolution image of thisfigure is available in Multimedia Appendix 2.
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Figure 4. Performance of models trained using random oversampling to predict emergency department visits. A. Predicting =3 emergency department
visitsin subsequent year. B. Predicting =5 emergency department visitsin subsequent year. C. Predicting =10 emergency department visitsin subsequent
year. A higher resolution version of this figure is available in Multimedia Appendix 2. AUC: area under the receiver operating characteristic curve;
BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines; MLP: multilayer perceptron;

PPV: positive predictive value.
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Explainability Analyses

From our analysis, the best performing models were logistic
regression, MARS, boosted trees, and MLP that were trained
with random oversampling (herein referred to as selected
models). Moddl-specific variable importance scores for selected

https://ai.jmir.org/2024/1/€58463
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models except MLP were obtained; the top 10 variables are
reported in Table S7 in Multimedia Appendix 1. M odel-specific
variableimportance scoresfor ML P were not available through
the vip package. Regarding the prediction of subsequent year
inpatient bed days (=7, =14, =30), age, number of ED visits
(present year), CKD stages 4 and 5, and present year inpatient
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utilization were the most important variables. For boosted tree
and MARS, the number of ED visits (present year), CKD stage,
and age were the most important variables. Regarding the
prediction of subsequent year ED visits, the number of ED visits
(present year), CKD stage 4 and 5, mean hemoglobin A;.
(HbA ) values, and age were the most important variables for

all models. Interestingly, the number of ED visits (present year)
was consistently the most important variablefor all the models.

We also obtained permutation feature importance plots for
selected models (Figures S3-$4 in Multimedia Appendix 1).
Regarding the prediction of subsequent year inpatient bed days
(=7, =14, =30), the permutation feature importance plots
corroborated the model-specific variable importance scores,
indicating that age, number of ED visits (present year), CKD
stage, and present year inpatient utilization were the most
important variables. Interestingly, diabetes mellitus medication
category was more important in predicting =30 inpatient bed
days in the subsequent year. Regarding the prediction of
subsequent year ED visits, the number of ED visits (present
year) wasthe dominant variable for all models. Other important
variables included age, CKD stage, and present year inpatient
utilization.

PDPsfor the 8 most important variables across sel ected models
are illustrated in Multimedia Appendix 1. Regarding the
prediction of inpatient bed days (Figures S5-S7 in Multimedia
Appendix 1), the average prediction of outcomes increased
steadily with age for all models. For present-year ED visits, al
models demonstrated a sharp increase in average prediction
from 0 to 20 visits, with a plateau close to 1.0 (for average
prediction) after 20 visits. For present-year inpatient bed days,
the average prediction increased with more bed days, peaking
at 14-29 days for all models except MARS. For mean HbA ;.
values, the average prediction increased with higher HbA
levels, athough a U-shaped relationship was observed for
MARS, boosted trees, and MLP, with the lowest average
predictionsaround HbA ;. level s of 6%-7%. Regarding diabetes
medication categories, patients on insulin only and those on
both oral diabetic medications and insulin had higher average
predictions than those on ora medications only or no
medications. PDPs for selected models showed that more
advanced CKD stages (CKD stage 4 and stage 5) had higher
average predictions. In most models, patients with ischemic
heart disease or peripheral artery disease also had higher average
predictions.

Regarding the prediction of ED visits>3 and =5 times (Figures
S8-S9in Multimedia Appendix 1), the sel ected model s showed
similar observations for age, present year ED visits, mean
HbA ., diabetes medication categories, ischemic heart disease,
and peripheral artery disease. It is noteworthy that present-year
inpatient bed days did not significantly affect the predicted
probability of these outcomes. For the prediction of ED visits
>10 (Figure S10 in Multimedia Appendix 1), the PDPs aligned
with the findings from both feature importance methods where
the number of present year ED visits had the largest influence
on average predictions, while other variables had smaller
influence on average predictions.
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Discussion

Principal Findings

In this study, we devel oped machine learning modelsto predict
future inpatient and ED utilization by using sociodemographic
characteristics, health indicators, diabetes-related complications,
and prior utilization data from a chronic disease registry. We
detailed a systematic approach to building, validating, and
testing the models. Using this approach, we noted that
imbalanced data distribution significantly affected model
performance, often resulting in low sensitivity despite acceptable
AUC vadues. This finding highlights the importance of
considering multiple metrics, including AUC, sensitivity (recal),
and PPV (precision), during model selection. We found that
improved model performance can be achieved by addressing
imbalanced data distribution through oversampling. We
observed that random oversampling resulted in better model
performance than SMOTE. Among the models trained with
random oversampling, logistic regression, MARS, boosted trees,
and MLP models had the best performance. Additionally,
explainability analyses provided insights into how the best
performing models made predictions and showed that their
learned patterns were consistent with real-world knowledge,
thereby supporting the validity of the models.

Predicting Future Inpatient Bed Daysand ED Visits

In our study, we used inpatient bed days and ED visits within
a calendar year as service level indicators of high health care
utilization. Service level utilization is important because our
prior research demonstrated a rising trend in diabetes-related
complications [12] and our country is experiencing persistent
bed shortages and crowded EDs [26]. In this context, service
level utilization indicators are useful to inform health
intervention programs to ease the bed crunch and overcrowded
EDs. First, patients predicted to have very high level of health
care utilization (ie, inpatient bed days =30 or ED visits 210)
could be candidates for intensive case management to identify
potential causesfor prolonged admissions or frequent ED visits.
Second, patients predicted to have moderately high level of
health care utilization (ie, inpatient bed days >14 and <30 and
ED visits>5 and <10) could be candidates for multidisciplinary
(medical and social) diabetes care programs to reduce future
utilization. Finally, patients with mildly elevated health care
utilization (ie, inpatient bed days >7 and <14 and ED visits >3
and <5) could be candidatesfor novel care modelsthat |everage
technological solutions such as the Mobile Inpatient Care at
Home[27].

Addressing Imbalanced Data Distribution by Using
Data Sampling Approaches

Our study highlights the importance of addressing imbalanced
data when devel oping machine learning models for health care
applications. We observed that class imbalance can lead to
acceptable AUC but low sensitivity—a phenomenon also hoted
in related literature [28]. Our study evaluates 2 different
oversampling techniques: random oversampling and SMOTE.
When comparing random oversampling with the 2 iterations of
SMOTE, wefound that random oversampling performed better
than SMOTE (k=3), which in turn performed better than
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SMOTE (k=5). This could suggest that predictive models
perform better when the synthetic minority class used for
training is similar to the actual training data. Random
oversampling duplicates existing instances, whereas SMOTE
(k=3) and SMOTE (k=5) create a new synthetic minority class
by interpolating between 3 and 5 closely related minority class
instances, respectively. It is recognized that with oversampling
techniques, models may overfit and perform poorly in other
data sets [14]. To investigate this, we tested our models on 2
additional test data sets (years 2020-2021 and 2021-2022) and
found no degradation in model performance. Our conclusions
were that because the training data were sufficiently large, it
had good quality and variety to avoid overfitting.

Machine L earning Model Performance

Among the 7 machine learning models we tested, logistic
regression, MARS, boosted trees, and ML P showed promising
performance in predicting LOS across al 3 thresholds. For
predicting =5 and =10 ED visitsin the subsequent year, MARS
and logistic regression outperformed the other models.
Interestingly, logistic regression was found to be as effective
as or even superior to other machine learning models in
predicting health care utilization. These findings are noteworthy
because while some studies have shown machine learning
modelsto outperform traditional regression modelsin predicting
health care utilization [3,28], others have found that machine
learning models offered only limited improvement over
traditional logistic regression [29]. When analyzing the
model-specific variable importance scores and permutation
feature importance plots for the selected models, we observed
differences in the rankings of the important variables between
models. However, the top 5 variables were generally consistent
across selected models (Table S7 and Figures S3-$4 in
Multimedia Appendix 1). In predicting inpatient LOS at all 3
threshol ds, age, number of ED visits (present year), CKD stage,
and inpatient bed days were the top 5 most important variables
acrossall models. For predicting ED visitsat al thresholds, the
number of ED visits (present year), CKD stage, age, and mean
HbA ;. values were the top 5 variables.

Additionally, explainability analyses using PDPs confirm what
is known about high health care utilizers. Age, prior utilization
in terms of ED visits and inpatient stays, and the presence of
comorbidities and diabetes-related complications such as
advanced stages of CKD, ischemic heart disease, and peripheral
artery disease are associated with increased headlth care
utilization. These findings suggest that current utilization isan
important predictor of future utilization—aconclusion supported
by similar studies [4,28]. Additionally, kidney disease has
emerged as a significant predictor for future health care
utilization in our cohort of patients with diabetes, as
demonstrated in arecent study involving patients from the same
population [30].

Interestingly, the U-shaped relationship between average
prediction and HbA ;; values seen in many of the PDPs suggest
that tight glycemic control (HbA,.<6%) and relaxed glycemic
control (HbA;.28%) are associated with increased health care

utilization. Thisisaninteresting finding because we documented
asimilar U-shaped relationship previously between HbA . and
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incidence of diabetes mellitus—related complicationsin the SDR
[23]. Incident complications are expected to result in ED visits
or admissions. Taken together, our explainability analyses
suggest that the learned patterns are consi stent with real-world
knowledge and therefore lend support to the validity of the
model.

Study Strengths, Limitations, and Future Research

Our study’s strengths include the use of a large multiethnic
cohort and easily obtainable predictors with minimal missing
data. By utilizing different thresholds of inpatient bed daysand
ED visitsasmodel outcomes, our approach allows policy makers
and program planners to target interventions based on the
predicted need. Other practitionersintending to build predictive
modelsfor population health programs could consider asimilar
systematic approach to building, validating, testing, and
understanding the models. Through this approach, wewere able
to mitigate the problems associated with class imbalance by
exploring the outcomes of the 2 data sampling methods. We
also validated the models across different time frames and
demonstrated their validity on unseen data. Finally, our
explainability analyses provided reassurance that the models
were making prediction based on learned patterns consistent
with real-world knowledge. However, the absence of financial
data and the nonexploration of other class imbalance methods
such as feature selection are key limitations that could be
addressed in future studies. Our test data sets spanned the
COVID-19 pandemic, a period that may have affected
health-seeking behavior and health care utilization. However,
the consistency of our results with those from the validation
data set, which was|ess affected by the pandemic, suggeststhat
these potential anomalies did not significantly impact our
findings. Another potentia limitation isthe exclusion of patients
with missing data. In the context of this study, these patients
arelikely to be those who are well and had minimal interaction
with the health system within that year. Given the large size of
the data set for this study and the significant class imbalance
for patients without any of the outcomes, it is likely that
excluding patients due to missing data had minimal impact on
model performance.

Although our study shortlisted 4 machine learning modelswith
similar performance across different outcomes, it remains
unclear which model is the most optimal. Beyond the
performance variables, we considered the confusion matrix for
each of the models and observed that these models describe
alternative courses of action, each with a different cost and
benefit attached; we will explore this in future research.
Although we have described how the results from the models
can be used in practice, we acknowledge the need for a more
integrated approach to model selection and decision-making
criteria. In this regard, we are currently exploring additional
methodsto addressthis, specifically focusing on how to combine
the outputs of the binary classification modelsinto asingle more
comprehensive multiclass prediction model. To achieve this,
weareinvestigating the use of hierarchical decision modelsand
ensemble model approaches. These methods would allow usto
integrate the predictions from individual binary modelsinto a
unified multiclass model, making it more applicable in
real-world scenarios. However, these additional methods and
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their applications will be detailed in a follow-up study.
Relatedly, the model sthat we devel oped are predictive and they
are unableto provide prescriptive insights. Additional toolswill
be needed to be developed to profile patients and identify the
most appropriate interventionsfor them. Finally, since our study
uses data from a public regional health database in Singapore,
the findings may not be generalizable to other contexts.

Tanet a

Conclusion

We were able to apply common machine learning algorithms
to predict future health care utilization by using inpatient bed
days and ED utilization as the predicted outcomes. These
predictive models will be useful to policy makers and program
planners asthey devel op population health initiativesto improve
care for patients with diabetes and manage acute health care

utilization.
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ED: emergency department

HbA,.: hemoglobin A,

HNHC: high-need, high-cost

LOS: length of stay

MARS: multivariate adaptive regression splines
MLP: multilayer perceptron

PDP: partial dependence plot

PPV: positive predictive value

SDR: SingHedlth Diabetes Registry
SingHealth: Singapore Health Services
SMOTE-NC: synthetic minority oversampling technique-nominal continuous
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