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Abstract

Background: The cost of health care in many countries is increasing rapidly. There is a growing interest in using machine
learning for predicting high health care utilizers for population health initiatives. Previous studies have focused on individuals
who contribute to the highest financial burden. However, this group is small and represents a limited opportunity for long-term
cost reduction.

Objective: We developed a collection of models that predict future health care utilization at various thresholds.

Methods: We utilized data from a multi-institutional diabetes database from the year 2019 to develop binary classification
models. These models predict health care utilization in the subsequent year across 6 different outcomes: patients having a length
of stay of ≥7, ≥14, and ≥30 days and emergency department attendance of ≥3, ≥5, and ≥10 visits. To address class imbalance,
random and synthetic minority oversampling techniques were employed. The models were then applied to unseen data from 2020
and 2021 to predict health care utilization in the following year. A portfolio of performance metrics, with priority on area under
the receiver operating characteristic curve, sensitivity, and positive predictive value, was used for comparison. Explainability
analyses were conducted on the best performing models.

Results: When trained with random oversampling, 4 models, that is, logistic regression, multivariate adaptive regression splines,
boosted trees, and multilayer perceptron consistently achieved high area under the receiver operating characteristic curve (>0.80)
and sensitivity (>0.60) across training-validation and test data sets. Correcting for class imbalance proved critical for model
performance. Important predictors for all outcomes included age, number of emergency department visits in the present year,
chronic kidney disease stage, inpatient bed days in the present year, and mean hemoglobin A1c levels. Explainability analyses
using partial dependence plots demonstrated that for the best performing models, the learned patterns were consistent with
real-world knowledge, thereby supporting the validity of the models.

Conclusions: We successfully developed machine learning models capable of predicting high service level utilization with
strong performance and valid explainability. These models can be integrated into wider diabetes-related population health
initiatives.
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Introduction

In recent years, high-income countries worldwide have seen a
consistent rise in health care expenditure. Singapore, mirroring
this trend, has experienced a steady increase in health care
spending relative to its gross domestic product [1]. To address
this, Singapore is undergoing a transformative health system
initiative known as Healthier SG [2], which is an initiative to
pivot the health system toward preventive care and population
health management.

Parallel to these efforts, there is a burgeoning interest in
leveraging machine learning for individual-level health
utilization predictions. Identifying prospective high utilizers of
health care services could unlock opportunities for targeted
interventions. These interventions are poised not only to enhance
individual health outcomes but also to reduce long-term health
care utilization and system costs. Existing research suggests
that a disproportionate amount of health care spending is
concentrated among a small group of costly patients known as
the high-need, high-cost (HNHC) patients—often defined as
those who account for the top 5% of the annual health care costs
[3,4]. These patients were believed to present an opportunity
for cost reduction [5].

However, the potential for cost savings in caring for HNHC
patients is often less than anticipated [6]. This is due to the
diverse nature of these patients who can be subdivided into 3
categories: persistent and refractory HNHC patients, individuals
who experience a 1-time catastrophic health event, and patients
with multiple chronic conditions but amenable to disease
management programs [6,7]. Notably, the latter group presents
the most viable opportunity for impactful intervention. Persistent
and refractory HNHC patients are those with severe and chronic
diseases who require ongoing and expensive care. For these
patients, disease management programs often do not result in
significant reduction in health utilization and financial savings.
For patients with 1-time catastrophic health events such as
accidents, these events are difficult to predict and therefore not
amenable to any intervention [6,7]. Therefore, targeting the
small cohort with multiple chronic conditions but amenable to
disease management programs represents a limited opportunity
to reduce health care costs [6].

Given these complexities, there is a need to refine the approach
to predicting and managing high health care utilization. One
strategy could be to expand the predictive scope beyond HNHC
patients or explore other indicators. Relatedly, the total length
of stay (LOS) and frequency of emergency department (ED)
visits per calendar year may provide a better indication of
service-related health care utilization and the intensity of
inpatient resource use [8].

This study aims to develop prediction models to forecast annual
inpatient bed days and ED utilization across varying thresholds;
presently, such models are not available in our hospital system.
We utilized the Singapore Health Services (SingHealth) Diabetes
Registry (SDR), a comprehensive clinical database of patients
with diabetes within our hospital system to develop predictive
models. Our objective is to create clinically relevant and

actionable models that can be integrated into wider
diabetes-related population health initiatives [9].

Methods

Study Setting
We used data from the multi-institutional SDR, previously
described in detail [10]. SingHealth is the largest of the 3 public
health care clusters in Singapore and manages 4 acute hospitals,
5 national specialty centers, 3 community hospitals, and a
network of 10 primary care polyclinics. SDR was initiated in
2015 and populated retrospectively and prospectively from
across SingHealth’s electronic medical records and clinical
databases to cover the period of 2013 to 2022.

Outcome Variables
As SDR primarily consists of clinical data from electronic
medical records and lacks financial information, we focused on
service-related health care utilization metrics. To this end, we
developed models to predict utilization across 6 different
thresholds (per calendar year), specifically for total LOS at ≥7,
≥14, and ≥30 days and for ED attendance ≥3, ≥5, and ≥10 visits;
thus, 6 sets of (binary classification) models were constructed.
Currently, there are no standard definitions for long inpatient
LOS or high ED attendance.

For total LOS, we set arbitrary thresholds corresponding to 1
week, 2 weeks, and 1 month. These thresholds were chosen to
reflect varying degrees of health care utilization in ours and
possibly other health care systems, corresponding to different
levels of patient care needs and resource allocation. Inpatient
stays between 1 and 2 weeks represent short-term stays,
potentially indicative of acute or less severe conditions. In
contrast, stays longer than 2 weeks and those extending beyond
1 month represent increasingly prolonged stays, often associated
with more severe or complex health issues, especially in the
latter. These distinctions are critical for understanding and
managing different patient care strategies. They also represent
varying levels of health care management and resource planning,
as we intend to develop disease management programs around
these thresholds in the future. Regarding ED attendance, a recent
systematic review indicated that ≥3 was the most common
definition for high ED attendance but noted that definitions
could extend to 30 or more visits [11]. Accordingly, we defined
high ED attendance by using the 3 aforementioned thresholds,
with ≥3 visits as the minimum criterion. This approach may aid
in planning interventions to prevent escalation to higher levels
of utilization.

Explanatory Variables
The SDR data set facilitated an examination of the effects of
sociodemographic indicators, health indicators, and
diabetes-related complications. Our methodology for
ascertaining diabetes-related complications has been published
previously [12] and detailed in Table S1 of Multimedia
Appendix 1. The models incorporated 24 variables detailed in
Table S2 of Multimedia Appendix 1. These variables are readily
derived from electronic medical records during admissions, ED
visits, inpatient and outpatient clinical consultations, and are
based on local clinical guidelines [13]. These variables offer a
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comprehensive view of the patients from demographic, social,
clinical, and utilization perspectives.

Inclusion and Exclusion Criteria
This study utilizes data from SDR spanning 2019 to 2022, as
this was the period when comprehensive health care utilization
data were available. We included patients aged 18 years and
older diagnosed with type 2 diabetes mellitus. Patients with
missing variables were excluded from this study, as we did not
perform data imputation, and most machine learning algorithms
do not support missing values.

Handling Unbalanced Data
Our data set demonstrated significant class imbalance in
inpatient and ED utilization, which can bias models toward the
majority class, hinder the identification of the high utilizers (the
minority class) [14], and result in subpar model performance.
In this study, we utilized oversampling, a data-level method to
address the class imbalance. Specifically, we used the synthetic
minority oversampling technique-nominal continuous
(SMOTE-NC) [15] from the themis package [16]. SMOTE-NC,
a variant of the SMOTE family of algorithms, generates new
examples of the minority class by interpolating between several
minority class instances that lie relatively close to each other
[17]. SMOTE-NC is effective with mixed numerical and
categorical data. We applied SMOTE-NC with k=5 and k=3
settings, where k denotes the number of nearest neighbors used
to generate new examples of the minority class. Additionally,
we used the upSample algorithm from the caret package [18]
for random oversampling and compared it with no oversampling.
All oversampling techniques achieved equal representations of
both classes in our training data set (ie, equal number of patients
with and without the outcome in the training data set).

Performance Indicators
We assessed model performance by using area under the receiver
operating characteristic curve (AUC), sensitivity (recall), and
positive predictive value (PPV). Sensitivity (recall) allowed us
to identify whether the models were able to correctly identify
patients with the outcomes of interest. PPV provided us with
an understanding of the quality of the positive prediction made
by the model. Additionally, we have reported the area under
the precision-recall curve, sensitivity, specificity, and F1-score
in Multimedia Appendix 1. The area under the precision-recall
curve is preferred over AUC for rare outcomes, as it more
accurately reflects model performance [19]. We also evaluated
the confusion matrix during model development.

Machine Learning Models
We built 7 predictive models using R software (version 4.3.1;
R Foundation for Statistical Computing) and the tidymodels

package [20]: logistic regression, random forest, boosted trees,
multilayer perceptron (MLP), k-nearest neighbor, multivariate
adaptive regression splines (MARS), and Bayesian additive
regression trees. SDR data from 2019 were randomly split into
training (75%) and validation (25%) data sets, with no overlap
between the data sets. Since the training data set was large
(n=75,375), we did not perform cross-validation during model
training. No hyperparameter tuning was performed, as the intent
of the study was to build baseline models to understand the
problem and data set while prioritizing model simplicity and
interpretability. The trained models were then tested on unseen
data from 2020 and 2021 (ie, the model utilized 2020 data to
predict 2021 outcomes and 2021 data to predict 2022 outcomes).
Although the data sets originate from the same registry, they
reflect distinct utilization patterns across different years,
ensuring temporal independence between them.

Explainability
For top-performing models, model interpretation was determined
using model-specific variable importance scores with the vip
package [21] and permutation feature importance plots using
the DALEX package [22,23]. Additionally, for the top variables
identified through these methods, partial dependence plots
(PDPs) were generated using the DALEX package and the
unseen validation data set to visualize the relationship between
key predictor variables and the probability of the outcome
occurring.

Ethics Approval
Ethics approval was obtained from the SingHealth Centralized
Institutional Review Board prior to initiating this study
(reference: 2022/2133). As all participant data were deidentified,
a waiver for participant consent was also obtained.

Reporting Checklist
We followed the consolidated reporting guidelines for prognostic
and diagnostic machine learning modeling studies [24] (Table
S3 in Multimedia Appendix 1).

Results

Characteristics of the Data Sets
After removing patients with missing data from the registry in
2019, the training data set contained 100,500 (74.6%)
individuals of the 134,670 patients in SDR in 2019. The test
sets in 2020 and 2021 comprised 77.3% (108,886/140,859) and
80.7% (111,004/137,584) of the total SDR cohorts for the
respective years. The characteristics of the patients included in
the training-validation and 2 test data sets are described in detail
in Table 1.
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Table 1. Demographics, comorbidities, and utilization characteristics of the training and test data sets.

Test 2021-2022 (n=137,584)Test 2020-2021
(n=140,859)

Training and validationa 2019-2020
(n=134,670)

Data set description

111,004 (80.7)108,886 (77.3)100,500 (74.6)Data set size, n (% of total registry)

53,148 (47.9)52,210 (48)48,887 (48.6)Female gender, n (%)

Age on January 1 at the start of the year (years)

66.5 (12.2)66.7 (11.9)66.4 (11.8)Mean (SD)

676767Median

Ethnicity, n (%) 

76,627 (69)76,479 (70.2)71,132 (70.8)Chinese

17,144 (15.4)16,277 (15)14,903 (14.8)Malay

11,788 (10.6)11,267 (10.4)10,119 (10.1)Indian

5445 (4.9)4863 (4.5)4346 (4.3)Other

Housing type, n (%) 

10,086 (9.1)8214 (7.5)7502 (7.5)1- and 2-room public housing

24,779 (22.3)26,741 (24.6)24,976 (24.9)3-room public housing

36,540 (32.9)34,933 (32.1)32,089 (31.9)4-room public housing

29,220 (26.3)27,942 (25.7)25,769 (25.6)5-room public housing and

executive flats

6607 (6)6843 (6.3)6268 (6.2)Private condominium

3772 (3.4)4213 (3.9)3896 (3.9)Private landed housing

7294 (6.6)7290 (6.7)6641 (6.6)Lives in a rental block

Comorbidities, n (%) 

99,597 (89.7)97,149 (89.2)87,931 (87.5)Hypertension

107,638 (97)105,108 (96.5)95,679 (95.2)Hyperlipidemia

Diabetes mellitus medications, n (%)

18,426 (16.6)20,712 (19)18,125 (18)None

61,516 (55.4)64,571 (59.3)57,413 (57.1)Oral medications only

3216 (2.9)2264 (2.1)2809 (2.8)Insulin only

27,846 (25.1)21,339 (19.6)22,153 (22)Oral and insulin

Diabetes-related complications, n (%) 

30,656 (27.6)27,663 (25.4)25,097 (25)Ischemic heart disease

11,305 (10.2)10,563 (9.7)9401 (9.4)Ischemic stroke

1998 (1.8)1801 (1.7)1449 (1.4)Hemorrhagic stroke

5198 (4.7)4577 (4.2)3910 (3.9)Peripheral arterial disease

182 (0.2)173 (0.2)138 (0.1)Major lower-extremity amputation

426 (0.4)340 (0.3)339 (0.3)Minor lower-extremity amputation

3524 (3.2)3180 (2.9)2718 (2.7)Diabetic foot and peripheral

angiopathy

14,479 (13)13,116 (12.1)13,067 (13)Diabetic eye complications

54,359 (49)53,737 (49.4)49,139 (48.9)Nephropathy

Chronic kidney disease stage, n (%)

37,188 (33.5)36,603 (33.6)35,176 (35)1 (eGFRb ≥90)

45,755 (41.2)45,216 (41.5)41,705 (41.5)2 (eGFR 60-89)
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Test 2021-2022 (n=137,584)Test 2020-2021
(n=140,859)

Training and validationa 2019-2020
(n=134,670)

Data set description

12,802 (11.5)12,667 (11.6)11,563 (11.5)3A (eGFR 45-59)

7835 (7.1)7696 (7.1)6760 (6.7)3B (eGFR 30-44)

4016 (3.6)3805 (3.5)3215 (3.2)4 (eGFR 15-29)

3408 (3.1)2899 (2.7)2081 (2.1)5 (eGFR<15)

2269 (2)1903 (1.8)1400 (1.4)Dialysis

Utilization characteristics

Inpatient utilization (present year)

3.96 (13.6)3.41 (11.7)3.09 (11.3)Mean (SD)

000Median

Inpatient bed days (present year), n (%)

80,770 (72.8)81,559 (74.9)77,170 (76.8)0

7168 (6.5)6752 (6.2)6034 (6)1-2

8500 (7.7)7701 (7.1)6693 (6.7)3-6

5982 (5.4)5432 (5)4464 (4.4)7-13

4855 (4.4)4315 (4)3592 (3.6)14-29

3729 (3.4)3127 (2.9)2547 (2.5)≥30

Inpatient bed days (subsequent year)

3.22 (14)2.79 (12.2)2.39 (10.3)Mean (SD)

000Median

Inpatient bed days category (subsequent year), n (%)

89,577 (80.7)90,022 (82.7)83,759 (83.3)0

4561 (4.1)4214 (3.9)4078 (4.1)1-2

5619 (5.1)5015 (4.6)4477 (4.5)3-6

4292 (3.9)3729 (3.4)3353 (3.3)7-13

3722 (3.4)3222 (3)2740 (2.7)14-29

3233 (2.9)2684 (2.5)2093 (2.1)≥30

Emergency department utilization (present year)

0.57 (1.6)0.54 (1.4)0.53 (1.4)Mean (SD)

000Median

Emergency department visit category (present year), n (%)

75,376 (67.9)76,261 (70)71,584 (71.2)0 visits

29,671 (26.7)27,143 (24.9)23,487 (23.4)1-2 visits

4343 (3.9)3938 (3.6)3883 (3.9)3-4 visits

1403 (1.3)1358 (1.3)1348 (1.3)5-9 visits

211 (0.2)186 (0.2)198 (0.2)≥10 visits

Emergency department utilization (subsequent year)

0.48 (1.4)0.40 (1.4)0.40 (1.3)Mean (SD)

000Median

Emergency department visit category (subsequent year), n (%) 

82,269 (74.1)85,162 (78.2)78,849 (78.5)0 visits

23,273 (21)19,434 (17.9)17,794 (17.7)1-2 visits

3817 (3.4)3060 (2.8)2716 (2.7)3-4 visits
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Test 2021-2022 (n=137,584)Test 2020-2021
(n=140,859)

Training and validationa 2019-2020
(n=134,670)

Data set description

1455 (1.3)1064 (1)996 (1)5-9 visits

190 (0.2)166 (0.2)145 (0.1)≥10 visits

aThe data set was randomly partitioned into training and validation data sets in a 75% to 25% ratio (respectively), with no overlap between the 2 data
sets. n=total registry size.
beGFR: estimated glomerular filtration rate in mL/min/1.73 m2.

Across the data sets, 47.9%-48.6% of the patients were females.
The mean age was between 66.4 and 66.7 years, and the median
was consistently 67 years. The proportions by ethnicities were
consistent across the 3 data sets with approximately 70%
Chinese, 14% Malay, 10% Indian, and 4% other races. The
ethnic distributions observed closely resembled the Singaporean
population [25]. Across the data sets, most individuals lived in
public housing, with the largest proportion being 4-room public
housing (approximately 32%). Owing to the public housing
infrastructure in Singapore, approximately 6.6% of the patients
live in an apartment block with rental housing. Across the data
sets, the proportion of patients with hypertension was
87.5%-89.7%, whereas the proportion of patients with
hyperlipidemia was 95.2%-97%. The most common
diabetes-related complication was nephropathy (prevalence of
48.9%-49.4% across the data sets) followed by ischemic heart
disease (prevalence of 25%-27.6%) and then diabetic eye
complications (prevalence of 12.1%-13%). Relatedly,
65%-66.5% of the patients in the data sets had stage 2 chronic
kidney disease (CKD) and above. When contrasted with the
prevalence of nephropathy (our definition of nephropathy was

estimated glomerular filtration rate <60 mL/min/1.73 m2 or
urine albumin creatinine ratio ≥30 mg/g or urine
protein/creatinine ratio ≥0.20 g/g), it suggests that a significant
proportion of patients had stage 1 CKD and proteinuria.

The mean present year inpatient utilization across the data sets
was 3.08%-3.96%. Compared to the present year, the subsequent

year’s inpatient utilization was less. The mean present year ED
utilization was 0.53-0.57 visits per patient. Compared to the
present year, the subsequent year’s ED utilization was less. The
median utilization for present and next year’s inpatient and ED
utilization was zero across all data sets, indicating that the
utilization characteristics were extremely skewed.

Effects of Sampling Technique on Model Performance
The key model performance indices for the models using
different oversampling techniques and no oversampling are
presented in Figures 1-2 (Figures 1-2 in Multimedia Appendix
2) and Table S4 in Multimedia Appendix 1. For all the outcomes
studied, models trained with random oversampling had similar
AUC values to models trained with no oversampling, models
trained with SMOTE-NC (k=3) had lower AUC values, and
models trained with SMOTE-NC (k=5) had the lowest AUC.
With regard to sensitivity, models trained with no oversampling
had markedly lower sensitivity but higher PPVs. This indicates
that models trained with no oversampling could not correctly
identify patients with the outcomes of interest. This is further
confirmed in our analysis of the confusion matrixes of these
models trained. We observed that these models assigned almost
all the patients as not cases (ie, did not have the outcomes the
next year) and therefore were not useful. Models trained with
no oversampling and SMOTE-NC (k=5) were not included in
further analyses.
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Figure 1. Comparing between different oversampling techniques to predict inpatient bed days. A. Predicting ≥7 inpatient bed days in subsequent year.
B. Predicting ≥14 inpatient bed days in subsequent year. C. Predicting ≥30 inpatient bed days in subsequent year. AUC: area under the receiver operating
characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines; MLP:
multilayer perceptron; PPV: positive predictive value; SMOTE-NC: synthetic minority oversampling technique-nominal continuous. A higher-resolution
image of this figure is available in Multimedia Appendix 2.
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Figure 2. Comparing between different oversampling techniques to predict emergency department visits. A. Predicting ≥3 emergency department visits
in subsequent year. B. Predicting ≥5 emergency department visits in subsequent year. C. Predicting ≥10 emergency department visits in subsequent
year. AUC: area under the receiver operating characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS:
multivariate adaptive regression splines; MLP: multilayer perceptron; PPV: positive predictive value; SMOTE-NC: synthetic minority oversampling
technique-nominal continuous. A higher-resolution image of this figure is available in Multimedia Appendix 2.

Model Performance on Test Data Sets
As models trained with random oversampling and SMOTE-NC,
where k=3 had the best AUC and sensitivity, we conducted
additional analyses to evaluate their performance by testing
them on 2 test data sets of 2020-2021 and 2021-2022 (Figures

3-4, Figures 3-4 in Multimedia Appendix 2, Figures S1-S2 and
Tables S5-S6 in Multimedia Appendix 1). When trained with
random oversampling, 4 models, that is, logistic regression,
MARS, boosted trees, and MLP had consistently high AUCs
across validation and test data sets. The AUC values were higher
for outcomes reflecting higher utilization (ie, ≥30 inpatient bed
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days and ≥10 ED visits in subsequent year). These 4 models
consistently had the highest sensitivity values, with sensitivity
>0.65 for all outcomes except predicting ≥10 ED visits in the
subsequent year. This suggests that these 4 models were able
to correctly identify at least 65% of the patients with the
outcome. All models, except for random forest, had similar but
low PPVs across the 2 data sets.

When trained with SMOTE-NC (k=3), most models except for
k-nearest neighbor and Bayesian additive regression trees
models had good AUC (>0.75) across the 2 test data sets.
Models had higher AUC values for outcomes reflecting higher
utilization, that is, ≥30 inpatient bed days and ≥10 ED visits in
the subsequent year. Compared to models trained with random
oversampling, models trained with SMOTE-NC (k=3) had a

wide distribution of sensitivity values, with logistic regression
and MLP having similar and consistently high sensitivity values
for all outcomes except predicting ≥10 ED visits in the
subsequent year. Models trained with SMOTE-NC (k=3) had
a wider distribution of PPV values than models trained with
random oversampling.

When comparing the performance of models trained with the
2 oversampling techniques, we observed that random
oversampling resulted in marginally higher AUC and sensitivity
values (Figures 3-4). The narrow distribution of PPV values in
models trained with random oversampling suggests that random
oversampling resulted in more consistent quality of positive
predictions across the best performing models.
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Figure 3. Performance of models trained using random oversampling to predict inpatient bed days. A. Predicting ≥7 inpatient bed days in subsequent
year. B. Predicting ≥14 inpatient bed days in subsequent year. C. Predicting ≥30 inpatient bed days in subsequent year. AUC: area under the receiver
operating characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines;
MLP: multilayer perceptron; PPV: positive predictive value. A higher-resolution image of this figure is available in Multimedia Appendix 2.
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Figure 4. Performance of models trained using random oversampling to predict emergency department visits. A. Predicting ≥3 emergency department
visits in subsequent year. B. Predicting ≥5 emergency department visits in subsequent year. C. Predicting ≥10 emergency department visits in subsequent
year. A higher resolution version of this figure is available in Multimedia Appendix 2. AUC: area under the receiver operating characteristic curve;
BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines; MLP: multilayer perceptron;
PPV: positive predictive value.

Explainability Analyses
From our analysis, the best performing models were logistic
regression, MARS, boosted trees, and MLP that were trained
with random oversampling (herein referred to as selected
models). Model-specific variable importance scores for selected

models except MLP were obtained; the top 10 variables are
reported in Table S7 in Multimedia Appendix 1. Model-specific
variable importance scores for MLP were not available through
the vip package. Regarding the prediction of subsequent year
inpatient bed days (≥7, ≥14, ≥30), age, number of ED visits
(present year), CKD stages 4 and 5, and present year inpatient
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utilization were the most important variables. For boosted tree
and MARS, the number of ED visits (present year), CKD stage,
and age were the most important variables. Regarding the
prediction of subsequent year ED visits, the number of ED visits
(present year), CKD stage 4 and 5, mean hemoglobin A1c

(HbA1c) values, and age were the most important variables for
all models. Interestingly, the number of ED visits (present year)
was consistently the most important variable for all the models.

We also obtained permutation feature importance plots for
selected models (Figures S3-S4 in Multimedia Appendix 1).
Regarding the prediction of subsequent year inpatient bed days
(≥7, ≥14, ≥30), the permutation feature importance plots
corroborated the model-specific variable importance scores,
indicating that age, number of ED visits (present year), CKD
stage, and present year inpatient utilization were the most
important variables. Interestingly, diabetes mellitus medication
category was more important in predicting ≥30 inpatient bed
days in the subsequent year. Regarding the prediction of
subsequent year ED visits, the number of ED visits (present
year) was the dominant variable for all models. Other important
variables included age, CKD stage, and present year inpatient
utilization.

PDPs for the 8 most important variables across selected models
are illustrated in Multimedia Appendix 1. Regarding the
prediction of inpatient bed days (Figures S5-S7 in Multimedia
Appendix 1), the average prediction of outcomes increased
steadily with age for all models. For present-year ED visits, all
models demonstrated a sharp increase in average prediction
from 0 to 20 visits, with a plateau close to 1.0 (for average
prediction) after 20 visits. For present-year inpatient bed days,
the average prediction increased with more bed days, peaking
at 14-29 days for all models except MARS. For mean HbA1c

values, the average prediction increased with higher HbA1c

levels, although a U-shaped relationship was observed for
MARS, boosted trees, and MLP, with the lowest average
predictions around HbA1c levels of 6%-7%. Regarding diabetes
medication categories, patients on insulin only and those on
both oral diabetic medications and insulin had higher average
predictions than those on oral medications only or no
medications. PDPs for selected models showed that more
advanced CKD stages (CKD stage 4 and stage 5) had higher
average predictions. In most models, patients with ischemic
heart disease or peripheral artery disease also had higher average
predictions.

Regarding the prediction of ED visits ≥3 and ≥5 times (Figures
S8-S9 in Multimedia Appendix 1), the selected models showed
similar observations for age, present year ED visits, mean
HbA1c, diabetes medication categories, ischemic heart disease,
and peripheral artery disease. It is noteworthy that present-year
inpatient bed days did not significantly affect the predicted
probability of these outcomes. For the prediction of ED visits
≥10 (Figure S10 in Multimedia Appendix 1), the PDPs aligned
with the findings from both feature importance methods where
the number of present year ED visits had the largest influence
on average predictions, while other variables had smaller
influence on average predictions.

Discussion

Principal Findings
In this study, we developed machine learning models to predict
future inpatient and ED utilization by using sociodemographic
characteristics, health indicators, diabetes-related complications,
and prior utilization data from a chronic disease registry. We
detailed a systematic approach to building, validating, and
testing the models. Using this approach, we noted that
imbalanced data distribution significantly affected model
performance, often resulting in low sensitivity despite acceptable
AUC values. This finding highlights the importance of
considering multiple metrics, including AUC, sensitivity (recall),
and PPV (precision), during model selection. We found that
improved model performance can be achieved by addressing
imbalanced data distribution through oversampling. We
observed that random oversampling resulted in better model
performance than SMOTE. Among the models trained with
random oversampling, logistic regression, MARS, boosted trees,
and MLP models had the best performance. Additionally,
explainability analyses provided insights into how the best
performing models made predictions and showed that their
learned patterns were consistent with real-world knowledge,
thereby supporting the validity of the models.

Predicting Future Inpatient Bed Days and ED Visits
In our study, we used inpatient bed days and ED visits within
a calendar year as service level indicators of high health care
utilization. Service level utilization is important because our
prior research demonstrated a rising trend in diabetes-related
complications [12] and our country is experiencing persistent
bed shortages and crowded EDs [26]. In this context, service
level utilization indicators are useful to inform health
intervention programs to ease the bed crunch and overcrowded
EDs. First, patients predicted to have very high level of health
care utilization (ie, inpatient bed days ≥30 or ED visits ≥10)
could be candidates for intensive case management to identify
potential causes for prolonged admissions or frequent ED visits.
Second, patients predicted to have moderately high level of
health care utilization (ie, inpatient bed days ≥14 and <30 and
ED visits ≥5 and <10) could be candidates for multidisciplinary
(medical and social) diabetes care programs to reduce future
utilization. Finally, patients with mildly elevated health care
utilization (ie, inpatient bed days ≥7 and <14 and ED visits ≥3
and <5) could be candidates for novel care models that leverage
technological solutions such as the Mobile Inpatient Care at
Home [27].

Addressing Imbalanced Data Distribution by Using
Data Sampling Approaches
Our study highlights the importance of addressing imbalanced
data when developing machine learning models for health care
applications. We observed that class imbalance can lead to
acceptable AUC but low sensitivity—a phenomenon also noted
in related literature [28]. Our study evaluates 2 different
oversampling techniques: random oversampling and SMOTE.
When comparing random oversampling with the 2 iterations of
SMOTE, we found that random oversampling performed better
than SMOTE (k=3), which in turn performed better than
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SMOTE (k=5). This could suggest that predictive models
perform better when the synthetic minority class used for
training is similar to the actual training data. Random
oversampling duplicates existing instances, whereas SMOTE
(k=3) and SMOTE (k=5) create a new synthetic minority class
by interpolating between 3 and 5 closely related minority class
instances, respectively. It is recognized that with oversampling
techniques, models may overfit and perform poorly in other
data sets [14]. To investigate this, we tested our models on 2
additional test data sets (years 2020-2021 and 2021-2022) and
found no degradation in model performance. Our conclusions
were that because the training data were sufficiently large, it
had good quality and variety to avoid overfitting.

Machine Learning Model Performance
Among the 7 machine learning models we tested, logistic
regression, MARS, boosted trees, and MLP showed promising
performance in predicting LOS across all 3 thresholds. For
predicting ≥5 and ≥10 ED visits in the subsequent year, MARS
and logistic regression outperformed the other models.
Interestingly, logistic regression was found to be as effective
as or even superior to other machine learning models in
predicting health care utilization. These findings are noteworthy
because while some studies have shown machine learning
models to outperform traditional regression models in predicting
health care utilization [3,28], others have found that machine
learning models offered only limited improvement over
traditional logistic regression [29]. When analyzing the
model-specific variable importance scores and permutation
feature importance plots for the selected models, we observed
differences in the rankings of the important variables between
models. However, the top 5 variables were generally consistent
across selected models (Table S7 and Figures S3-S4 in
Multimedia Appendix 1). In predicting inpatient LOS at all 3
thresholds, age, number of ED visits (present year), CKD stage,
and inpatient bed days were the top 5 most important variables
across all models. For predicting ED visits at all thresholds, the
number of ED visits (present year), CKD stage, age, and mean
HbA1c values were the top 5 variables.

Additionally, explainability analyses using PDPs confirm what
is known about high health care utilizers. Age, prior utilization
in terms of ED visits and inpatient stays, and the presence of
comorbidities and diabetes-related complications such as
advanced stages of CKD, ischemic heart disease, and peripheral
artery disease are associated with increased health care
utilization. These findings suggest that current utilization is an
important predictor of future utilization—a conclusion supported
by similar studies [4,28]. Additionally, kidney disease has
emerged as a significant predictor for future health care
utilization in our cohort of patients with diabetes, as
demonstrated in a recent study involving patients from the same
population [30].

Interestingly, the U-shaped relationship between average
prediction and HbA1c values seen in many of the PDPs suggest
that tight glycemic control (HbA1c<6%) and relaxed glycemic
control (HbA1c≥8%) are associated with increased health care
utilization. This is an interesting finding because we documented
a similar U-shaped relationship previously between HbA1c and

incidence of diabetes mellitus–related complications in the SDR
[23]. Incident complications are expected to result in ED visits
or admissions. Taken together, our explainability analyses
suggest that the learned patterns are consistent with real-world
knowledge and therefore lend support to the validity of the
model.

Study Strengths, Limitations, and Future Research
Our study’s strengths include the use of a large multiethnic
cohort and easily obtainable predictors with minimal missing
data. By utilizing different thresholds of inpatient bed days and
ED visits as model outcomes, our approach allows policy makers
and program planners to target interventions based on the
predicted need. Other practitioners intending to build predictive
models for population health programs could consider a similar
systematic approach to building, validating, testing, and
understanding the models. Through this approach, we were able
to mitigate the problems associated with class imbalance by
exploring the outcomes of the 2 data sampling methods. We
also validated the models across different time frames and
demonstrated their validity on unseen data. Finally, our
explainability analyses provided reassurance that the models
were making prediction based on learned patterns consistent
with real-world knowledge. However, the absence of financial
data and the nonexploration of other class imbalance methods
such as feature selection are key limitations that could be
addressed in future studies. Our test data sets spanned the
COVID-19 pandemic, a period that may have affected
health-seeking behavior and health care utilization. However,
the consistency of our results with those from the validation
data set, which was less affected by the pandemic, suggests that
these potential anomalies did not significantly impact our
findings. Another potential limitation is the exclusion of patients
with missing data. In the context of this study, these patients
are likely to be those who are well and had minimal interaction
with the health system within that year. Given the large size of
the data set for this study and the significant class imbalance
for patients without any of the outcomes, it is likely that
excluding patients due to missing data had minimal impact on
model performance.

Although our study shortlisted 4 machine learning models with
similar performance across different outcomes, it remains
unclear which model is the most optimal. Beyond the
performance variables, we considered the confusion matrix for
each of the models and observed that these models describe
alternative courses of action, each with a different cost and
benefit attached; we will explore this in future research.
Although we have described how the results from the models
can be used in practice, we acknowledge the need for a more
integrated approach to model selection and decision-making
criteria. In this regard, we are currently exploring additional
methods to address this, specifically focusing on how to combine
the outputs of the binary classification models into a single more
comprehensive multiclass prediction model. To achieve this,
we are investigating the use of hierarchical decision models and
ensemble model approaches. These methods would allow us to
integrate the predictions from individual binary models into a
unified multiclass model, making it more applicable in
real-world scenarios. However, these additional methods and
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their applications will be detailed in a follow-up study.
Relatedly, the models that we developed are predictive and they
are unable to provide prescriptive insights. Additional tools will
be needed to be developed to profile patients and identify the
most appropriate interventions for them. Finally, since our study
uses data from a public regional health database in Singapore,
the findings may not be generalizable to other contexts.

Conclusion
We were able to apply common machine learning algorithms
to predict future health care utilization by using inpatient bed
days and ED utilization as the predicted outcomes. These
predictive models will be useful to policy makers and program
planners as they develop population health initiatives to improve
care for patients with diabetes and manage acute health care
utilization.
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ED: emergency department
HbA1c: hemoglobin A1c

HNHC: high-need, high-cost
LOS: length of stay
MARS: multivariate adaptive regression splines
MLP: multilayer perceptron
PDP: partial dependence plot
PPV: positive predictive value
SDR: SingHealth Diabetes Registry
SingHealth: Singapore Health Services
SMOTE-NC: synthetic minority oversampling technique-nominal continuous
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