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Abstract

Background: The global obesity epidemic demands innovative approaches to understand its complex environmental and social
determinants. Spatial technologies, such as geographic information systems, remote sensing, and spatial machine learning, offer
new insights into this health issue. This study uses deep learning and spatial modeling to predict obesity rates for census tracts
in Missouri.

Objective: This study aims to develop a scalable method for predicting obesity prevalence using deep convolutional neural
networks applied to satellite imagery and geospatial analysis, focusing on 1052 census tracts in Missouri.

Methods: Our analysis followed 3 steps. First, Sentinel-2 satellite images were processed using the Residual Network-50 model
to extract environmental features from 63,592 image chips (224×224 pixels). Second, these features were merged with obesity
rate data from the Centers for Disease Control and Prevention for Missouri census tracts. Third, a spatial lag model was used to
predict obesity rates and analyze the association between deep neural visual features and obesity prevalence. Spatial autocorrelation
was used to identify clusters of obesity rates.

Results: Substantial spatial clustering of obesity rates was found across Missouri, with a Moran I value of 0.68, indicating
similar obesity rates among neighboring census tracts. The spatial lag model demonstrated strong predictive performance, with

an R2 of 0.93 and a spatial pseudo R2 of 0.92, explaining 93% of the variation in obesity rates. Local indicators from a spatial
association analysis revealed regions with distinct high and low clusters of obesity, which were visualized through choropleth
maps.

Conclusions: This study highlights the effectiveness of integrating deep convolutional neural networks and spatial modeling
to predict obesity prevalence based on environmental features from satellite imagery. The model’s high accuracy and ability to
capture spatial patterns offer valuable insights for public health interventions. Future work should expand the geographical scope
and include socioeconomic data to further refine the model for broader applications in obesity research.
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Introduction

Overview
The prevalence of obesity has escalated to alarming levels
globally, prompting an urgent need for innovative approaches
to understand and combat this complex health issue. Spatial

technologies, such as geographic information systems (GISs),
remote sensing (RS), spatial machine learning (ML), and spatial
analysis, have emerged as powerful tools in obesity research,
offering novel insights into the environmental and social
determinants of this epidemic. This paper delves into the current
applications of spatial technologies in obesity research,
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highlighting how these tools can be used to unravel the intricate
relationship between the built environment and obesity rates.

Furthermore, this paper explores the future promise of these
technologies in advancing our understanding of obesity, guiding
public health interventions, and shaping policies to create
healthier and more equitable communities. Through a
comprehensive examination of recent studies and advancements,
this paper underscores the pivotal role of spatial technologies
in transforming obesity research and ultimately contributing to
the global fight against this pressing public health challenge.

Objectives
This research aims to use deep convolutional neural networks
(DCNNs) to examine medium-resolution satellite imagery, with
the goal of predicting obesity rates using deep neural visual
features (DNVFs). Concentrating on the 1052 census tracts in
Missouri, the project seeks to provide a scalable method for
predicting obesity prevalence using DNVFs. This could improve
the accuracy of public health initiatives and policy decisions.

Background
GISs, GPS, RS, and DCNNs such as Residual Network-50
(ResNet-50) are reshaping obesity research. GISs have been
pivotal in depicting spatial distributions of obesity and its
determinants, crafting metrics of obesity-promoting
environments, and unveiling spatial patterns of obesity
prevalence and obesogenic environmental attributes. GPS has
predominantly been used to map individual movement patterns
and, in conjunction with other instruments, to track behaviors
contributing to obesity. The contribution of RS in supplying
data on natural and built environments has been undervalued
[1,2].

The integration of DCNNs, particularly ResNet-50, and the
extraction of DNVFs have enhanced the precision of obesity
predictions by analyzing satellite imagery and identifying subtle
environmental features linked to obesity. When combined with
spatial ML techniques, these advanced technologies are proving
invaluable in providing more granular insights into obesogenic
environments and individual exposure levels, thereby enriching
our understanding of obesity’s etiology and the impact of various
interventions on obesity rates in Missouri [1,3,4].

By 2030, it is projected that 38% of the global population will
be overweight, while another 20% will be obese [5,6]. This
alarming trend toward a worldwide epidemic of “globesity” has
raised concerns about the rapid and significant shift in global
health patterns. The United States, and specifically the state of
Missouri, is no exception to this trend, with an increasing burden
of individuals who are overweight and obese.

Changes in dietary patterns, particularly the consumption of
energy-dense, nutrient-poor foods, are closely linked to the
rising prevalence of overweight and obesity and their associated
health complications. Therefore, this study aims to explore the
spatial patterns of overweight and obesity among adults in
Missouri and predict the obesity rate for each census tract to
increase public health awareness [7].

Significance
Earlier studies have shown links between different elements of
the built environment and their effects on obesity and physical
activity across various life stages [8-10]. Previous research has
demonstrated a connection between obesity and various
environmental factors, including the walkability of a region,
land use patterns, urban sprawl, residential types, access to
amenities such as recreational facilities and food outlets,
socioeconomic deprivation, and perceived safety levels in a
community [11-13]. In addition, proximity to and availability
of natural spaces and sidewalks are linked to increased and more
regular levels of physical activity, especially in urban settings
[14,15].

While a relationship between obesity and the built environment
is acknowledged, inconsistencies exist in the results of various
studies and across different geographic regions concerning how
specific features of the built environment influence obesity rates
[11,16,17]. These discrepancies could arise from variations in
the measurement methods and tools used in these studies,
making it challenging to assess and compare the outcomes
[18-20]. Furthermore, the measurement of these environmental
features often requires substantial time and expenses and is
susceptible to human error and bias [21,22]. There is a need for
methodologies that provide standardized measurement criteria
to enable comparisons between various studies [19,23,24].
Accurately assessing the impact of the built environment on
obesity is crucial for designing and implementing successful
community-based prevention and intervention programs
[21,25,26].

In this paper, we introduce an innovative approach to extensively
explore the relationship between adult obesity prevalence and
different features of the spatial characteristics. This method uses
a deep learning (DL) technique, using a DCNN to examine the
physical characteristics of neighborhoods through
medium-resolution (10 m) satellite imagery. Building on the
foundational work of Maharana and Nsoesie [27] and Nguyen
et al [28], who used DCNNs to analyze urban Google Street
View (Google LLC) images focusing on predefined features,
such as crosswalks, building types, and greenery, our study
expands the scope to both urban and rural areas. Unlike
Maharana and Nsoesie [27], who used a Visual Geometry
Group-8 architecture and extracted features after training, we
used the more advanced ResNet-50 architecture, using features
extracted from a pretrained model to enhance efficiency and
generalizability. Our approach provides a more comprehensive
analysis of the DNVFs, identifying specific correlations with
obesity rates at the census tract level across 1052 census tracts
in Missouri. Moreover, our method is scalable, uses publicly
available data and computing resources, allows for comparisons
between various studies, and can be adapted to different
geographic locations and regions.

RS Applications in Obesity Research
RS data, typically stored as raster data, offer a highly efficient
means of spatially representing obesity risk. Raster data consist
of regular square grids, with each grid cell aggregating
information over a corresponding area on Earth’s surface, such
as high-resolution aerial photos and satellite images. These data
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can be generated from radiation recorded by sensors or through
GIS-based interpolation techniques from discrete data collected
at observation stations [29-32].

RS technology, which acquires information through spaceborne
satellites or airborne sensors without direct physical contact,
records the intensity of radiation reflected or emitted by objects
and converts it into various land surface (eg, vegetation) and
meteorological (eg, temperature) properties for user analysis.

This technology has been instrumental in diverse applications,
including environmental monitoring and climate-sensitive
disease risk modeling, by providing extensive environmental
data [1,29,33-35].

In obesity research, RS plays a pivotal role by offering detailed
environmental data that can be used to identify obesogenic
factors, such as the availability of green spaces or urban
walkability. This spatial information, when combined with other
data sources, can help researchers understand the complex
interplay between the environment and obesity risk. Vector
data, which include points, lines, and polygons with
geographical coordinates, complement raster data by providing
precise location information for features relevant to obesity
studies [36-39].

Literature Review and Related Work

DL Applications in Urban and Environmental Health
Research
DL techniques have become integral to understanding the
complex dynamics between urban environments and public
health outcomes. Through the application of convolutional
neural networks (CNNs) and semantic segmentation
architectures, these methodologies enable detailed analysis of
spatial data for health-related urban studies.

CNNs in Urban Health Analysis
Pala et al [40] used transfer learning with a pretrained CNN to
classify urban structures in high-resolution satellite imagery.
This method facilitates the extraction of latent features indicative
of various urban elements, critical for analyzing the impact of
the urban environment on public health. The subsequent
application of k-means clustering to categorize image tiles based
on these features illustrates the synergy between CNNs and
traditional data analysis methods, allowing the identification of
meaningful correlations between urban characteristics and health
outcomes.

Levy et al [41] explored the use of CNNs for predicting
mortality rates from satellite images, demonstrating the models’
capability to discern spatial patterns related to health outcomes.
By comparing DL models with linear regression and a hybrid
approach, the study delineated CNNs’ efficiency in modeling
complex, nonlinear relationships between environmental features
and health indicators.

Guo et al [42] used Bayesian analysis and partial least squares
regression in conjunction with the ResNet-50 architecture to
examine obesity trends and the impact of environmental factors
on obesity prevalence among Chinese children and adolescents.
This integration of statistical methods with DL techniques

demonstrates a comprehensive approach to understanding the
multifaceted influences on obesity, offering predictive insights
into spatial and temporal variations of health outcomes.

Semantic Segmentation for Urban Environment Analysis
Han et al [43] deployed SegNet for semantic segmentation of
Google Street View images to study urban environments’ impact
on psychological stress. SegNet, designed for pixel-wise
segmentation, features an encoder-decoder architecture for
contextual detail abstraction and precise urban element
classification. This approach enabled detailed urban feature
analysis, including buildings and green spaces, for assessing
their influence on psychological stress. Using a combination of
segmented imagery analysis within a human-machine adversarial
framework and random forest classification, the study provided
insights into visual urban characteristics’ effects on stress,
demonstrating DL’s utility in urban health research.

Hong et al [44] used the U-Net architecture for semantic
segmentation of unmanned aerial vehicle imagery to map green
spaces and sidewalks, integrating DL with a GIS for urban and
public health analysis. U-Net’s encoder-decoder design,
enhanced with skip connections, excels in extracting detailed
features from high-resolution unmanned aerial vehicle images,
crucial for accurate environmental mapping at the neighborhood
level. This method optimizes the segmentation process,
distinguishing between various urban elements and facilitating
the comprehensive analysis of green spaces and sidewalks. By
leveraging U-Net for precise pixel classification, the study
demonstrates DL’s efficacy in improving urban environment
datasets, thus supporting targeted urban planning and public
health initiatives.

In their analysis, Wang et al [45] applied the Fully Convolutional
Network (FCN)–8s architecture to semantic segmentation of
Tencent Street View (Tencent) images for studying the built
environment’s effects on health in older adults within Beijing’s
Haidian District. FCN-8s, a CNN that is fully convolutional
and optimized for pixel-level segmentation, enabled the
classification of urban features directly from images, facilitating
the examination of variables, such as wealth, safety, and green
space. The network uses convolution and deconvolution layers
for processing spatial information, enhancing segmentation
accuracy for complex urban scenes. This approach underscores
the applicability of FCN-8s in urban analysis, providing a
detailed assessment of environmental attributes and their
correlations with health outcomes, thereby supporting
data-driven urban planning and public health policy
development.

Larkin et al [46] used GISs, satellite imagery, and a pyramid
scene parsing network (PSPNet), designed for semantic
segmentation, to analyze urban perceptions across 56 cities.
PSPNet classifies each pixel in Google Street View images into
urban elements (eg, trees, buildings, and roads) by leveraging
a pyramid pooling module that aggregates context information
at different scales, ensuring detailed scene parsing and global
context comprehension. This method, combined with
GIS-derived data on population density and green spaces,
allowed for the quantitative linking of urban features to
perceptions of safety, liveliness, and beauty. The study
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showcases the integration of DL with GISs, demonstrating
PSPNet’s effectiveness in urban landscape analysis and the
potential of merging image-derived metrics with environmental
data for insights into the built environment’s impact on human
perceptions.

Discriminative and Generative Models in Urban Health
Studies
Newton detailed both discriminative and generative models
within the framework of CNNs for obesity studies in urban
contexts, as detailed in the chapter “Deep Learning in Urban
Analysis for Health” of the book Artificial Intelligence in Urban
Planning and Design [47]. This examination reveals DL’s
capacity to identify subtle spatial patterns associated with health
outcomes, reinforcing its value in enhancing urban planning
and public health policy through advanced model applications.

Review Studies on ML and DL Applications
Siddiqui et al [48] offered a comprehensive review of ML and
DL models for predicting childhood and adolescent obesity.
This survey integrated 39 studies, examining a variety of ML
models (including artificial neural network, recurrent neural
network, and CNN) and datasets (ranging from surveys and
cohorts to electronic health records and image datasets). The
literature was categorized based on methodologies (traditional
ML vs DL), dataset types, and outcomes predicted (overweight,
obesity, or both). The survey distinguished between studies
aimed at identifying risk factors and those predicting obesity,
underlining the significance of model interpretability. It
identified research gaps and advocated for advancements
through large-scale multimodal datasets and the development
of interpretable models for obesity prediction.

Wirtz Baker et al [49] conducted a systematic review under
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines to evaluate the use of
nontraditional data sources, such as geospatial data and social
media, in studying the built environment’s impact on obesity.
Analyzing 53 studies, this review emphasized the value of
geospatial data within GISs for assessing physical environment
features and the insights social media data offer into
sociocultural dynamics related to obesity. The review suggested
future research avenues should leverage digital advancements
to gain a comprehensive understanding of obesity’s
environmental determinants.

Zhou et al [50] provided a mini-review focusing on the
application of open-source ML models in obesity research. This
review selected 25 studies, categorizing ML models into
supervised and unsupervised learning and covering applications
in nutrition, the environment, genetics, and the microbiome.
The review aimed at research reproducibility and efficiency,
advocating for open-source tools and the integration of diverse
data sources for a multifaceted analysis of obesity’s causes.

Shaamala et al [51] presented a systematic review of ML
applications in geospatial analysis, identifying key application
areas including classification, detection, extraction, clustering,
regression, modeling, prediction, and optimization. Techniques,
such as random forests, support vector machines, and CNNs,
were highlighted for their effectiveness in classification,

detection, and extraction tasks, with specific mention of
architectures such as U-Net and You Only Look Once for
semantic segmentation and object detection. The review also
discussed the use of ensemble models and advanced neural
networks in regression, modeling, and prediction tasks, along
with optimization algorithms for spatial planning. This work
aimed to map the current landscape and identify future research
directions in ML applications for geospatial analysis.

Cross-Disciplinary Applications of Advanced ML
Recent advances in ML [52-54], highlight the potential of such
technologies in both pandemic responses and chronic disease
management like obesity. These studies used sophisticated
algorithms— dilated efficient residual global attention, fuzzy
ensemble models, and artificial intelligence techniques for
minimal data analysis, to enhance diagnostic and predictive
accuracies, akin to our use of DCNNs for analyzing
environmental determinants of obesity from satellite imagery.
The success of these methods in medical diagnostics underscores
their applicability in spatial health studies, suggesting promising
avenues for using similar approaches in obesity research to
improve public health outcomes.

Spatial Analysis and Geolocation
Spatial analysis and geolocation are pivotal tools in obesity
research, providing crucial insights into the complex interplay
between environmental factors and obesity prevalence. By
leveraging these techniques, researchers can map and analyze
spatial patterns of obesity, identify obesogenic environments,
and understand how individual interactions with these
environments contribute to obesity risk [55,56]. Through the
integration of GISs, GPS, and RS, spatial analysis and
geolocation enable the examination of geographical variations
in obesity rates, the assessment of accessibility to
health-promoting resources, and the evaluation of the impact
of urban planning on physical activity levels. Consequently,
they play an indispensable role in advancing our understanding
of the spatial determinants of obesity and informing targeted
interventions and policies to combat this global health challenge
[55,57].

Methods

Overview
Our study analysis consisted of 4 main steps. First, we processed
Sentinel-2 satellite images to extract features of the built
environment using ResNet-50. Second, we merged the polygon’s
census tracts using the TIGER (topologically integrated
geographic encoding and referencing)/Line shapefiles with the
obesity rates for each census tract using the US Centers for
Disease Control and Prevention (CDC) data [58]. Third, we
conducted an exploratory spatial analysis (ESA), particularly
spatial autocorrelation and local clustering, to determine the
modeling approach and techniques. Fourth, as our ESA suggests
that there is substantial spatial autocorrelation and spatial
dependency in the obesity rates, we used a spatial regression
technique, particularly the spatial lag model (SLM), to build a
model to predict the obesity rate for each census tract and to
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assess the association between the built environment and obesity
prevalence.

Figure 1 illustrates an analytical workflow designed to predict
obesity rates from satellite imagery. The process begins with a
high-resolution input image from the Sentinel-2 satellite,
capturing the intricate details of the Earth’s surface. The image
on the left in Figure 1 was raw data that was fed into a DL
framework. Inside this framework, a ResNet-50 DCNN was

used to analyze and extract high-dimensional features from the
image, known as DNVFs, which are 2048D vectors
encapsulating the critical visual cues from the input data.
Subsequently, the extracted features were used as the input of
the SLM, which finally output the predicted obesity rate of the
given geographic unit. This output is represented as a
quantifiable measure, providing valuable insights for public
health and resource allocation.

Figure 1. Flowchart illustrating the process of using Sentinel-2 satellite imagery processed through a Residual Network-50 (ResNet-50) deep convolutional
neural network (DCNN) to extract deep neural visual features, which are then used as the inputs of the spatial lag model, ultimately yielding predicted
obesity rates for geographic regions. DL: deep learning; DNVF: deep neural visual feature.

Obesity Prevalence Data
Figure 2 provides a choropleth map that serves as a visual
representation of obesity prevalence among the various census
tracts within the state of Missouri for the year 2022. Each census
tract is color-coded to denote the obesity rate percentage for
individuals residing in that tract, with the intent of offering a
comprehensive geographic overview of the obesity landscape
across the state. In the map, lighter shades of blue show lower
obesity rates, and darker hues correspond to higher obesity rates.
The scale itself delineates a range starting at 25%, represented
by a light blue, and progresses to 50%, indicated by a dark blue
color. Notably, the map reveals a significant variation in obesity
rates across different regions, with some census tracts exhibiting
markedly higher rates and others reflecting lower obesity rates.

We used 2022 estimates of annual crude obesity prevalence at
the census tract level, derived from the 500 Cities project
[59,60]. These estimates are based on data from the Behavioral
Risk Factor Surveillance System, which surveys individuals
aged ≥18 years [60]. Obesity is identified using a BMI threshold
of 30, calculated as the individual’s weight in kg divided by

their height in m2 [59]. Our study focused on the mid-Missouri
region in the United States. The 1052 census tracts (Missouri
State) covered in this study have an aggregate area of 69,707

square miles (180,540 km2). They have a total population of
6.2 million (based on the 2020 census).

The CDC data list 1387 census tracts, 4506 block groups, and
343,565 census blocks. Given that the number of TIGER/Line
census tract shapefiles in the state was 1654, polygon (census
tract) IDs in the TIGER/Line data had to be aligned to census
tract IDs in the CDC data. To fix the mismatching issue, census
tracts with subdivisions (tract names with 2 trailing digits
different from 0) in both datasets were joined into larger
polygons.

First, we joined the polygons in the TIGER/Line dataset by
removing all subdivisions.

Of the initial 1654 polygons, 55.26% (n=914) had names
following a naming convention of the type “XXXX.YY,” where
“YY” corresponded to the subdivision within a particular tract.
The remaining 44.74% (n=740) had no subdivisions and names
containing 2 trailing zeros (eg, “XXXX.00”). Setting the 2
trailing digits to 0 in these 914 names resulted in repeated names
with 323 unique names. If a name was repeated, all repeated
elements were joined to become a single polygon, which resulted
in a set of 1063 polygons.

Similarly, the IDs of the census tracts in the CDC data consisted
of a string of digits, with the last 2 digits corresponding to a set
of subdivisions different from that of the TIGER/Line data. Of
the 1387 tracts, 63.52% (n=881) had IDs with 2 trailing zeros
(no subdivisions), while the remaining 36.48% (n=506) had
subdivisions. We set the initial 506 string IDs to a single
subdivision with repeated entries, which resulted in 178 unique
IDs. Because each of these new unique IDs had multiple obesity
rates, an average obesity rate was calculated as a proxy for the
obesity rate of the newly joined area. The average obesity rate
for these joint areas, weighted by census tract population, was
calculated as follows:

where is the new obesity rate for the joint area, n is the
number of subdivisions (repeated entries) within the original
census tract, wi is the population in a subdivision i, and xi is the
obesity rate in i. The joined 1059 CDC entries were then
matched to the joined 1063 TIGER/Line tracts, for a final
overlapping set of 1055 census tract polygons with their
corresponding obesity rates, which we used as the inputs to our
models.
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Figure 2. Choropleth map displaying the distribution of obesity rates for individuals across Missouri census tracts in 2022. The variations in the color
intensity reflect the range of obesity prevalence, with darker blue indicating higher obesity rates. The color scale to the right quantifies the obesity rates
corresponding to each color shade.

Acquiring Satellite Imagery
We acquired our imagery inputs by selecting the Sentinel-2
products intersecting our previously defined set of census tracts.
These satellite products were downloaded from ESA’s
Copernicus Dataspace Ecosystem. Because ESA’s OpenSearch
application programming interface uses http requests to search
for products, we defined a shortened geometry string that could
fit in our search query. This was done by joining our previously
defined census tract polygons into a state boundary that was
further simplified into a closed polygon of 54 vertices using the
implementation of the Douglas-Peucker algorithm included in
GeoPandas.

Figure 3 presents our geospatial imagery coverage data analysis
using 33 Sentinel-2 satellite images of Missouri from the year

2022, each with a resolution of 10,980×10,980 pixels at 10 m
per pixel.

Our search resulted in 187 intersecting Sentinel-2 products
between July 1, 2022, and August 31, 2022. Overlapping images
were removed in 2 steps. First, products with completely
overlapping geometries (corresponding to the same universal
transverse mercator zone tile) were filtered by discarding all
but the product with the largest area and the lowest cloud
percentage. Second, 7 partially overlapping products (which
also happened to have little state coverage) were discarded after
visual inspection. This resulted in a set of 33 Sentinel-2 images
that were used to define our model inputs. These products were
downloaded from ESA’s Dataspace Ecosystem to Nautilus. All
33 Sentinel-2 image sizes were 10,980×10,980 pixels. The
images were then normalized and tiled into 224×224 pixel chips.
This created 82,500 three-band (red-green-blue) image chips.
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Figure 3. A chart illustrating the collection of 33 Sentinel-2 satellite image tiles, each identified by a specific tile code and date of capture in 2022.
The chart provides information on cloud cover across these images, with a mean cloud coverage of 0.769% and a maximum cloud coverage of 4.953%.

Image Processing

Overview
Building on acquiring Sentinel-2 imagery, our image-processing
efforts used DCNNs to advance the analysis of these extensive
datasets [61,62]. We used the DNVFs from a pretrained neural
network to obtain the built area features of the 82,500 (63,592
intersected with Missouri census tracts) satellite image chips.
We used the ResNet-50 network, which is composed of 50
layers (48 convolution layers along with 1 max pool and 1
average pool layer) and is trained on approximately 1.2 million
images from the ImageNet database (a dataset of >14 million
images used for large-scale visual recognition challenges) for

recognizing objects belonging to 1000 categories [63]. For each
chip we passed through the network, we extracted the 2048
features from the last hidden layer of the network before the
output layer [64]. Because each census tract in our dataset could
have >1 image chip intersecting it, we calculated a
corresponding weighted mean feature vector for a tract with the
features of the intersecting chips [65]. For a census tract t, its
mean feature vector Ft was calculated as follows:
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where C is the set of image chips intersecting the census tract,
Fc is a ResNet-50 feature vector obtained from chip c, and wc

is the (scalar) number of pixels in c intersecting the census tract.
To include the obesity rate of a given chip in our analysis, the
inverse case was considered. When a chip intersected with >1
census tract, we calculated the obesity rate in such a chip as the
average obesity rate of all the intersecting census tracts [65].
So, for a chip c, the weighted obesity rate is similarly calculated
as follows:

where T is the nonempty set of tracts intersecting a chip c, ot is
the obesity rate in a census tract, and wt is the number of pixels
in c corresponding to the t census tract. We do not link these
features to specific elements in the built environment or the
obesity prevalence. Rather, these DNVFs collectively represent
an indicator to help predict the obesity prevalence for each
census tract. The image chips were tiled for a size of 224×224
pixels or 2240 m (2.24 km) by 2240 m (2.24 km). The graphics
processing unit (NVIDIA GeForce RTX 2080 Ti)–accelerated
processing speed was approximately 77.51 tiles per second or
1064.25 seconds (17.73 min) of DCNN inference for our study
area. This translates to a rate of 0.0129 seconds per tile.

Spatial Autocorrelation
Following image processing, we explored spatial autocorrelation
to understand the interdependencies of obesity rates across
different geographic locales. Spatial autocorrelation is a concept
in spatial analysis that quantifies the degree of similarity
between observations in neighboring geographic locations. It
measures how much the value of a variable at one location is
influenced by the values of the same variable at nearby locations.
Positive spatial autocorrelation indicates that similar values are
clustered together, while negative spatial autocorrelation
suggests that dissimilar values are adjacent to each other. This
concept is crucial in identifying patterns and relationships in
geographic data, as it helps to determine whether the spatial
distribution of a variable is random, clustered, or dispersed
[66,67].

In obesity research, spatial autocorrelation is used to examine
the spatial distribution of obesity rates or related factors, such
as physical activity levels, access to healthy foods, or
socioeconomic status. By assessing the degree of spatial
autocorrelation, researchers can identify areas where obesity
rates are higher or lower than expected based on the surrounding
locations. This analysis can reveal clusters of high or low obesity
prevalence, indicating potential hot spots or areas of concern.
It also helps to understand the spatial dynamics of obesity, which
can inform targeted public health interventions and policies
[67,68].

The application of spatial autocorrelation in obesity research
extends to exploring the environmental and social determinants
of obesity. By analyzing the spatial autocorrelation of variables,
such as access to parks, fast-food outlets, or income levels,
researchers can investigate how these factors contribute to the

spatial variation in obesity rates. This can lead to a better
understanding of the complex interactions between the built
environment, socioeconomic factors, and obesity, ultimately
guiding the development of more effective strategies for obesity
prevention and management at the local and regional levels
[67-69].

Global Moran I
To quantitatively measure the spatial autocorrelation observed,
we applied global Moran I, a statistical tool that evaluates the
correlation of a variable with its spatially lagged counterpart.
It is a widely used tool in spatial analysis, especially in fields
such as geography, ecology, and epidemiology [70,71].

Moran I is defined as the correlation coefficient between a
variable and its spatially lagged counterpart. It measures the
extent to which similar values of a variable are located near
each other in space [70,72].

The global Moran I is calculated as follows:

where N is the number of spatial units and wij is the spatial
weight between units i and j. xi and xj are the values of the

variable of interest at units i and j, respectively. is the mean
value of the variable across all spatial units. W is the sum of all

spatial weights, .

Moran I is a crucial measure in spatial analysis, used to identify
and quantify spatial patterns in a dataset. A positive Moran I
indicates spatial clustering, where areas with similar values are
geographically close to each other. For instance, regions with
high values tend to be surrounded by other high-value regions,
and the same applies to low values. In contrast, a negative Moran
I suggests spatial dispersion, where areas with high values are
typically surrounded by areas with low values, indicating a
dissimilar distribution. When Moran I is close to 0, it implies
a random spatial pattern, signifying no significant spatial
autocorrelation among the observed values [70-72].

In our research, we focused exclusively on Moran I as our
measure of spatial autocorrelation, opting not to use Geary C.
While Geary C is sensitive to local variations and emphasizes
the dissimilarity between neighboring observations, Moran I
provides a more comprehensive view of the overall spatial
pattern. To assess the statistical significance of Moran I, we
used permutation tests or analytical methods to create a reference
distribution under the null hypothesis of no spatial
autocorrelation. By comparing the observed Moran I to this
distribution, we can determine its significance and thereby gain
valuable insights into the spatial relationships and processes at
play in our study [70-72].

Local Indicators of Spatial Association
Further dissecting spatial patterns, we used local indicators of
spatial association (LISA) statistics to pinpoint specific areas
exhibiting significant spatial clustering or dispersion. Unlike
global measures, such as Moran I, which provide a single
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summary statistic for the entire study area, LISA statistics offer
insights into the spatial patterns at individual locations, allowing
for the detection of local clusters or outliers [73,74].

LISA statistics are designed to assess the degree of spatial
autocorrelation for each observation within a dataset,
considering the values of neighboring observations. They help
to identify areas where the value of a variable is significantly
different from or similar to its surrounding values, indicating
the presence of spatial clusters or hot spots [75,76].

LISA statistics play a pivotal role in spatial analysis by
providing a detailed examination of local spatial patterns within
a dataset. These statistics are instrumental in detecting local
clusters of high or low values, commonly referred to as hot
spots or cold spots, which can reveal areas of concentrated
phenomena, such as high crime rates or regions of environmental
degradation [76,77].

In addition, LISA statistics are adept at identifying spatial
outliers, where the value of an observation significantly deviates
from the values of its neighboring observations, indicating
anomalies or irregularities in the spatial distribution. By
exploring the local spatial patterns and relationships, LISA
statistics offer a nuanced understanding of the spatial dynamics
at play, allowing researchers to uncover subtle variations and
trends that may be obscured in a global analysis. This localized
approach is essential for targeted interventions and policy
making, as it provides a granular view of the spatial structure
of the data, enabling more precise and effective responses to
spatially varying challenges [74,75,77].

One of the most commonly used LISA statistics is local Moran
I. The local Moran I for observation i is calculated using the
following equation:

where Ii is the local Moran I for observation i. xi and xj are the

values of the variable for observations i and j, respectively. 

is the mean value of the variable across all observations. s2 is
the variance of the variable. wij is the spatial weight between
observations i and j. n is the total number of observations.

The local Moran I statistic is used to assess the degree of spatial
autocorrelation at the local level, identifying clusters of similar
values and spatial outliers.

In assessing the significance of LISA statistics, permutation
tests are commonly used. This involves randomly shuffling the
observed values and recalculating the statistic multiple times
to generate a reference distribution. By comparing the observed
LISA values to this distribution, researchers can determine the
statistical significance of the spatial patterns detected. This
process is crucial for ensuring that the identified clusters and
outliers are not due to random chance but are indicative of
underlying spatial processes [74,77].

In the context of obesity research, LISA statistics provide
invaluable insights into the local spatial dynamics of obesity
prevalence and related factors. High positive values of Local
Moran I can reveal clusters of areas with high obesity rates
(high-high clusters), while high negative values can indicate
regions where high obesity rates are surrounded by areas with
lower rates (high-low outliers), and vice versa [73,76].

By visualizing these patterns on maps, researchers can identify
specific neighborhoods or regions that may require targeted
public health interventions. Moreover, the detailed local insights
offered by LISA statistics can aid in understanding the spatial
distribution of obesity and its association with environmental
and socioeconomic factors, ultimately informing more effective
strategies for addressing the obesity epidemic at a granular level
[77].

Incorporating Spatial Dependencies With an SLM
Integrating the insights gained from both global and local spatial
analyses, we used the SLM to incorporate the spatial
dependencies identified among the observations into our
regression analysis. It is used to account for the influence of
neighboring observations on each other, which is a common
phenomenon in spatial data [78].

In an SLM, the dependent variable in one location is assumed
to be affected by the values of the dependent variable in
neighboring locations. This spatial dependence is captured by
including a spatially lagged dependent variable as an additional
explanatory variable in the regression model [79].

SLMs are used in various fields, including economics,
geography, and public health, to analyze spatial data where
observations are not independent but influenced by nearby
observations. It helps to provide more accurate estimates and
inferences by accounting for spatial dependency [80].

In obesity research, SLMs can be used to study the spatial
distribution of obesity rates and their determinants. For example,
it can be used to examine how obesity rates in one area are
influenced by the rates in adjacent areas, which might be due
to shared environmental factors, social networks, or economic
conditions. This can provide insights into the spatial diffusion
of obesity and help in identifying areas that might benefit from
targeted interventions [78-80].

The SLM is represented by the following equation:

where y is the vector of the dependent variable (eg, obesity
rates). ρ is the spatial autoregressive parameter, representing
the strength of the spatial dependence. W is the spatial weight
matrix, defining the spatial relationship between observations.
X is the matrix of independent variables (eg, socioeconomic
factors and access to healthy food). β is the vector of coefficients
for the independent variables. ε is the vector of error terms.

In this model, ρW y is the spatially lagged dependent variable,
capturing the influence of neighboring observations on each
observation in the dataset. In the SLM, the spatial weight matrix
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W is essential for capturing the spatial correlations between
nearby observations. We computed W using the contiguity
method, more specifically the “queen” case, which is best suited
for polygon features as it defines neighbors based on shared
boundaries or vertices between spatial units (eg, census tracts).
This approach identifies neighboring spatial units by determining
which share at least 1 point of contact, either a border or a
corner. Once the queen contiguity structure was defined, the
weights were standardized so the sum of weights for each
observation equals 1, ensuring comparable influence across all
spatial units of analysis.

The estimation of the SLM typically requires specialized
techniques, such as maximum likelihood or spatial 2-stage least
squares, due to the presence of the spatially lagged dependent
variable. The SLM is a powerful tool in spatial analysis,
particularly valuable in fields, such as obesity research, where
the spatial distribution of variables is of interest. By accounting
for the influence of neighboring observations, the SLM provides
a more accurate representation of spatial dependencies, leading
to better-informed decisions and interventions.

Ethical Considerations
We did not seek further approval or exemption from an IRB
because this study falls under Exemption 4 of the NIH Human

Subjects Research Exemptions. This exemption applies as our
study involved secondary analysis of an existing, IRB-approved
CDC dataset [60], which is deidentified and publicly available,
hence not requiring informed consent.

Results

Table 1 presents a detailed summary of key metrics across

various regions, such as population, area (in km2), obesity crude
prevalence (%), and the number of chips. The data are
systematically organized to illustrate the minimum, median,
and maximum values for each metric, providing a clear
understanding of the range and central tendencies within the
dataset. For population, the minimum value recorded is 102,
the median is 4058, and the maximum reaches 75,569, reflecting
the diversity in population sizes across different areas. The area
of the regions varies significantly, with the smallest being just

0.49 km2, the median at 20.19 km2, and the largest extending

to 1787.47 km2. In terms of obesity rates, the lowest rate
observed is 23%, the median stands at 39.2%, and the highest
rate is 53.7%, indicating varied health metrics across the regions.
Finally, the number of chips ranges from a minimum of 1 to a
maximum of 442, with a median of 14, highlighting different
levels of chip distribution or consumption.

Table 1. A summary of key regional metrics, covering total population, area (km2), obesity crude prevalence, and number of chips intersected with
each tract.

Values, median (range)

4058 (102-75,569)Total population, n

20.19 (0.49-1787.47)Area (km2)

39.2 (23-53.7)Obesity crude prevalence (%)

14 (1-442)Chips, n

Figure 4A details individual image chip boundaries, illustrating
their overlap with 7 distinct census tracts (numbered for
reference). Figure 4B further narrows down to census tract 0608,
demonstrating the intersection with 150 specific image chips
for granular analysis. The figure highlights the granularity and
density of data distribution within the geographic study area.

Figure 4A displays a visualization of an individual image chip
intersecting 7 distinct census tracts, enabling a detailed analysis
of these specific overlaps. This image chip intersects with one
of the highest numbers of census tracts (0002, 0003, 0005, 0009,
0010, 0021, and 0022), and it is located in Boone County. Figure
4B is a single census tract, specifically “Census Tract 0608”

with 150 intersecting image chips. This census tract is among
the areas with one of the highest numbers of image chips. This
level of granularity reveals a concentrated cluster of data points,
potentially signifying a region of particular interest or higher
measurement intensity.

The left map in Figure 5 depicts the spatial distribution of feature
1112 across Missouri, with red circles highlighting areas of high
values, which seems to correlate with (urban areas). The right
map depicts actual obesity rates (%) across the state, with blue
circles indicating regions with lower obesity prevalence. Notable
discrepancies between feature values and obesity rates can be
observed in several regions.
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Figure 4. Multiscale analysis of satellite image chips and census tracts in Missouri.

Figure 5. A map showing feature 1112 (left) values across census tracts in Missouri compared with the obesity rate (right).

Figure 6A is a visualization of a probability distribution related
to the Moran I statistic, a measure used in spatial analysis. The
bell-shaped curve represents the expected distribution of Moran
I under the null hypothesis of spatial randomness. The x-axis
shows the range of Moran I values, and the y-axis represents
the density or the probability of those values. There is a vertical
line marked on the plot that indicates the observed Moran I
value, which here is 0.68. This is significantly higher than 0,
suggesting that there is a significant positive spatial
autocorrelation in the dataset. The peak of the distribution curve
is centered very close to 0, with the tails tapering off smoothly
on either side. A blue line marks the mean of the reference
distribution, indicating where Moran I would fall if the null
hypothesis were true (no spatial autocorrelation). A red line
marks the actual observed Moran I, which falls far to the right

of the mean, indicating a stronger-than-expected positive spatial
correlation.

Figure 6B depicts a scatterplot with a regression line. This
scatterplot is used to visualize the spatial autocorrelation of a
variable, here, obesity rates. The x-axis represents standardized
values of obesity rates, meaning the data have been normalized
to have a mean of 0 and an SD of 1. The y-axis represents the
standardized spatial lag of obesity, which is essentially the
average obesity rate of neighboring areas. The scatterplot is
dense with points that represent the different locations (such as
census tracts) within Missouri. The points are predominantly
clustered around the regression line (red line), suggesting that
areas tend to be similar to their neighbors’ high values are next
to high values, and low values are next to low values.
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Figure 6. (A) Reference distribution for Moran I, confirming positive spatial autocorrelation with an observed value of 0.68, significantly deviating
from the null hypothesis of spatial randomness (blue line). (B) Moran scatterplot, demonstrating the relationship between standardized obesity rates
and their standardized spatial lag, with a clear positive slope indicating that regions with high obesity rates are typically surrounded by similar regions.
These findings are instrumental for spatially informed public health strategies, pinpointing areas for targeted interventions and enhancing the precision
of predictive models for obesity prevalence across the state.

In addition, the regression line slopes upward, reinforcing the
indication of positive spatial autocorrelation, as higher
standardized values of obesity are associated with higher spatial
lags.

Figure 7A represents a local version of Moran I scatterplot,
which examines the spatial autocorrelation of obesity rates at
a localized level. The x-axis displays the standardized obesity
rates, indicating the deviation from the mean rate of obesity.
The y-axis shows the spatial lag of obesity, which represents

the average rate of obesity in neighboring locations. Points are
color coded; blue represents low-low clusters where locations
and their neighbors have lower than average obesity rates; red
represents high-high clusters where locations and their neighbors
have higher than average rates; tan points represent low-high
or high-low outliers where a location’s obesity rate significantly
differs from its neighbors. The solid black line indicates the
trend, and the presence of color-coded points away from the
origin suggests spatial clusters and outliers.

Figure 7. Multifaceted spatial analysis of obesity rates in Missouri using deep learning and satellite imagery. (A) Moran local scatterplot, indicating
spatial autocorrelation of obesity rates with clusters of high (high-high; HH) and low (low-low; LL) values, alongside substantial spatial outliers
(low-high; LH and high-low; HL). (B) Map of the local indicators of spatial associations (LISA) clusters across Missouri, identifying regions with
statistically substantial spatial associations of obesity rates. (C) Actual obesity prevalence (illustrated with a choropleth map), correlating geographic
data with obesity percentages. Combined, these visual tools leverage deep neural visual features extracted via a Residual Network-50 (ResNet-50)
model applied to Sentinel-2 satellite imagery, offering a robust framework for understanding and predicting obesity distribution at the community level.
NS: not significant.

Figure 7B provides a spatial representation of LISA results,
showing clusters and spatial outliers of obesity rates across
Missouri. The map of Missouri is marked with areas color coded
consistent with the legend in Figure 7A, with high-high clusters
in red and low-low clusters in blue, among others. This

visualization allows for the geographical identification of areas
with statistically significant local spatial autocorrelation,
revealing regions where similar or dissimilar obesity rates cluster
spatially.
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Figure 7C depicts a choropleth map indicating the obesity rate
by county or census tract across Missouri. The color gradient
represents varying rates of obesity, with darker colors indicating
higher rates. This visualizes the actual obesity prevalence
geographically, which can be cross-referenced with the LISA
results for a more nuanced understanding of spatial patterns.

As we delve deeper into the intricacies of spatial data, it is also
essential to explore other spatial regression techniques, such as
geographically weighted regression (GWR). GWR extends the
capabilities of traditional spatial models by allowing
relationships to vary across space, offering a nuanced
understanding of local variations in the data. This progression
from global to local models, from SLM to GWR, signifies a
move toward more refined and location-specific analyses in
spatial research.

Figure 8 represents a scatterplot that compares the actual obesity
rates with those predicted by a SLM, illustrating the model’s
performance in estimating obesity rates across Missouri. The
graph is a common tool used in regression analysis to validate
the effectiveness of predictive models. The x-axis of the
scatterplot displays the actual obesity rates, expressed as
percentages, observed within the dataset. The y-axis, similarly,
shows the obesity rates as predicted by the SLM. Each point on
the graph represents a specific location within Missouri, such
as a county or census tract, where the coordinates correspond
to the actual and predicted obesity rates. The scatter of points
is densest along the line of best fit, which is depicted by a dashed
line, indicating a strong correlation between predicted and actual
values.

Figure 8. A scatterplot comparing actual versus predicted obesity rates in Missouri, derived from a spatial lag model using Residual Network-50
(ResNet-50) deep neural features and Sentinel-2 imagery. Data points close to the dashed best-fit line, with an R² of 0.93 and spatial pseudo R² of 0.92,
highlight the model’s high accuracy in mapping the spatial distribution of obesity rates. MSE: mean squared error.

The x-axis displays the actual obesity rates, expressed as
percentages, observed within the dataset. The y-axis, similarly,
shows the obesity rates as predicted by the SLM. Each point on
the graph represents a specific location within Missouri, such
as a county or census tract, where the coordinates correspond
to the actual and predicted obesity rates. The scatter of points
is densest along the line of best fit, which is depicted by a dashed
line, indicating a strong correlation between predicted and actual
values.

Beneath the scatterplot, 3 key performance indicators provide
quantitative assessments of the model’s accuracy. The mean

squared error, given as 2.03, is a measure of the average of the
squares of the errors, the differences between predicted and
actual rates. The lower the mean squared error, the better the

model’s predictions match the observed data. The R2 value,
noted as 0.93, represents the proportion of variance in the
obesity rate that is predictable from the independent variables

included in the model. An R2 of 0.93 suggests that 93% of the
variability in the actual obesity rates can be explained by the
model, which is a very high level of explanatory power. The

spatial pseudo R2, which is the adjusted R2 for spatial regression
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models, is 0.92, reinforcing the model’s strong predictive
capability while accounting for spatial dependencies.

Our study leveraged SLMs and DCNNs to predict obesity
prevalence across 1052 census tracts in Missouri, achieving an

R2 value of 0.93 and a spatial pseudo R2 of 0.92. These metrics
indicate that our models explained 93% of the variability in
obesity rates, demonstrating high predictive accuracy and
robustness in modeling obesity prevalence using geospatial and
DL methodologies.

In contrast, a similar study by Hales et al [25] used Visual
Geometry Group-CNN-F models to analyze obesity across 1695
census tracts in 6 cities, achieving varied results across the

different regions. Their overall R2 for the combined cities was
lower, explaining 64.8% of the variation in obesity prevalence
with a root mean square error of 4.3. Notably, the highest

individual city R2 was 73.3% for Memphis, which is
significantly lower than our study’s performance. Their study
also highlighted a weaker performance when using point of
interest data alone, which explained only 42.4% of the variation
in obesity prevalence, with a root mean square error of 4.3 across
all census tracts.

Our study’s superior performance is due to our use of a SLM
to handle spatial dependencies, using ResNet-50 for advanced
feature extraction from Sentinel-2 imagery, and focusing on
Missouri for a more tailored geographic analysis.

Discussion

Principal Findings
The results in Figure 6 and the Moran I scatterplot can help
spatially explain and predict obesity rates in Missouri using the
DNVFs by identifying clusters of areas with either high or low
rates of obesity. The positive Moran I value (0.68) suggests that
similar values are located near each other. This means that if a
certain census tract has a high obesity rate, it is likely that the
neighboring tracts also have high obesity rates and vice versa
for low rates. This pattern of spatial clustering is crucial for
public health planning because it can help identify hot spots
where interventions might be more necessary. For predictive
modeling, spatial autocorrelation needs to be considered to
improve the accuracy of predictions for obesity rates. Spatial
models, such as SLMs or GWR, can use this autocorrelation to
better understand and predict how obesity rates vary across
Missouri. These models can incorporate not just the obesity rate
of one area but also the context provided by surrounding areas,
which can significantly influence health outcomes.

The subparts shown in Figure 6 help explain and predict obesity
rates in Missouri. The Moran I scatterplot in Figure 7A identifies
not only regions with high or low obesity rates but also those
that deviate from the surrounding trend, which are crucial for
targeted public health interventions. The LISA map in Figure
7B provides an immediate visual understanding of the
geographic clustering of obesity rates, highlighting areas where
policy interventions or further research might be needed. Finally,
the choropleth map in Figure 7C allows researchers to observe

the actual prevalence of obesity and how it correlates with the
clusters identified through Moran I and LISA analyses.

These results, when combined with DNVFs extracted from the
ResNet-50 model using Sentinel-2 satellite imaging, can enhance
predictions and explanations of obesity rates. The ResNet-50
model, pretrained on ImageNet, can detect and analyze
environmental and physical features that correlate with obesity
rates. By integrating these features with spatial statistics,
researchers can develop more sophisticated models that account
for both the physical characteristics of the environment as
captured in satellite imagery and the spatial relationships of
obesity rates across the state. This multimodal approach allows
for a deeper understanding of the drivers behind obesity patterns,
which can inform more targeted and effective public health
strategies.

The high R2 and adjusted R2 values in Figure 7 indicate that the
SLM, which includes deep neural features extracted from the
ResNet-50 model using Sentinel-2 satellite imaging, is highly
effective in both explaining and predicting obesity rates. By
incorporating the spatial lag of obesity rates, essentially
considering not just the individual obesity rate of each area but
also the influence of adjacent areas, the model captures the
spatial autocorrelation inherent in the data. This consideration
is crucial because the prevalence of obesity can be influenced
by both location-specific factors and the characteristics of
neighboring regions.

The use of DNVFs from ResNet-50 means that the model is
leveraging complex, high-level features extracted from satellite
imagery that may correlate with environmental factors affecting
obesity rates, such as the availability of green spaces or the
walkability of neighborhoods. The model’s success, as indicated
by the scatterplot, demonstrates the potential for these advanced
ML techniques to capture and use subtle spatial patterns and
characteristics that contribute to public health outcomes.

Overall, the results depicted in this figure underscore the
model’s potential as a tool for public health officials and policy
makers. The ability to accurately predict obesity rates at a
granular spatial level can facilitate targeted interventions and
resource allocation, contributing to more effective public health
strategies and better health outcomes for communities across
Missouri.

Limitations
Despite the promising results, our obesity research study has
some limitations. First, the estimates of obesity prevalence from
the Behavioral Risk Factor Surveillance System rely on
self-reported measurements of height and weight, which are
subject to bias and often result in an underestimation of the true
rate of obesity [20,22]. Moreover, BMI fails to directly measure
body fat, which can differ based on gender, age, race, and
ethnicity. In addition, the risks of mortality and morbidity at a
given BMI may not be the same across various racial and ethnic
groups [23,24]. Variations in the timing between when the
obesity data and the satellite images are collected can also
introduce biases into our analysis.
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One of the primary limitations of our study pertains to the
dataset’s size and geographical coverage. The research was
confined to 1052 census tracts within the entire state of Missouri,
limiting the generalizability of the findings. Although these
tracts were selected to represent a diverse range of urban and
rural areas, they do not encompass other neighboring states or
the entire country’s varied demographic and geographic profiles.
Furthermore, the limited number of census tracts might not
provide a sufficiently robust dataset for more complex ML
models. The use of Sentinel-2 imagery, while innovative, was
also constrained by the number and resolution of available
images. This limitation potentially affects the accuracy and
granularity of the features extracted for obesity rate prediction,
particularly in areas where medium-resolution satellite imagery
was not available or was of lower quality.

Another significant limitation arises from the DCNN and
ResNet-50 features used in our study. While these methods are
state of the art in image analysis and feature extraction, their
effectiveness is inherently tied to the quantity and quality of the
input data. The pretrained ResNet-50 is not fully optimized for
the specific nuances of satellite image analysis related to obesity
rate prediction. Therefore, this study’s findings must be
interpreted with caution, acknowledging that the models used,
although advanced, might not capture the complete range of
factors influencing obesity rates as discernible from satellite
imagery.

Conclusions
Our study advances the field of spatial regression modeling by
integrating DNVFs with traditional models to analyze the
geographical distribution of obesity rates across Missouri. This

innovative approach, evidenced by high R2 values, not only
underscores the efficacy of incorporating ML in public health
analytics but also provides a methodological framework for
similar studies.

While our findings contribute significantly to understanding
the spatial dynamics of obesity, they are tempered by limitations,
such as the reliance on self-reported BMI data, which may
underestimate true obesity rates due to reporting biases.
Furthermore, the study’s focus on Missouri restricts its broader
applicability, suggesting the need for expanded geographic
research that includes more diverse populations and
environmental settings.

Future research should aim to incorporate longitudinal and
multiregional analyses, integrating additional variables, such
as socioeconomic status, access to health care, and urbanization
levels. These expansions will enable a more comprehensive
assessment of the factors influencing obesity and facilitate the
development of targeted, effective public health interventions.
In addition, we plan to expand our use of RS data by
incorporating high-resolution imagery and time-series data in
future studies. This approach will enable a more detailed
analysis of the dynamic changes in the built environment and
their impact on obesity rates, enhancing the precision and
applicability of our findings for public health strategies.

By addressing these limitations and exploring these future
directions, subsequent research can build upon our findings to
enhance the predictive accuracy of obesity prevalence models
and ultimately support more nuanced and effective public health
strategies.
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