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Abstract

Background: Conversational agents (CAs) are finding increasing application in health and social care, not least due to their
growing use in the home. Recent developments in artificial intelligence, machine learning, and natural language processing have
enabled a variety of new uses for CAs. One type of CA that has received increasing attention recently is smart speakers.

Objective: The aim of our study was to identify the use cases, user groups, and settings of smart speakers in health and social
care. We also wanted to identify the key motivations for developers and designers to use this particular type of technology.

Methods: We conducted a scoping review to provide an overview of the literature on smart speakers in health and social care.
The literature search was conducted between February 2023 and March 2023 and included 3 databases (PubMed, Scopus, and
Sociological Abstracts), supplemented by Google Scholar. Several keywords were used, including technology (eg, voice assistant),
product name (eg, Amazon Alexa), and setting (health care or social care). Publications were included if they met the predefined
inclusion criteria: (1) published after 2015 and (2) used a smart speaker in a health care or social care setting. Publications were
excluded if they met one of the following criteria: (1) did not report on the specific devices used, (2) did not focus specifically
on smart speakers, (3) were systematic reviews and other forms of literature-based publications, and (4) were not published in
English. Two reviewers collected, reviewed, abstracted, and analyzed the data using qualitative content analysis.

Results: A total of 27 articles were included in the final review. These articles covered a wide range of use cases in different
settings, such as private homes, hospitals, long-term care facilities, and outpatient services. The main target group was patients,
especially older users, followed by doctors and other medical staff members.

Conclusions: The results show that smart speakers have diverse applications in health and social care, addressing different
contexts and audiences. Their affordability and easy-to-use interfaces make them attractive to various stakeholders. It seems
likely that, due to technical advances in artificial intelligence and the market power of the companies behind the devices, there
will be more use cases for smart speakers in the near future.

(JMIR AI 2025;4:e55673)   doi:10.2196/55673
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Introduction

Background
In the context of ongoing public debates on artificial intelligence
(AI), dialogue systems or conversational agents (CAs) are
receiving increasing attention. Their potential applications are
being discussed in various fields, including health care [1,2]
and social care [3]. CAs have been used in both fields for several
years, but recent developments in AI have fueled the scientific
discourse [4,5]. The developments in the field of machine
learning and natural language processing (NLP), as well as the
success of commercially available CAs, such as Amazon’s
Alexa or Apple’s Siri, have been particularly decisive in this
regard.

The use of CAs is not limited to a single context; rather, they
are used in a variety of settings, including those pertaining to
the acquisition of information related to health [6]. CAs using
NLP offer a number of features that can be implemented in a
variety of health care and social care settings. The field of AI
has witnessed considerable progress in recent years, with speech
recognition (SR) and NLP advancing significantly. This has
enabled the processing of medical terminology in various
settings [7]. Although SR in health care has a long tradition
dating back to the 1980s, when initial attempts were made to
dictate doctor’s letters [8], CAs offer multiple additional
features. In the context of hands-free interaction, CAs have been
used for the purposes of medication reminders [9], symptom
management [10], documentation [11], or communication
between patients and nurses or doctors, covering multiple
medical fields. These include diabetes care [12], monitoring of
pregnant women [13], children with special health care needs
[11], hearing tests [14], cardiovascular disease [15], and the
support of persons with dementia, to name a few [16].

The Rise of Smart Speakers
The term “CA” is not clearly defined, and within the literature,
multiple synonyms are used interchangeably. These include
“virtual assistants,” “AI-driven digital assistants,” “voice-based
assistants,” “voice-controlled intelligent personal assistants,”
and others. In the study by Laranjo et al [1], the term “CA” is
defined as encompassing a range of technologies, including
chatbots, embodied CA, which involves a computer-generated
character such as an avatar, and smart conversational interfaces,
such as Apple’s Siri or Amazon’s Alexa. In order to characterize
CAs, the authors propose that it is necessary to differentiate
between the type of technology in question (eg, if the software
application is delivered through a mobile device or the
telephone), the type of dialogue management (finite-state,
frame-based, or agent-based), the actors with control over the
dialogue initiative (the user, the system, or a combination of
both), the input or output modality (spoken or written, or visual
in the case of the output), and whether the system is
task-oriented or not [1].

This paper is particularly interested in the use of CAs that are
embodied in a physical stationary artifact, which is referred to
as a smart speaker. Examples of such devices include Amazon’s
Echo and Apple’s HomePod. Smart speakers are typically
confined to a specific location and serve as a platform for a

smart conversational interface or AI-driven digital assistant that
can be operated through voice input. In the case of the Echo,
this is “Alexa”, while in the HomePod, it is “Siri”. Such
assistants are capable of fulfilling a range of tasks, including
answering simple questions, switching on lights in conjunction
with a smart home system, and playing music. The devices are
equipped with one or multiple microphones and software that
is capable of analyzing and generating spoken language. In
order to operate the devices, the user must utter a designated
wake word, such as “Alexa” or “Computer” in the case of
Amazon’s Echo [17].

The diffusion of smart speakers has been observed to be high
in private households in Europe and North America. Amazon
launched the first smart speaker in the United States in 2015.
As of 2022, approximately 35% of the total US population had
used smart speakers [18]. In comparison to the figures from
2019, this represents an increase of 11.1% [19]. A number of
studies conducted by market research companies in other
countries have reached similar conclusions. For instance, these
studies have found that 33% of internet households in the United
States, 34% in the United Kingdom [20], and approximately
12%-33% of all households in Germany own at least one smart
speaker [21,22].

A recent study by Gaspar and Neus [23] of smart speaker users
in the United States, United Kingdom, and Germany shows that
Amazon is still the current market leader (United States: 58%;
United Kingdom: 71%; and Germany: 68%) followed by Google
(United States: 34%; United Kingdom: 22%; and Germany:
25%) and other brands (United States, United Kingdom, and
Germany: 7%). It was also found that in all countries, at least
40% (United States: 46%; United Kingdom: 40%; and Germany:
44%) of respondents use smart speakers several times a day.
Participants were also asked about the attractiveness of certain
application scenarios, including medical diagnosis. Here,
participants gave high ratings: United States (19% very attractive
and 36% attractive), United Kingdom (12% very attractive and
34% attractive), and Germany (13% very attractive and 35%
attractive).

In light of the commercial success of smart speakers and the
aforementioned technological advantages in SR and NLP, there
has been a growing body of literature on smart speakers in
different health care and social care settings [1,24-27].
Commercial devices, such as Amazon’s Echo, offer a multitude
of features. These devices can be used without any direct
contact, are relatively inexpensive and easy to operate, and can
be customized and personalized by installing new applications
and features [28]. These factors have played a pivotal role in
the dissemination of the technology. Finally, the widespread
adoption of the technology was driven by the pandemic and the
subsequent shift in clinical practices toward greater reliance on
digital technologies [29]. Nevertheless, the pervasive use of
these devices has also given rise to a multitude of issues and
concerns, most notably data collection, storage, and protection
[8].

Hence, the devices have attracted increasing attention, with
several reviews on CAs in health care settings having been
published recently. Each of these reviews has a specific focus:
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these include, for instance, design and evaluation challenges
[30], effectiveness and usability [31], or chronic conditions
[32,33]. To the best of our knowledge, no review has been
conducted to date that specifically examines the use of smart
speakers within health care and social care settings.

As evidenced by the current state of research, smart speakers
are becoming increasingly prevalent in the field of health care
and social care. However, there is currently no systematic review
available that specifically investigates use cases, settings in
which the devices are used, or target groups. To address this
gap, our main research question is as follows: What are the
scenarios of the use of smart speakers in health care and social
care? To address this research question, the main aim of this
paper is to present a review of the current research on the use
of smart speakers in health care and social care.

Methods

Overview
In order to provide an overview of the existing literature on
smart speakers in health care and social care, we conducted a
scoping review. The main aim of this approach is to observe,
synthesize, and understand current trends [34]. In contrast to a
systematic review, which is more suitable for the presentation
of a specific clinical question or the presentation of evidence
for practice, a scoping review is particularly suitable for
identifying features and concepts. Furthermore, it does not aim
to provide a synthesizing result for a specific question but rather
to provide an overview of a specific topic [34,35]. Thus, the
scoping review is a particularly suitable instrument for analyzing
the research interest. This encompasses the identification of the
nature of the literature, the collation of information on key
topics, and the identification of knowledge gaps [35]. Its
methodological framework was first published by Arksey and

O’Malley [36] and later adapted by Levac, Colquhoun, and
O’Brien [37]. Contrary to a systematic review, search terms can
be adjusted along the process of a scoping review [36,38]. For
the conduction of the present review, the guidelines of Peters
et al [39], the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) [40] and its extension for
Scoping Reviews (PRISMA-ScR) [41] were followed. The
results were presented according to the PRISMA checklist
(Multimedia Appendix 1).

Search Strategy and Selection Criteria
The literature search was conducted between February 2023
and March 2023. This included a systematic literature search
of 3 databases (PubMed, Scopus, and Sociological Abstracts)
and a cross-search of the first 20 pages of Google Scholar. This
was supplemented by tracing reference lists for further relevant
studies. We used the program Citavi 6 for literature
management. The review protocol is available on request from
the authors. The following keywords were applied in varying
combinations and spellings for the systematic search (Table 1):

1. Technology: Here, several terms described above that are
found in the literature on CA were used. As the focus of
this review is on smart speakers, the search was restricted
to this specific type of CA.

2. Product name: As smart speakers were introduced to the
market by major American information technology
companies, which often use the product names as synonyms
for the product, we also included the product or brand names
in our search. Globally, Amazon, Google, and Apple are
the 3 leading manufacturers; therefore, we included the
names of their brands in our search [42].

3. Setting: In order to ensure the most comprehensive search
results, we elected to limit our search to the 2 domains of
health care and social care without imposing any further
restrictions.

Table 1. Keywords used in the literature review.

SettingVendor, brand, and productTechnology

Health careAmazon AlexaSmart speaker

Social careAmazon EchoVoice assistant

CareApple HomePodVoice-based assistant

NursingApple SiriVoice-controlled assistant

—aGoogle HomeArtificial intelligence–driven digital assistant

—Google NestConversational agent

——Virtual assistant

aNot applicable.

The terms were linked using Boolean operators. Multiple
combinations of the search terms were used using different
operators (Multimedia Appendix 2).

To select studies relevant to our research interest, we defined
the following inclusion criteria for the full-text screening: (1)
publications that were released after 2015, as this was the year
in which the first commercial smart speaker was introduced to
the market, and (2) the use of a smart speaker in health care and

social care settings. No restrictions were placed on the specific
setting, including hospitals or long-term care facilities.
Furthermore, articles were included in which the devices were
not implemented in real settings but were developed for specific
settings. Studies were excluded if they met one of the following
exclusion criteria: (1) papers that do not report on the specific
devices that were used (for instance, in some cases, the authors
described the use of a personal assistant without explicitly
indicating the specific device on which the assistant was
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operational), (2) studies that did not specifically focus on smart
speakers (this encompasses the development of voice-operated
applications for use on smartphones or tablets), (3) systematic
reviews and other forms of literature-based publications, and
(4) articles not published in the English language.

Process of Study Selection and Data Extraction
We first screened the titles and abstracts for relevance by both
authors. No exclusion criteria were applied to the type of
publication during the title and abstract search. Should the title
or abstract screening indicate the use of a smart speaker in a
health care or social care context, the articles were deemed
eligible for full-text screening. For the title and abstract
screening, as well as the full-text screening, the same 2 authors
reviewed each article independently in order to decide on its
inclusion or exclusion. In the event of conflicting decisions
regarding inclusion or exclusion, the authors attempted to reach
a consensus through discussion. As there was no disagreement,
there was no need to involve a third party. The data extraction
table contains the following information about each article: (1)
authors, (2) year of publication, and (3) country of publication.
Furthermore, data were collected on the product and the use
case. Furthermore, the following aspects were considered: the
settings, the target groups, the motivation for using smart
speakers, and the limitations of using such a device. As the
primary focus was not on methodological aspects, and due to
the heterogeneity of the included literature (some described
only technical development while others also included user
testing and the often-limited reporting of methods), no such
information was collected. The articles included were subjected
to qualitative thematic analysis in accordance with the

methodology outlined in [43]. Using Kuckartz’s [43] approach
to qualitative thematic text analysis, researchers identify codes
through analysis based on the data gathered. During the process,
these codes are then refined. Researchers then identify themes
or categories that represent the main findings of the analysis.
Identifying themes is a process of examining patterns and
similarities between codes and then relating the themes to each
other. Consequently, all papers included were read and re-read
by both authors, with initial codes being identified. The codes
were then compared by the authors, discussed, and grouped into
themes. In particular, this included an analysis of the motivation
for using the devices and the limitations encountered during the
research and development process.

Ethical Considerations
Given the nature of the study, there were no direct interactions
with human participants, and thus, no participants to recruit or
consent, and no institutional ethical approval was required.

Results

Overview
In total, our search yielded 1975 articles. After removing 316
duplicates, 1659 titles and abstracts were screened by the 2
reviewers. The screening of titles and abstracts resulted in the
exclusion of 1571 records, leaving 88 full texts to be assessed
for eligibility. Of these, 61 articles were excluded, resulting in
a final pool of 27 articles for analysis (Figure 1). The data
extraction table for the articles included can be found in
Multimedia Appendix 3 [3,9,13-15,44-65].

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of the search process.
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Year and Country of Publication
The majority of articles included in the analysis were published
in the United States (n=15 [9, 15, 39, 45, 46, 49, 51, 53-57, 61,
63, 65]), followed by the United Kingdom (n=4 [3,13,43,62]),
North Macedonia (n=2 [58,59]), and Australia (n=2 [52,64]).
All articles were published between 2018 and 2022, with 2021
being the year with the highest number of publications, with 11
articles.

Technology
There was a clear preference for the devices used: Amazon
products were used in 23 of the articles, followed by Google
(5). A total of 3 papers used a prototype. It should be noted that
some articles used devices from several companies. We found
2 types of articles: Those that use the devices, including the
infrastructure (eg, frameworks) provided by the developers, and
those that mainly use the hardware (eg, for heart rhythm
monitoring; Multimedia Appendix 3 [3,9,13-15,44-65]).

The devices were found to be used In 3 main ways: (1) as
standard smart speakers without any further modification, for
example, to communicate with patients or to support people
living alone (for instance, [44,47]); (2) to develop a skill for a
specific use case or multiple use cases (for instance, [48]); and
(3) to use the smart speaker and, in some cases, the skill to feed
information into another system or as a communication device
for other systems (for instance, [15]).

Settings and Target Groups
Given the diverse range of health care and social care settings,
we have defined the following categories (Textbox 1). It should
be noted that not all articles reported the testing of smart
speakers in real health care and social care settings. In some
cases, applications were tested in laboratory environments. In
the event that this was the case, the intended setting was coded.

Textbox 1. We used the following settings within the domains of health care and special care.

Private homes

• The private living environment includes a person’s own home.

Hospitals

• This setting covers acute care hospitals as well as urgent care centers.

Long-term care facilities

• This category includes all settings in which long-term care is provided, for example, nursing homes or rehabilitation centers.

Outpatient services

• This category covers specialized outpatient services, for example, dental or pain management clinics.

Other

• In case the device was tested in a setting not matching the definition of the ones listed above, we categorized it as “other.” For instance, this could
be in a car.

Furthermore, 4 target groups were identified. It should be noted
that an article can have several target groups, including (1)
patients, (2) medical staff members such as physicians, (3)
nurses and professional caregivers, and (4) informal caregivers
who provide unpaid help to a friend or family member.
Moreover, category (5), “other,” was defined for all target
groups not matching any of the aforementioned. It should be
noted that multiple target groups were covered in one article.
Only those who directly interact with the device were included.
For instance, Domínguez et al [50] developed a system to
support assisted reproduction treatment. Although physicians
are involved, only the patients interact with a smart speaker and
hence were included.

The most prevalent setting mentioned in the studies included
was home care (n=20), followed by hospitals (n=6). Outpatient
care (n=3) was less frequently observed (Multimedia Appendix
3 [3,9,13-15,44-65]). In one instance, the setting was not
specified [14]. However, it is best classified under home care.

Among the target groups, patients are the most frequent users
mentioned in 23 of the articles (Multimedia Appendix 3

[3,9,13-15,44-65]). Older adults, in particular, were often seen
as a promising target group, and we found that 11 of the included
publications focus on this target group [66] (Multimedia
Appendix 3 [3,9,13-15,44-65]). While some articles included
descriptions of the development and testing of skills specifically
designed for older adults [51,52], others explored the general
acceptance and potential of the technology for older adults. For
instance, Lee et al [51] developed multiple skills aimed at older
persons, including a reminder to take medication, a diet tracking
system, and a skill alerting caregivers in case of a fall. Nallam
et al [49] simulated a CA to answer health-related questions
asked by older persons. O’Brien et al [47] used off-the-shelf
devices without any form of modification to investigate the
effects on home-bound older adults with social isolation. The
participants used the devices for a variety of purposes, including
monitoring their health and well-being, as well as for emergency
communication. Some authors report that older adults constitute
the largest group of first adopters of smart speakers. In addition,
smart speakers allow easy contact with caregivers [12] or
low-threshold access to health information [13]. Older adults
as potential users of CA have been the focus before [39,67,68].
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The second most frequent target group was physicians (n=11),
followed by other health professionals (eg, nurses; n=9) and
informal caregivers (n=1; Multimedia Appendix 3
[3,9,13-15,44-65]). These results demonstrate that the majority
of articles focus on supporting nonresidential care.

Table 2 provides an overview of all settings and target groups.
It is important to note that a single paper can include multiple
settings and target groups.

While previous statements covered the number of papers
included in the review, Table 2 combines user groups and
settings across the studies covered. It shows that patients are
the most common target group, while home care is the most
common setting.

Table 2. Settings and user groups.

TotalOtherInformal caregiversNurses and so onOlder adultsPhysiciansPatients

4411711519Home care

11002054Hospitals

6001122Outpatient care

1110121225Total

Use Cases
We found several use cases covering, among others, hearing
tests [14], cardiovascular diseases [15,46], pregnancy companion
[13], cancer management [eg, 58,59], or medication reminders
[69]. It must be noted that several articles reported that smart
speakers were used in multiple use cases. For example, Wright
[70] describes that a local authority was involved in developing
applications, including “a Skill that prompted users to take their
medicine; a Skill that helped to record and manage care tasks;
a Skill to facilitate communication with caregivers by recording
messages; and a Skill to connect users to a trusted LA directory
of services” [44]. Jadczyk et al [71], who developed a
voice-enabled automated platform for the collection of medical
data from patients with cardiovascular disease, describe 5 use
cases within their study: (1) education, (2) process optimization,
(3) patient support, and (4) data collection, and (5) medical
device grade solutions (eg, diagnose and treatment). The devices
were used to open patient files and images, initiate conference
calls, or record images and videos [4].

While most of the identified use cases were found in the domain
of health care, social care played a subordinate role. Still, we
found several articles reporting on the use of smart speakers in
this domain. Within this field, elderly care was the most relevant
area. For instance, O’Brien et al [47] use a smart speaker to
reduce loneliness and social isolation among older adults living
at home. Palumbo et al [72] developed personalized coaching
for older individuals to increase their well-being by aiming at
the areas of physical activity, nutrition, cognition, and social
relationships. In the domain of social care, older adults living
at home or care home residents were the main user group (eg,
[3]).

Motivation for Use
The reasons for using smart speakers in health care are framed
with various arguments. Besides their low acquisition costs
[51], this also includes aspects applying to digital technologies
in health care and social care in general, such as the possibility
to deliver care remotely without restrictions in time and space
(eg, Sadavarte et al [13]). Another motivation is the fact that
smart speakers are already widely accepted as a consumer

technology [45,52]. Hence, users already know how to operate
the devices and are also familiar with their limitations. Other
aspects cover potentially increased productivity across the use
cases that we identified. For instance, Bhatt et al [45] used a
voice-based assistant to access and update an electronic health
record. They see advantages in terms of efficiency (less time
spent on data input) and accuracy, as speech-to-text might result
in fewer errors. Ultimately, this might also benefit patients as
waiting time is reduced [45]. Jadczyk et al [71] highlighted the
main potential in the possibility of automating traditional
telehealth services: “Voice chatbots can support routine care
through automatic at-home monitoring, triaging, screening,
providing medical recommendations and guidelines, and
improving operational workflow” [15,71].

Another advantage is the user interface, which is easy to
navigate [11]. Cheng et al [55] argue that the main advantage
of the technology is that it: “eliminate[s] the struggles that are
associated with strictly tactile screens.” (2018); or that
human-like verbal communication that feels more natural and
intuitive and particularly that the devices can be used hands-free
[55]. Jansons et al [52] drive on the research of Foehr and
Germelmann [73] and argue that the devices “may enhance
adherence to remotely-delivered exercise interventions […],
because the human-like attributes associated with these
technologies may elicit a sense of familiarity, social presence,
and human engagement” [52]. Moreover, the authors see this
as an advantage for older users [53] who support this viewpoint
and argue that “digital non-natives” might be especially
benefitting from this technology. For instance, Kim [4] tested
the experiences of older adults who used the devices for the
first time and found that due to the simple interaction,
health-related questions were a typical use case.

The form of smart speakers and their design were mentioned
in some publications. Gouda et al [74] saw the fact that smart
speakers are “non-invasive” technology as a main advantage.
As the devices can be placed nearly anywhere in the room and
can be operated without the need to see them, it allows for new
ways of interaction. Luo et al [56] also see a benefit in the fact
that the immobility of the devices is as helpful as this helps, in
contrast to mobile phones, in establishing habits and routines.
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Wright [44] describes the use of smart speakers in trials run by
local authorities in England. Drawing on interviews with
managers from 8 English local authorities, benefits are seen in
the low-cost supplement or alternative to telecare. Or, as one
of his interview partners put it: “have the advantages of being
sophisticated and powerful, relatively cheap, already widely
used and familiar, designed with a degree of accessibility and
intuitive use in mind, and a growing level of interoperability
with other networked digital devices aided by an open
development framework” [44]. One of the results of the study
is that local authorities chose Amazon’s Echo because of
“councils facing depleted funds, a lack of expert guidance on
care technologies, and an increasingly complex and fragmented
care technology marketplace” [44].

Limitations of Smart Speakers
In addition, various limitations of the technology were addressed
in the included articles. Here, most technical limitations were
named (1) insufficient hearing comprehension [57], speech
recognition [51], or emotion recognition [54]; (2) that there is
no interruption of the recording during slow speeches allowed
[14]; (3) difficult functioning in the natural living environments
due to interfering noises [3]; (4) that the correctness of the
answer is not always accurate [51]; and (5) that the devices
allow longer conversations [49]. Internet access must also be
provided [48,75]. Besides these technical aspects, there were
also social aspects mentioned. This covered the (lack of) user
acceptance, particularly among older users and professional
caregivers [45,76], but also their lack of basic digital skills [75].
These supposedly low digital skills might lead to challenges in
interacting with the devices. Users might forget the wake word,
there may be timing issues when communicating with the
devices, or they might have difficulties in setting up the devices
[47,53]. Another issue that was mentioned regularly was data
protection. Here, the misuse of sensitive data is particularly
pointed out. For example, if security measures are inadequate,
it would be possible to manipulate the medication and thus
actively harm the patient [12]. Cheng et al [55] also argue for
multimodal solutions as people might feel uncomfortable talking
to devices in front of other people.

Discussion

Principal Findings
Our aim was to identify use cases and scenarios in which smart
speakers can be used within health care and social care. The
results show that smart speakers are used in various contexts
and for multiple reasons. The main features used are NLP and
hands-free interaction. Moreover, the fact that the technology
is widely used in private homes and hence many persons are
used to interact with the devices are important aspects. In
addition to offering relatively inexpensive hardware, smart
speakers and the companies behind them provide software
frameworks and infrastructure, such as Amazon’s skill, which
assists developers in the design and marketing of their products.

It is important to note that there is no clear definition of smart
speakers. One challenge of this study was the varying definitions
of the technology, with the term often being used
interchangeably with personal assistants such as Siri or Cortana.

These assistants play an important role in the use of smart
speakers, which arguably only serve as a shell equipped with
microphones and loudspeakers for them. However, we argue
that smart speakers should be considered a distinct technology.
Based on this review, we understand smart speakers as a type
of CA bound to a fixed location. Within the field of health care
and social care, the technology can be used in various settings
and use cases such as communication, documentation, or
diagnosis and therapy of diseases hands-free. Smart speakers
are equipped with microphones and loudspeakers and connected
to the internet. They usually come with an integrated digital
assistant, but even without such an assistant, they offer multiple
features that can be used across various settings. Smart speakers
can be customized using either skills or apps that can be installed
on the devices.

The results show that all publications were published between
2018 and 2021. Furthermore, the majority were published in
the United States. The following explanations can be given for
these 2 results. Alexa was the first voice assistant that was
compliant with the Health Insurance Portability and
Accountability Act (HIPAA), allowing it to be the access
example of clinical records. In England, the National Health
Service contracted with Amazon to enable Alexa in 2019 to
answer health-related questions, raising questions about privacy
and how health care data would be used [44,45]. The HIPAA
compliance and the fact that the National Health Service
contracted with Amazon explains why most studies have been
carried out in the United States and the United Kingdom.
Arguably, European countries are not as present due to more
strict data protection regulations. Moreover, the use of smart
speakers is significantly higher in the United States than in other
countries, which in turn could also be related to data protection
regulations [77]. Interestingly, Asian countries have, with few
exceptions, also not been represented in the included articles.
This seems counterintuitive as, in terms of market sales, smart
speaker technology by Asian technology companies is more
and more successful [42].

It also became clear that the devices were clearly dominant in
the publications. This should be criticized from a scientific point
of view. We were able to identify the following explanations
for this result.

Since Amazon entered the market in 2015 and continuously
updates its product line, off-the-shelf devices have recently
increased in terms of market penetration, making them more
popular for research and development. That Amazon’s Echo
was used in the vast majority of articles included comes as no
surprise, and Amazon’s market dominance is based on several
factors. First, the company was the first to release a smart
speaker to consumers. Second, Amazon’s voice assistant, Alexa,
has been embedded in a broad range of devices, including wall
clocks, by third-party manufacturers. Third, Amazon sells
products of the Echo family at comparably low prices, starting
at around US $20. Fourth, Amazon offers an infrastructure
through its Skill Store and several frameworks for developers.
Fifth, in the United States, the Echo is HIPAA-compliant.

The dominance of Amazon’s smart speaker in the included
papers poses several risks depending on the use case, some of
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which are discussed in the papers themselves. In terms of the
devices themselves in their off-the-shelf version, the interaction
is limited. For example, Nallam et al [49] used a smart speaker
prototype as they argue that developed solutions often do not
support conversational interactions and explore scenarios that
are not yet supported.

The articles included in this publication address a diverse range
of use cases across various settings, thereby demonstrating the
versatility of smart speakers and the technology of NLP and AI
incorporated in them. This technology can be used in a multitude
of contexts within the domains of health care and social care.
Overall, 2 general use cases can be distinguished: (1) supporting
patients and their relatives in their private living environments
and (2) supporting professional health care workers in clinical
settings. As the devices were originally developed for private
home environments and primarily for entertainment and
e-commerce applications, it is unsurprising that this setting was
the dominant one across the papers included in this review. This
could be seen as an indicator of the restructuring of health care
services, with an increased focus on the private living
environment. Several clinical use cases supported by smart
speakers could be automated and not be restricted to clinical
settings (eg, [14,48]). Only in a few cases does the paper focus
on clinical use cases and professional personnel (eg, [4,45,71]).

That patients, and particularly older adults, were the main target
group supports this conclusion. Moreover, this also underlines
that the role of patients and practices of health and care change
against the background of digitalization and the use of AI [78].
While some of the use cases identified were exclusively
designed for clinical settings, the majority can, in theory, be
implemented in multiple settings. This could support patient
empowerment, as smart speakers can be used to support the
household as a central place of health care. An argument
supporting the fit of the devices for older adults is that smart
speakers do not require “reasonable levels of vision and manual
dexterity” [79,80].

A key rationale for using the devices is not only their
competitive pricing but also the potential to reduce expenditure
by enhancing the efficiency of staff members and care processes,
for instance, through enhanced documentation or facilitating
straightforward communication with patients, colleagues, or
clients. Although the majority of the papers reviewed argue that
smart speakers could provide such benefits, these potential
benefits depend on several circumstances. The first is whether
the devices can be installed as they are or whether new skills
or, more complexly, additional hardware or modifications are
required. This depends on the use case and also the target group.
Although many people are used to interacting with the devices,
older adults might not have any experience and could need
training.

The majority of the papers in our sample can be classified as
exploratory in nature. The research designs used are
predominantly qualitative, with sample sizes that are relatively
small and no long-term studies conducted in real-world
scenarios. This underscores the fact that the technology itself
is still relatively new, particularly within the context of health
care and social care. In addition, researchers and developers are

still exploring the technology’s potential applications in health
care and social care, which may have become more apparent in
the context of the pandemic. Both sectors are currently
experiencing financial strain due to rising expenditure and a
shortage of qualified personnel [81]. New technologies are
frequently viewed as a potential solution to these challenges
[70].

Smart speakers and digital voice assistants like Alexa are quite
limited in terms of their initial dialogue management, which
can be seen as an important motivator to using the systems as
they are easier to develop and control. This finding is in line
with a systematic review of CA in health care carried out by
Laranjo et al [1]. The authors could identify 17 articles using
14 different CA. Most papers covered by the review evaluated
task-oriented CA that aims at supporting patients and clinicians.
Systems allowing the management of complex dialogues were
only identified in 1 case. Even though conversational systems
have proven to be beneficial for health-related purposes, most
assistants allow only constrained user input (eg, multiple-choice
answers) [1,82]. Clark et al [83] argue that users interact in
“clearly delineated task-based conversations” and “fall short of
reflexive and adaptive interactivity.” According to the authors,
the term conversation is “a poor description of the current
interaction experience” with an AI using common smart
speakers [83]. Hence, they suggest testing “human-agent
interaction as a new genre of conversation, with its own rules,
norms and expectations” [83]. The devices have only a limited
capability to actually be able to engage in a conversational
dialogue. Conversations are task-oriented instead of offering
interactions initiated by the user and not by the device. While
this might be true, it seems to be only a matter of time before
future updates might be used to allow more natural dialogues,
as is already the case with generative AI such as ChatGPT.

The analysis showed that change in existing practices and
routines is an important aspect. Drawing on Sezgin et al [84],
Capasso and Umbrello [85] argue that the novelty of CAs is
that they act as “intermediaries between the health care system
as a whole and the public,” changing practices in health care
and social care. Here, several studies follow the normative aim
to implement innovative technologies in order to improve
processes and outcomes. The use of smart speakers—or CAs
in general—follows a technology-driven approach. Already
existing technologies are transferred to the domains of health
and social care. Due to the exploratory design of most studies,
the emphasis is put on the technology and not on the context,
like organizational or social factors. The logic of a “fitting”
technology seems to be a main driver of many studies,
neglecting the analysis of potentially changing social practices.

The dominance of Amazon in our sample has to be seen from
a critical perspective. The company itself began offering the
service Alexa Together and was able to emulate existing
approaches and leverage its financial and market clout to
challenge competitors. Moreover, developers depend on the
technology, that is, the hardware and also the software
frameworks of one company. As a consequence, the dominant
position of Amazon might increase due to research using the
company’s products. If only one product from a particular
company is examined, the capabilities of other products are not
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taken into account, as they may perform better, for example,
and might be used to copy promising applications.

Limitations
This paper has several limitations. First, the number of databases
searched. To address this limitation, a cross-search was
performed in Google Scholar to rule out the possibility that
important articles were not found. In addition, to broaden the
search strategy, other forms of literature, such as trial reports,
could be included in future studies. For instance, a few trials
using smart speakers are registered on clinicaltrials.gov.
However, we decided not to include these as they did not
provide all the information we wanted to obtain (eg, motivations
for using the devices). Second, we restricted our search to the
English language only. Few papers were found from the Asian
region, probably due to the language limitation of the search.
This limitation was mitigated by using brand names as search
terms focusing on the brands with the highest market share.
However, as recent market research shows, there is a shift
toward products developed in Asian countries, and future studies
should include a wider range of brands and products. Another

limitation is that we only looked at smart speakers, which
excludes other voice assistants that use essentially the same
technology (such as digital assistants on smartphones and
tablets). We deliberately excluded these as this review focused
specifically on smart speakers as a form of CA, and we argue
that the technology of smart speakers needs to be seen as a
technology in its own right.

Conclusion
In this paper, a scoping review was conducted on the use of
smart speakers in health care and social care settings. The
analysis showed that—due to the widespread use of devices
like Amazon’s Echo—smart speaker technology has been tested
and implemented in various settings and use cases in the health
and social care sectors. The main setting was the private home
environment, and the main user group was patients. There are,
however, also approaches to making use of the technology in
other settings, such as hospitals. It seems likely that due to
technical progress in the field of AI and the market power of
the companies behind the devices, there will be more use cases
of smart speakers in the (near) future.
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Abstract

Background: Living kidney donation (LKD), where individuals donate one kidney while alive, plays a critical role in increasing
the number of kidneys available for those experiencing kidney failure. Previous studies show that many generous people are
interested in becoming living donors; however, a huge gap exists between the number of patients on the waiting list and the
number of living donors yearly.

Objective: To bridge this gap, we aimed to investigate how to identify potential living donors from discussions on public social
media forums so that educational interventions could later be directed to them.

Methods: Using Reddit forums as an example, this study described the classification of Reddit content shared about LKD into
three classes: (1) present (presently dealing with LKD personally), (2) past (dealt with LKD personally in the past), and (3) other
(LKD general comments). An evaluation was conducted comparing a fine-tuned distilled version of the Bidirectional Encoder
Representations from Transformers (BERT) model with inference using GPT-3.5 (ChatGPT). To systematically evaluate ChatGPT’s
sensitivity to distinguishing between the 3 prompt categories, we used a comprehensive prompt engineering strategy encompassing
a full factorial analysis in 48 runs. A novel prompt engineering approach, dialogue until classification consensus, was introduced
to simulate a deliberation between 2 domain experts until a consensus on classification was achieved.

Results: BERT and GPT-3.5 exhibited classification accuracies of approximately 75% and 78%, respectively. Recognizing the
inherent ambiguity between classes, a post hoc analysis of incorrect predictions revealed sensible reasoning and acceptable errors
in the predictive models. Considering these acceptable mismatched predictions, the accuracy improved to 89.3% for BERT and
90.7% for GPT-3.5.

Conclusions: Large language models, such as GPT-3.5, are highly capable of detecting and categorizing LKD-targeted content
on social media forums. They are sensitive to instructions, and the introduced dialogue until classification consensus method
exhibited superior performance over stand-alone reasoning, highlighting the merit in advancing prompt engineering methodologies.
The models can produce appropriate contextual reasoning, even when final conclusions differ from their human counterparts.

(JMIR AI 2025;4:e57319)   doi:10.2196/57319
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Introduction

Background
Kidney transplantation is the gold standard treatment for patients
with end-stage renal disease [1] and can be much more
cost-effective than dialysis [2]. Record numbers of transplants
have taken place in recent years, but a shortage of donors
continues to exist despite the recent increase [3]. Currently, the
median wait time for a transplant is approximately 4 years in
the United States, and approximately 5000 patients die every
year while being on the transplant waiting list [4]. Living donor
kidney transplantation (LDKT) generally provides better
outcomes than deceased donor transplants but requires that a
potential living donor be made aware that they can donate to a
specific patient with end-stage renal disease and offer to do so.
Racial or ethnic minorities and patients of lower socioeconomic
status are less likely to pursue and have living donors donate
on their behalf [5,6].

National attitudes about LDKT are generally positive, although
many do not know what a living donor undergoes when donating
a kidney [7-10]. Recommendations to increase the living donor
pool include reaching out more broadly to locate generous
individuals motivated by social good to engage more individuals
in considering living donation [11]. In addition, research
suggests that disseminating education and information about
living donation to broader audiences, beyond transplant centers,
might increase the numbers of potential donors and recipients
pursuing living donation [12,13]. However, identifying
individuals dealing with kidney disease and considering whether
to pursue LDKT or donate kidneys in their own lives can be
difficult, especially when they have not started medical
evaluation at a transplant center.

Locating individuals through social media forums discussing
living kidney donation (LKD), such as those on Reddit or
Twitter (the work herein was done before the platform being
rebranded as X), maybe a way to identify individuals who are
actively deciding whether to pursue LDKT or LKD outside of
transplant centers [14]. While there are many different types of
questions and comments related to LKD shared on the web,
some people share their personal experiences and even invite
people to “ask me anything.” These findings motivated our main
hypothesis that potential living donors can be identified from
social media communities engaged in general discussions about
LKD. In addition, understanding the personal experiences shared
on these platforms can provide valuable insights into potential
donors’ needs and decision-making, enabling education and
media campaigns to be better tailored for them.

The large volume and high complexity of unstructured natural
language require an effective and efficient method that can

automate the identification of people sharing personal
experiences with LKD. Fortunately, recent advances in natural
language processing (NLP), particularly the transformer
mechanism [15-19], enable the automatic understanding of
personal experiences that were shared on the web social
platforms. This study aimed to evaluate the transformer-based
techniques to categorize these experiences on Reddit (Reddit,
Inc). Specifically, we aimed to evaluate and compare (1) the
one-shot classification model Bidirectional Encoder
Representations from Transformers (BERT) [19], which required
that we fine-tune the model using 1268 well-labeled samples,
and (2) the zero-shot classification model ChatGPT (OpenAI),
which required no fine-tuning for classification purposes.
Comprehensive discussions on transformer-based models can
be found in the study by Acheampong et al [20]. Much has been
written about the capabilities and limitations of ChatGPT
specifically [21]; however, we investigated the importance of
prompt engineering when interfacing with it and other generative
models applied to the field of organ donation for the first time.

Overview of Prompt Engineering
Prompt engineering has been defined as “the means by which
LLMs are programmed via prompts” [22]. Reynolds and
McDonell [23] framed the objective of prompt engineering as
a discipline that seeks to answer the question, “What prompt
will result in the intended behavior and only the intended
behavior?” Historically, the best practice has been to give a
small number of examples of how the task is to be done, known
as few-shot prompting. Ray [21] suggested that for large
language models (LLMs), few-shot prompting is better thought
of as “locating an already-learned task rather than
meta-learning.” The implication is that the LLMs are large and
robust enough that the models are inherently capable of
completing NLP tasks, but their scale of capability may require
using examples to “activate” the right parameters that will carry
out the desired task in the prescribed manner.

However, this flexibility should also be understood as having
dangers because LLMs can be “jailbroken.” Jailbreaking LLMs
is the practice of using prompt engineering to work around the
boundaries imposed by the developers, such as OpenAI [24].
The practice of “red-teaming” is used by developers to identify
weaknesses in the desired boundaries and adjust the model so
that it is more defensible against previous vulnerabilities [25,26].
What is simultaneously exciting and problematic about this is
that many techniques used to jailbreak LLMs are the same as
those used for their most helpful, intended uses, that is, many
of the same methods that allow us to get the best performance
from an LLM can be the same ones that are used to bypass the
safeguards. Table 1 provides an overview of prompt engineering
methods derived primarily from the study by White et al [22].
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Table 1. Overview of prompt engineering methods proposed by White et al [22].

Example prompts for LKDaPurposeMethod

“Here is an example of a risk analysis from a living kidney donation sce-
nario: [EXAMPLE]. Now, please provide a risk analysis for the following
scenario.”

Provide examples that illustrate how
the task is to be completed

Few-shot prompting

“For this conversation, ‘LKD’refers to living kidney donation, ‘DT’ refers
to donor testing and ‘RC’ refers to recipient compatibility. Using this
shorthand, describe the typical process of LKD.”

Create a shorthand notation, abbre-
viated language, or set of standard
rules

Meta-language creation

“I’m working on an algorithm to match donors with recipients in living
kidney donation. What information do you need from me to help design
this algorithm?”

The LLMb will ask questions to ob-
tain the information

Flipped interaction

“Pretend you are a leading surgeon specializing in living kidney donation.
Provide your expert opinion on the latest surgical techniques.”

Assign a persona to the LLM, usual-
ly that of an expert

Persona

“I need to write code to analyze the success rates of different kidney
matching algorithms. Could you suggest a more refined question or spe-
cific details you need to assist me?”

Ensure that the LLM suggests better
or more refined prompts

Prompt refinement

“Describe three different methods for assessing donor-recipient compati-
bility in living kidney donation.”

Ensure that the LLM offers alterna-
tive ways of accomplishing the task

Alternative approaches

“To understand the ethical considerations in living kidney donation, what
additional questions should I ask you to provide a comprehensive analy-
sis?”

Subdivide a question into additional
questions for a better answer

Cognitive verifier

“After explaining the current trends in living kidney donation, list the facts
or data sources you used in your response.”

Mitigate model hallucination by
listing the facts

Fact checklist

“Please answer in the following format: ‘Living kidney donation is bene-
ficial because [REASON 1], [REASON 2], and [REASON 3]’.”

Ensure that the LLM’s output fol-
lows a precise template

Template

“Let’s play a matching game. I will describe a recipient, and you suggest
a suitable donor from the provided pool based on living kidney donation
criteria.”

Create a game around a given topicGameplay

“Explain the process of donor selection in living kidney donation in a step-
by-step manner, detailing the reasoning behind each step.”

Explain the rationale behind the
given answers

Reflection (chain of thought [25])

“If you cannot provide personal patient data in living kidney donation,
please guide me on how to rephrase my questions to obtain general infor-
mation.”

Help users rephrase a question when
they are refused an answer

Refusal breaker

“When discussing living kidney donation statistics, please consider only
data from the last five years in the European region.”

Enable users to specify or remove
context

Context manager

“I have patient medical records, compatibility testing results, and surgical
schedules. Provide a sequence of steps to create an optimal living kidney
donation matching algorithm.”

Provide a sequence of steps given
some partially provided ingredients

Recipe

aLKD: living kidney donation.
bLLM: large language model.

Reflection and chain of thought reasoning, in particular, have
garnered much attention due to their powerful results, creating
what is already becoming a niche corner of research [27,28].
At the time of writing this paper and to the best of our
knowledge, the 2 most recent and powerful of these
improvements are the methods known as self-consistency [29]
and the tree of thoughts [30]. The former uses majority voting
from multiple replications, and the latter takes an ensemble
approach to the chain of thought reasoning and allows LLMs
to consider multiple different reasoning paths and to perform
self-evaluation on choices. Other methods naturally exist beyond
what is contained in this study because of the unbounded human
imagination, which makes the domain of prompt engineering
quite an exciting frontier. Interested readers may find the website
[31] to be a useful resource, with new relevant articles being
added to its repository regularly.

While prompt engineering in the context of LKD has not yet
entered the literature, some work has emerged in the context of
health care. Prompt engineering and generative artificial
intelligence broadly are of particular interest in the medical
domain as the generation of health information is still of
unknown quality. A few researchers have emphasized the
importance of medical professionals using LLMs skillfully and
in a way that produces reliable information [32,33]. It has been
shown that the reliability of GPT-4 (OpenAI) is inconsistent
when answering medical questions, and the authors call for
prompt engineering techniques to improve its performance [34].
Similarly, other authors have experimented with ChatGPT on
calculation-based United States Medical Licensing Examination
questions using 3 different prompting strategies, although they
found that the prompt itself had only a small effect on answer
accuracy [35]. Other research examined using prompt
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engineering in generating health messages [36] and even medical
image segmentation [37].

Social Media and LKD
Recent years have witnessed a burgeoning interest in studying
dialogue on social media regarding important health care issues,
such as vaccination [38] and LKD. Henderson [39] highlighted
the use of platforms such as Facebook and Twitter to identify
potential living donors while noting that formal research efforts
are in their early stages. Analyzing social media content,
including organ donation posts on the Chinese social media site
Weibo, has unearthed key themes such as “organ donation
behaviors,” “statistical descriptions of organ donation,” and
“meaningfulness of donation” [40]. In one study, a notable 53%
of potential living donors who self-referred for donor evaluation
reported that they learned about a patient’s need for a donor on
social media [41,42], while specialized tools such as the
“DONOR” app have enabled expansion of social media
marketing about living donation between potential donors and
patients with kidney diseases [43]. Research efforts include
measuring organ donation awareness through Twitter digital
markers [44], surveying readiness of patients who are
undergoing a transplant to use social media for education [45],
and using Twitter for living donor profile classification [46].

Interventions to increase living donation have used mobile health
technologies to manage donor follow-up [47], delivered targeted
advertising to specific ethnic groups [48,49], and assessed organ
donation awareness across the United States using Twitter data
[50]. Best practices for promoting LKD through social media,
such as delivering content to specific community demographics
in targeted and interactive modes, have been proposed [51]; live
transplant broadcasts on Twitter have occurred [52]; and the
analysis of public Facebook pages of potential living donors
[53] has enhanced insights into donor identification and donation
interest. Recent studies highlighted the importance of tailored
messaging over generic communication for better audience
engagement [54,55].

These investigations underscore social media’s potential in
augmenting donation awareness and facilitation, emphasizing
the necessity for robust methods to discern and support
individuals disseminating LKD-related content. A recent study
by Garcia Valencia et al [56] has shown that ChatGPT can
simplify medical information, making it easier to read and
understand by many diverse groups. This can be a vital aid for
promoting fairness in access to donation information from
official sources. However, with the availability of public
dialogue in forums also comes the need to thematically
understand it. There is variation in both the content being shared

and the user sharing it. The growing body of research
demonstrates the potential of social media to impact awareness,
intention to donate, and the facilitation of living kidney
transplants. Therefore, it is necessary to have reliable methods
whereby people who explicitly create and share content related
to LKD can be automatically identified and understood for
appropriate education and support. With this background, our
research seeks to assess whether a classification system can be
devised to discern individuals at varying stages of
decision-making about becoming a living kidney donor. It also
explores which of the contemporary NLP models are most apt
for automating this classification, namely a fine-tuned distilled
version of the BERT (DistilBERT) model (hereafter referred
to as BERT for simplicity, unless greater specificity is merited)
or ChatGPT. Furthermore, regarding ChatGPT, it examines
how prompt engineering—namely, making adjustments to model
instructions about the reasoning approach, examples,
temperature, and class descriptions— influences its predictive
efficacy for this application.

By answering these research questions, this study aimed to build
a foundation for a sophisticated classification system in which
it is possible to automatically categorize large amounts of social
media communication about living donations using these tools.
The study also aspires to gain a more in-depth insight into how
individuals communicate and express themselves regarding
LKD on various social media platforms. Using cutting-edge
NLP technologies, our goal is to develop a streamlined,
automated process for pinpointing curious, motivated potential
donors who have not yet presented to the transplant center so
that educational interventions could later be directed to them.

Methods

Data Labeling, Preparation, and Quality Assurance
We used a dataset of 2689 Reddit posts related to LKD from
our previous work [14], which were published between January
2010 and April 2021. We also collected 603 Reddit posts from
April 2021 to April 2023, for a combined total of 3292 posts
from 2591 users. We scraped the posts with the open-source
tool pushshift.io using keywords related to LKD, such as
“kidney donor,” “kidney transplant,” “kidney donated,” “kidney
donate,” “kidney years ago,” “kidney need,” “kidney stranger,”
and “kidney willing donate.” Other search terms could have
been included; however, as presented in Table 2, a considerable
portion of collected data were not related to personal
experiences, and we concluded that additional search terms
would primarily expand the noise and add little value.
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Table 2. Distribution and description of Reddit (Reddit, Inc) classes.

Example postDescriptionMerged class categories and class categories

Present (n=540, 26.9%)

“A friend of mine is in need of a
kidney. My first instinct is to offer
one of mine. I have Googled and
read LOTS of info. What would you
do? Have you donated a kidney?
What am I missing?”

The user has current firsthand experience with
something personally related to kidney disease,
kidney failure, living kidney donation, or transplan-
tation (eg, the user with kidney disease or kidney
failure, is on dialysis, is seeking a kidney, is explor-
ing donation, or is undergoing evaluation for dona-
tion or transplantation).

Present direct (n=363, 21.5%)

“I need help finding a kidney for my
dad.”

The user has current secondhand experience related
to living kidney transplantation (eg, they know
someone who is currently experiencing kidney
failure, on dialysis, seeking a kidney, or preparing
to donate a kidney).

Present indirect (n=177, 5.4%)

Past (n=222, 6.8%)

“Eight years ago today, I donated a
kidney to a friend. Ask me any-
thing.”

The user has past firsthand experience related to
living kidney transplantation (eg, kidney failure,
dialysis, kidney recipient or donor).

Past direct (n=168, 5.1%)

“Picture of my dad and the woman
who donated a kidney to save his
life.”

The user has past secondhand experience related
to living kidney transplantation (eg, they know
someone who experienced kidney failure, was on
dialysis, received a kidney, donated a kidney, un-
derwent evaluation for donation, or participated in
the donation process (perhaps in a supporting role).

Past indirect (n=58, 1.8%)

Other (n=2530, 76.8%)

“If you donate a kidney, then later
your only one starts to fail, would
you be put on a higher priority?”

The user is giving a general opinion on the topic,
asking a hypothetical question, or contributing to
discussion about an imagined scenario.

General commentary or hypothetical (n=159, 4.8%)

“A man donated his kidney to his
wife of 51 years after finding out
he’s her perfect match.”

The user is either sharing a news article or headline
related to kidney donation that may be pertinent
but not personal, or it is simply irrelevant.

News or noise (n=2371, 72%)

We selected Reddit as our data source because it provided the
greatest portion of comments that were related to personal
experiences rather than discussions of policies and sharing news
stories. Reddit was the only place where we found posts from
actual living donors inviting people to an “ask me anything”
session, sparking highly personal discussions [14].

Under the guidance of LKD domain experts, after reviewing
100 example posts, we created 2 class sets, one with 6 classes
(class categories) and the other with 3 classes (merged
categories), to automate the process of identifying firsthand
experiences with living donation (Table 2). These classes were
iteratively defined and improved through multiple discussions
with a team of 6 people who performed the manual annotation.
Certain posts had sufficient ambiguity to make an explicit ruling
impossible. For example, it was not always clear what
constituted the boundary between a past and present experience
(eg, how much time should have passed since the transplant?)
or whether the general transplant mentioned in a post came from
a living or deceased donor. Furthermore, long and verbose posts
with brief mentions of personal experiences with donation posed
a challenge because the brief (although important) mentions of
LKD were easy to miss. Individual annotators were found to
exhibit varying classification tendencies or use their own “rules
of thumb” to expedite the often tedious process.

The granularity between these 6 fine-grained classes proved
quite difficult for the models to correctly capture during initial
experiments (resulting in accuracies <50%), so the posts were
consolidated into the 3 coarse-grained categories: present
(n=540, 42.59% of posts), past (n=222, 17.51% of posts), and
other (n=506, 39.91% of posts randomly sampled from news
or noise and general commentary or hypothetical categories)
for 1268 samples that were used for training the BERT model.
A randomly selected subset of 100 from each of the 3 classes
was used for prompting with ChatGPT. The decision was made
to aggregate general commentary and hypothetical posts with
news or noise to ensure a more precise focus on personal
experiences.

Acknowledging the potential data quality risks [57], we
meticulously evaluated incorrect predictions from both BERT
and ChatGPT after the analysis. The incorrectly predicted
samples were tagged as either acceptable errors (reasonable, if
not perfectly aligned predictions), unacceptable errors (flawed
or evidently incorrect reasoning), more accurate than the original
human label, or instances where both human and model erred.
We later reported these using the notation of LLM human,
LLM<human, LLM>human, and both error, respectively, for
both models.
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Ethical Considerations
This study was granted an exemption from The University of
Louisville Institutional Review Board (review number 22.0458).
While there could be ethical concerns about consent and storage
of health-related data, every Reddit user is entirely anonymous,
ensuring that nothing we find can be directly traced to an
individual. In addition, the comments and posts themselves are
all very public; some websites may have minimal requirements,
such as logging in or being a member of a “closed” group before
the content can be observed; however, this is not the case for
any of the data we collected. For data sources where such
anonymity is not guaranteed, it is imperative to ensure that users
consent to the study of their created content and that any
identifying information be removed or obscured.

Modeling
We compared 2 transformer-based models for our classification
task: a fine-tuned BERT model and a prompt-engineered
ChatGPT model. We used the 3.5 Turbo version of ChatGPT
via the OpenAI application programming interface and
conducted a full factorial analysis of various prompt components
to identify the best features. The DistilBERT model was
fine-tuned from a pretrained Hugging Face (Hugging Face, Inc)
model. Furthermore, we noted that many new models have
emerged, both proprietary and open source, after our
experiments were completed. Post hoc experiments indicate
that our findings are consistent with newer models.

BERT Analysis
The DistilBert tokenizer from Hugging Face was used to
tokenize the text data from Reddit, and both input IDs and
attention masks were generated to structure the text inputs for
the model. A custom model was designed around DistilBERT.
The architecture included the pretrained DistilBERT model,
followed by 3 fully connected layers with 768, 256, and 128
units, respectively. These were followed by an output layer with
3 units corresponding to the number of classes. Batch
normalization and rectified linear unit activation functions were
applied, and dropout was set at 10%.

The focal loss was used as the loss function, which is designed
to address the class imbalance by downweighting the loss
assigned to well-classified examples [58]. It was parameterized
with an α factor for controlling the weight and a γ factor for
focusing on hard examples. The model was trained using the
AdamW optimizer [59], with the learning rate and weight decay
optimized by the open-source Optuna hyperparameter tuning

library. The dataset was split into training and validation sets
using stratified 5-fold cross-validation, with class weights
computed to manage class imbalance, and the model was trained
for 3 epochs, following the recommended fine-tuning procedures
[19]. The metrics used for validation are defined subsequently.

Accuracy is the ratio of correctly predicted instances to the total
instances.

Precision is the ratio of correctly predicted positive observations
to the total predicted positives.

Recall (sensitivity) is the ratio of correctly predicted positive
observations to all observations in actual class.

F1-score is the harmonic mean of precision and recall.

In equations 1 to 4, TP, TN, FP, and FN are the numbers of true
positive, true negative, false positive, and false negative values,
respectively.

The Optuna library was used to perform hyperparameter
optimization, which uses a Bayesian optimization method known
as the Tree-structured Parzen Estimator [60]. A search space
was defined for the learning rate (ranging from 0.00003 to
0.0003) and weight decay (ranging from 0.0001-0.001). A total
of 100 trials were conducted to find the best set of
hyperparameters based on the F1-score.

Dialogue Until Classification Consensus
We introduced a text classification tool for LLMs termed
“dialogue until classification consensus” (DUCC). Given the
absence of a formal taxonomy for prompt engineering methods,
we aligned DUCC’s presentation with the pattern widely
adopted in software development, which includes a name and
classification, intent and context, motivation, structure and key
ideas, example implementation, and consequences (Textbox 1).
White et al [22] constructed the following categories of
prompting patterns: input semantics, output customization, error
identification, prompt improvement, interaction, and context
control.
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Textbox 1. Prompting patterns for “dialogue until classification consensus” (DUCC).

Name and classification

DUCC primarily falls under output customization, although it shares elements from other pattern categories, notably error identification and interaction.

Intent and context

DUCC assigns a persona of at least 2 domain experts to the large language model, instructing them to discuss a text sample until a consensus on its
classification or answer selection is reached from a set of options. This setup aims to automate explicit reasoning and reflection through a simulated
dialogue, expecting to resemble the effects of distribution-oriented methods, such as self-consistency, without requiring multiple sample replications.

Motivation

Complex classification tasks, especially within niche domains, such as personal living kidney donation experiences, often present labeling challenges.
DUCC simulates expert discussions for decision-making while aiming to standardize output formats for classification tasks.

Structure and key ideas

Experts 1 and 2, specialized in [DOMAIN], are to discuss the text sample until an agreed classification or answer is reached.

The final label should be clear with no disagreements, formatted as: “classification: Label.”

Additional identities or traits can be attributed to the experts to infuse specific perspectives into the discussion. We have observed that unless a singular
label selection is emphasized, the model might assign multiple labels in challenging scenarios.

Example implementation

“Expert 1 and Expert 2, you are both experts in living kidney donation, and you’ve been tasked with analyzing and classifying a Reddit post that
should be related to living kidney donation. You should discuss the post until you come to an agreement for a single classification. If the post is not
related to living kidney donation, it needs to be labeled ‘Other’. The classifications are defined as follows:

• Present: The user is describing a current or ongoing personal experience with living kidney donation

• Past: The user is describing a past personal experience with living kidney donation.

• Other: The user isn’t discussing a personal experience with living kidney donation or isn’t discussing living kidney donation at all.

Discuss until you reach a consensus, showing your reasoning. The final label should be clear, and there should be no disagreement. Output your agreed
label in this format: {‘classification’: ‘your agreed label’}.

Here’s an example of how this should be done:

• Post: ‘Are you a kidney donor? How was the recovery process and how are you doing now?’

• Expert 1: ‘I think the appropriate label is Present, because the user is asking questions and seems to want information to help them with a current
decision about living kidney donation.’

• Expert 2: ‘I think the appropriate label is Past because the user wants to know about past personal experiences from others.’

• Expert 1: ‘I see your point about bringing up the past, but since we are interested in assigning a label to the user who wrote the post, we should
keep our focus on the author’s perspective. If we knew what the replies were, we could label those users as Past, but we are only looking at this
user for now.’

• Expert 2: ‘You’re correct, we should be focused on this user rather than possible answers from others. Even though there are elements of both,
we have to pick one and only one label, so let’s go with Present.’

• Final Label: ‘‘classification’: ‘Present.’”

Consequences

DUCC prompts large language models to reason through multiple perspectives, ensuring a singular, consistently formatted label, simplifying extraction.
The example implementation is crucial as it demonstrates the desired dialogue structure, aiding the model in handling nuanced classifications. However,
DUCC may exhibit biases when numerous classes are present, potentially leaning toward the exemplified label. To mitigate token use, especially in
lengthy examples, using DUCC when defining the system instead of individual prompts is advisable. For instance, in the OpenAI application
programming interface, modifying the “content” section of the “system” role with the entire provided example instead of the default content can better
define the system’s nature.

Sensitivity Analysis of Prompting

Overview
For our experimentation using ChatGPT to categorize personal
experiences, we conducted a study applying a full factorial
design with 4 factors (summarized subsequently), which resulted
in 48 experimental runs. We must first acknowledge that the
nature of prompting is such that there were an infinite number

of ways we could write the prompt and parameters that could
be chosen. It is well known that examples that illustrate the
solutions can influence performance (known as “few-shot”
prompting) [61], so we examined the number of examples and
the type of examples that might produce bias as well as the
parameters provided subsequently.
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Use of the DUCC Method (2 Settings)
In addition to the DUCC method described earlier, the
alternative was to prompt a single expert to make a classification
decision, with the instruction to “Examine the evidence for each
class option step by step. The final label should be clear.” In
this case, the model attempts to identify any evidence that
suggests the sample should be assigned to each class and weighs
the evidence to draw a conclusion.

Number of Examples Used (4 Settings)
We selected either 1 example or 3 examples. For 3 examples,
1 example was used for each class (present, past, and other).
For the single example setting, we performed an experiment
with each class once to evaluate whether it produced a bias in
the predicted class.

Definition of “Past” (2 Settings)
Observing a tendency for underprediction in the “Past” label,
we considered 2 definitions for the class. The first was a short
and concise definition: “The user is describing a past personal
experience with living kidney donation.” The second was a
longer, more descriptive definition: “The user is referring to a
past personal experience with LKD. This may be presented in
the context of a present tense story, but if the event of LKD was
lived previously, the post should be labeled past.”

Temperature Settings (3 Settings)
Experimentation spanned temperature values of 0, 0.15, and
0.3, investigating the tradeoff between output variability and
consistency. The settings were guided by OpenAI
documentation, emphasizing lower values for consistency and
higher values for diversifying outputs [62].

Given the cost implications of OpenAI application programming
interface calls, an initial assessment was carried out to determine
the necessity for replicating each setting. We performed 30
replications of a fixed parameter setting and found no substantial
effect within replications for any metric. Thus, the
experimentation proceeded with a singular sample for each
parameter setting.

Results

Overview
In this section, we present the results of the BERT model first
and then the results of ChatGPT. We present the performance
metrics, confusion matrices, and assessment of incorrect
predictions. For ChatGPT, we also present the results of an
ANOVA on the various factors used in the experimentation.

BERT Results
In >100 trials, the best BERT model performed with an accuracy
of 75.1% and an F1-score of 78.2% on the validation data during
training. The best parameters were a learning rate of
0.000131687 and a weight decay of 0.000791. The confusion
matrix for the predictions on the test data is presented in Figure
1, showing reasonably good performance but with a tendency
to erroneously predict the Other label on both past and present
labels.

The classification report provided in Table 3 shows that the
BERT model significantly underpredicts past labels, partly due
to the smaller sample size, and also because of the ambiguity
that can arise when a reference to a past experience is nested
within an ongoing story.

Figure 1. Confusion matrix for the best Bidirectional Encoder Representations from Transformers model.
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Table 3. Classification report.

SupportF1-scoreRecallPrecision

1010.850.820.88Present

440.580.520.66Past

1080.800.860.75Other

2530.780.790.79Weighted average

ChatGPT Results
The best ChatGPT prompt produced an accuracy and F1-score
of 78.67% and 78.17%, respectively (surprisingly, this F1-score
is identical to that of BERT). This was achieved using the
DUCC method, a single example of a present class post, a
temperature of 0, and the shorter definition of the past class
(refer to the Dialogue Until Classification Consensus section).
Full experimentation results are provided in the Multimedia

Appendix 1. The next 3 columns show the percentage of
predictions for that class, and the remaining 3 columns show
the evaluation metrics.

The confusion matrix for ChatGPT performance is presented
in Figure 2, which shows again that past class samples were
underpredicted and that both other and past class samples were
overpredicted to be present class, suggesting a bias toward
present classifications.

Figure 2. Confusion matrix for the best ChatGPT prompt.

The results of the ANOVA are presented in Table 4, which
shows that the number and type of examples used is the most
significant factor, followed by the method. We observe that the
examples and method factors were the only statistically
significant factors.

Given that there were 3 df within the examples setting, we
sought to better understand the difference between the example
settings using a Tukey test, with results provided in Table 5.
We observed that when our example belonged to the “past”
class the model performed better than when the example came

from the “other” class. But using an example from the “past”
class resulted in poorer performance compared to using 3
examples (one from each class) and using an example from the
“present” class. Interestingly, the “past” sample was
underpredicted in every setting except when using 3 examples
and the evidence method. Interestingly, samples belonging to
the “past” class were underpredicted in every setting except
when using 3 examples and the evidence method. Although this
setting (3 examples; evidence method) does not demonstrate
the same underprediction bias as other settings, it does not give
better accuracy overall.
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Table 4. ANOVA results.

P valueF test (df)Sum of squaresFactor

<.00127.659884 (3, 40)0.068615Category (examples)

.0087.819650 (1, 40)0.006466Category (method)

.990.014557 (2, 40)0.000024Category (temp)

.840.039292 (1, 40)0.000032Category (past)

——a0.033076Residual

aNot applicable.

Table 5. Multiple comparisons of means using the Tukey honestly significant difference test. The family-wise error rate is 0.05.

RejectUpper limitLower limitP valueMean differenceGroup 2Group 1

True–0.0548–0.1202<.001–0.08751, past1, other

False0.0405–0.0249.920.00781, present1, other

False0.031–0.0344.99–0.001731, other

True0.1280.0626<.0010.09531, present1, past

True0.11850.0531<.0010.085831, past

False0.0233–0.0421.87–0.009431, present

Discussion

Principal Findings
Our experimentation has found that BERT and ChatGPT
perform comparably for the classification of different living
kidney donor experiences. Because BERT is completely
dependent on the available training data, ChatGPT can be used
with a somewhat higher degree of precision via prompt
engineering, as shown by our use of the novel DUCC method.
Our full factorial experimentation identified the best settings to
use for our engineered prompt. In this section, we will discuss
the predictions that were made incorrectly and consider future
work and ethical considerations.

Examination of Incorrect Predictions
As noted in the Data Labeling, Preparation, and Quality
Assurance section, there is an inherent risk of data quality that
arises from the dataset in question. Unlike standardized
benchmarks, which often have explicit “ground truth” labels,
our task is fraught with nuance. Despite our extensive efforts
to ensure data quality, the given label is not always clear. As
such, we have provided a more detailed examination of the

instances where the models made predictions that diverged from
the given labels.

BERT and GPT-3.5 produced 21.3% (54/253) and 21.3%
(64/300) incorrect predictions, respectively. It should be recalled
that the difference in the denominator values is because BERT
requires a split test set, whereas, with GPT-3.5, we can use a
larger inference-only set. We assessed the quality of these
incorrect predictions not only to see how “close” they were to
the mark but also to determine whether any human errors had
been made in labeling the incorrect predictions. As provided in
Table 6 for BERT, we observe that 27 prompts were incorrectly
labeled either because of an acceptable error where a clear
prediction is difficult to make (perhaps due to the ambiguity of
what constitutes the difference between the past and present
samples) or where BERT made a better prediction than the
original human label. Treating these 27 predictions as being
acceptable or correct brings the total number of correct
predictions from 199 (78.7%) of 253 to 226 (89.3%) of 253,
which elevates the predictive accuracy considerably to 89.3%.
In these tables, examples are written “as they are” from the
original posts, including typos and terminology that may be
unique to Reddit.
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Table 6. Analysis of incorrect predictions from Bidirectional Encoder Representations from Transformers (BERT; n=54).

ReasonExample postIncorrect predictions, n (%)Error type

BERT predicted the “other” label, but
the user clearly states that he or she was
a previous living donor.

“Required testing to be a living Kidney
donor where I live - these are the tests
I took before becoming a living kidney
donor almost 2 yrs ago everything has
gone great for me and the recipient
happy to answer any questions.”

22 (41)Unacceptable error (BERT<human)

BERT predicted the “other” label,
which could be appropriate if it was a
deceased donor transplant. We predict-
ed the “past” label.

“Hey Mum, it’s been a year since what
was supposed to be a life changing
kidney transplant that took a turn for
the worst. I love you so much and think
about you every day xxx”

12 (22)Acceptable error (BERT human)

We predicted the “other” label because
of the (removed) tag at the end of the
post, which commonly appears in unus-
able posts. BERT predicted the
“present” label, which is the more ap-
propriate label.

“Me 26F with my Dad 58

he needs a kidney and I feel pressured
to donate one. [removed]”

15 (27)Human error (BERT>human)

This is someone’s opinion about a
celebrity who famously received a
kidney transplant from her friend. It is
not a personal experience at all, but the
human label was “present,” and the
BERT label was “past.”

“I used to like her but I found out that
she did not even acknowledge her kid-
ney donor... Just referring to her as a
person I know it seems pretty ungrate-
ful [removed]”

5 (9)Both erred

From our analysis of the incorrect predictions on GPT-3.5 (Table
7), we observed that 26 (40%) of the 64 errors were acceptable.

As mentioned earlier, we had previously observed that many
“past” posts were labeled as “present” because many of the
posts were in a present tense context. The best setting used the
shorter definition of past, which does not teach the model to
treat past experiences nested in present accounts as the past
class, so this is to be expected. Anytime both the human and
predicted labels were wrong, the post was almost always
ambiguous regarding whether it was about living or deceased
donation. The experiences being described could have been a
living donation, but there is not enough information to determine
that for certain.

Regarding BERT, we may allow ourselves to consider the 26
acceptable errors and 10 human errors as being correctly
predicted, changing the total number of correct predictions from
236 (78.7%) of 300 to 272 (90.7%) of 300 for an “actual”
predictive accuracy of 90.7%. While still imperfect, this shows
considerable reliability when using these methods on nuanced
language tasks.

The implications of this examination are threefold: (1)
sometimes human annotations go wrong, even with clear
instructions; (2) these powerful models are capable of correctly
catching things that humans miss (due to decision fatigue or
similar cognitive difficulties); and (3) the models can be largely
trusted to give sensible reasoning, even if the final conclusions
differ from that of a human counterpart.
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Table 7. Analysis of incorrect predictions from ChatGPT (n=64).

ReasonExample postIncorrect predictions, n (%)Error type

The simulated experts reasoned that the
focus of the post was on grief rather than

LKDa and labeled it as “other.” The hu-
man label was given as “past” because the
user mentions a sister who donated her
kidney some time ago.

“relationships My (36F) estranged sister
(43F) donated a kidney to me. I just heard
that she died (for a different reason). I’m
very confused. [removed]”

21 (33)Unacceptable error (ChatG-
PT<human)

This could be easily interpreted as either
a “present” (ChatGPT) or a “past” (hu-
man) label, given that there is no explicit
reference to time. It could go either way,
but it is still clearly related to a personal
experience with LKD.

“Successfully donated a kidney to my sis-
ter whos been fighting Lupus.”

26 (41)Acceptable error (ChatGPT
human)

The simulated experts concluded that this
should be labeled “other” when the human
label had been given as “past.” ChatGPT
made a more correct conclusion because
this may have been from a deceased donor
rather than a living donor. We would need
more information to be certain, so it
should be an “other” label.

“I (30F) had heart and kidney transplant.
Ask Me Anything (AMA).”

10 (16)Human error (ChatGPT >
human)

The human-given label for this was “past”
because of the previous transplant experi-
ences, and the reasoning provided by
ChatGPT concluded that the label should
be “present” because the user mentions
dialysis and being in and out of the hospi-
tal. Both were incorrect because there is
not enough evidence that either of the
transplants was from living donors, and
thus, it should be labeled “other.”

“I am A double kidney transplant recipi-
ent! AMA! I am a 28 year old white male,
I’ve had two renal transplants over the
course of my lifetime. I’ve been on dialy-
sis. I’ve been in and out of hospital my
entire life. I think it’s interesting, but
there’s only one way to find out! Ask Me
Anything.”

7 (11)Both erred

aLKD: living kidney donation.

Limitations and Future Work
BERT and ChatGPT have both proven effective in classifying
personal accounts of LKD on platforms such as Reddit,
achieving approximately 80% accuracy, which increases to
about 90% when considering acceptable errors, marking a step
forward in using web-based data for LKD research. These
models could potentially automate the screening of new content
for further scrutiny, thereby aiding donor support initiatives,
particularly in education and community outreach. Despite the
promising results, the complexity of the subject matter
complicates the task of making perfect predictions. Our initial
attempts to use fine-grained classifications led to suboptimal
results, requiring us to use coarse-grained categories. Regarding
costs, BERT’s open-source nature and the flexibility to fine-tune
make it an appealing choice. In contrast, ChatGPT excels in
providing understandable reasoning for its decisions.

A review of errors indicated that ChatGPT generally understood
the context well, although there were instances where the
reasoning was off the mark, highlighting the importance of
clear, prompt instructions. Interestingly, there were instances
where the LLMs’ reasoning surpassed ours, especially in
delineating the “past” and “present” boundary, thereby
suggesting a potential for iterative prompt enhancements
informed by LLM reasoning. However, the quest for prompt
optimization (or “promptization,” if you will) may present an

unending journey, as the allure of “just one more experiment”
to elevate performance is always present. Drawing a line on
performance as “good enough” is crucial, which may be attained
through automated processes, as explored in some recent and
exciting studies [63-69]. Future work will leverage these
powerful new methodologies to both improve performance on
our coarse-grained 3-class schema as well as achieve superior
performance on the fine-grained 6-class schema that was
unattainable with the present methods.

The performance of both models is significantly constrained by
the size of the available data. While thousands of Reddit posts
related to LKD are accessible, only a fraction pertains to
personal experiences. The performance consistency across
different data folds for BERT and across different sample sizes
for ChatGPT highlights the need for larger datasets to better
gauge each model’s robustness.

A core challenge lies in the task’s inherent demand for a singular
label, which often oversimplifies the nuanced narratives in
internet posts. Future endeavors could explore more elaborate
information extraction techniques, leveraging LLMs such as
ChatGPT to answer multiple queries or even construct
knowledge graphs per post. Although ensuring uniform and
usable output formats remains a hurdle, our work underscores
ChatGPT’s proficiency in deriving insightful inferences from
the text. Our findings concerning the influence of few-shot
learning examples on output bias also suggest the need for
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deeper investigation into the interplay between example
selection and model performance.

With reliable automation methods that can identify when a
person is describing a personal experience with LKD, future
work will extend the reach to additional media platforms, each
of which has its own system for reaching users via advertising.
There will certainly be potential biases in accessing educational
information about living donations based on the characteristics
of audiences most likely to post on each platform. To not
exacerbate disparities, one must examine the generalizability
of the profiles across multiple platforms and ensure the
dissemination of information across platforms that reach diverse
audiences and non-English speakers. An examination of access
to most audience members, particularly the underserved, is
warranted to ensure that all communities are reached equitably.

Utility of Results
By identifying these unique user classifications, tailored
educational interventions for different profiles could be
designed. First, for those most actively considering living
donation, there could be social media campaigns built and
targeted to specific users to invite them to learn more about
living donation. These users can be referred to a trusted site,
which includes education materials and an opportunity to
register to begin donor medical evaluation at a nearby transplant
center [41,42]. For individuals discussing their concerns about
the costs involved with becoming a living donor, referrals to
websites that discuss the ways to apply for grants to cover the
out-of-pocket costs and lost wages could be valuable in their
decision-making [70].

Second, for donors and families identified to have completed
donations, campaigns inviting them to share their experiences
on a living donor storytelling website [8,9] might result in more
real-life stories being captured from diverse individuals to
increase awareness of living donations for the national public.
Stories are particularly valuable for educating learners with low
health literacy or those for whom English is not their primary
language about the possibilities of living donation [71].

Finally, it will be very important to work with experts in
marketing and campaign design to plan social media campaigns
that are motivating and helpful for patients and their families

at different points along their donation journey. Identifying
motivated learners from platforms such as Reddit, delivering
content to them about living donation, and assessing its impact
on learning more or pursuing donation are our next planned
steps.

The proposed profiles may incorrectly identify a person’s
interest or stage of pursuit of donation, making any educational
information sent to them irrelevant. In contrast, users could also
be made uncomfortable if the education being provided matches
their needs perfectly, indicating that their data are being
scrutinized. Users can always disregard nonrelevant content;
however, it will be important in the design of new campaigns
not to assume with too much certainty that all learners are
correctly identified. Respect for users is an ethical tenet that
must always be considered in designing the campaigns and
communicating how we found that they might be considering
living donations as we move forward.

Conclusions
Much of the previous health care–related research about LLMs
has been centered on their reliability in producing quality
medical information. In contrast, we endeavor to extract
individual-level information from the internet that can be used
to inform health care providers. Consequently, there is little
comparison that can be made to previous work other than to
say that the reliability of the models is subject to the instructions
they are given. However, our experimental results do illustrate
that when using examples as part of the prompt (few-shot), bias
toward the class of the given examples can affect performance.
We have also shown that simulating a dialogue between 2
experts is more effective than using stand-alone reasoning.

This study takes a significant step in applying advanced NLP
methods to the field of LKD, focusing on automating the
detection of personal LKD experiences in online content. Both
BERT and ChatGPT proved effective for this task, each with
its own advantages and disadvantages. Our new DUCC method
outperformed traditional reasoning approaches, emphasizing
the importance of further work on improving prompt design.
The study also highlights the need for automated prompt creation
to reduce the time and effort currently required for manual
testing, making NLP applications in the LKD field more
efficient and impactful.
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Introduction

Recent studies have demonstrated the versatility of ChatGPT
in health care [1]. In contrast, convolutional neural networks
(CNNs) have an established history in medical imaging,
particularly in identifying pneumonia from chest x-rays. CNNs
are a class of deep learning algorithms that recognize patterns
in images, making them invaluable tools in radiology and other
imaging-based diagnostics [2]. Numerous studies demonstrate
CNNs’ effectiveness in medical imaging [3].

With advancements and developments in artificial intelligence
(AI) technology, this research aims to evaluate the effectiveness
of using ChatGPT-4 to detect pneumonia on x-ray images and
compare its performance with specialized CNNs. These
technologies could address radiologist shortages.

Community-acquired pneumonia incidence has reached 450
million cases worldwide annually [4]. In diagnosing pneumonia,
a clinical history, physical examination, and laboratory tests are
required, but clinical guidelines consider chest x-ray as the gold
standard for distinguishing pneumonia from other respiratory
tract infections [5]. However, interobserver agreement has been
poor in chest radiographs of pediatric pneumonia [6].

Technological improvements such as ChatGPT and AI can help
detect and diagnose pediatric pneumonia.

Methods

This study used a dataset of chest x-rays from the Kaggle dataset
“Chest X-Ray Images (Pneumonia),” originally sourced from
the Guangzhou Women and Children’s Medical Center [3,7].
The dataset consists of 5863 pneumonia and normal chest x-ray
images. The images were selected from retrospective cohorts
of pediatric patients, aged 1-5 years, who underwent
anterior-posterior chest x-rays as part of their workup. For
quality assurance, the diagnoses associated with the images
were graded by three expert physicians. The dataset includes
bacterial and viral pneumonia cases but does not specify the
type of pneumonia or distinguish between simple and
complicated pneumonia.

The study used a subset of this dataset, consisting of 500 x-rays
with pneumonia and 500 without pneumonia. Each image is
stored in a subfolder labeled “Pneumonia” or “Normal,”
enabling straightforward categorization and access. ChatGPT-4
was then prompted with “Based on the image, does the patient
have A) pneumonia or B) no pneumonia? Only output the
answer as A or B.” The results were analyzed.
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Results

ChatGPT-4 Turbo was biased toward the answer nonpneumonia

(Table 1 and Figure 1). The substantial bias affects the statistical
measures used. ChatGPT-4o performs slightly better overall,
except in sensitivity and specificity.

Figure 1. Confusion matrix of ChatGPT-4 Turbo.

Table 1. Statistical overview table of results of ChatGPT-4 Turbo and GPT-4o.

ChatGPT-4oChatGPT-4 TurboStatistic

0.612 (0.582-0.642)0.541 (0.511-0.571)Accuracy (95% CI)

0.576 (0.545-0.607)0.579 (0.548-0.607)Precision (95% CI)

0.839 (0.816-0.861)0.780 (0.754-0.806)Specificity (95% CI)

0.850 (0.828-0.872)0.302 (0.274-0.333)Sensitivity (95% CI)

0.685 (0.656-0.714)0.397 (0.367-0.427)F1-score (95% CI)

Discussion

Although ChatGPT-4 Turbo demonstrated a slight ability to
differentiate between pneumonia and nonpneumonia cases, this
accuracy was overshadowed by the model’s strong bias, making
its distinction between the two classes unreliable for clinical
use. ChatGPT-4o is equally unreliable for clinical use.

Compared with Kermany et al [3], our ChatGPT results are
subpar. ChatGPT’s best accuracy was 61.2% (ChatGPT-4o) in
this study, compared to 92.8%. ChatGPT-4o’s sensitivity and
specificity were also lower in this study: 85% and 38%
compared to 93.2% and 90.1%, respectively. Noticeably,
ChatGPT-4o’s specificity was very low comparatively.
ChatGPT-4 Turbo’s sensitivity and specificity results were
nearly reversed compared to its successor, indicating a

substantial shift in predictive behavior. Our experiment only
involved 1000 testing samples in total, while Kermany et al [3]
trained with 5232 samples and tested another 624 samples.

Several challenges exist in using ChatGPT-4 Turbo for
diagnosing pneumonia from chest x-ray radiographs. The
model’s strong bias toward classifying images as nonpneumonia
significantly affected the accuracy and other measures used to
evaluate the model’s performance. The high number of false
negatives could lead to delayed or missed diagnoses in a clinical
setting.

A limitation of this study is that the lack of complex pattern
recognition of pediatric pneumonia by ChatGPT may be
anticipated as the program has likely not been fine-tuned to
assess these types of patterns. However, numerous studies have
mentioned that programs like ChatGPT may replace radiologists,
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but studies are needed to improve these programs, and
radiologists will continue to be vital to health care [8]. By
providing empirical evidence of the limitations of generalist AI
models, this study underscores the need for task-specific
fine-tuning and integration with computer vision models, which
can help further develop these programs.

ChatGPT-4 has limitations when diagnosing pneumonia from
chest x-ray radiographs as shown by this research. The model’s

strong bias toward a nonpneumonia diagnosis, limited ability
to distinguish between the two classes, and lack of specialized
medical knowledge suggest that it may be unsuitable for clinical
use currently. Further research and development are needed to
address these limitations and explore the potential of integrating
language models with other computer vision techniques to
improve the accuracy and reliability of automated pneumonia
diagnosis from chest x-rays.
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Abstract

Background: Acute marijuana intoxication can impair motor skills and cognitive functions such as attention and information
processing. However, traditional tests, like blood, urine, and saliva, fail to accurately detect acute marijuana intoxication in real
time.

Objective: This study aims to explore whether integrating smartphone-based sensors with readily accessible wearable activity
trackers, like Fitbit, can enhance the detection of acute marijuana intoxication in naturalistic settings. No previous research has
investigated the effectiveness of passive sensing technologies for enhancing algorithm accuracy or enhancing the interpretability
of digital phenotyping through explainable artificial intelligence in real-life scenarios. This approach aims to provide insights
into how individuals interact with digital devices during algorithmic decision-making, particularly for detecting moderate to
intensive marijuana intoxication in real-world contexts.

Methods: Sensor data from smartphones and Fitbits, along with self-reported marijuana use, were collected from 33 young
adults over a 30-day period using the experience sampling method. Participants rated their level of intoxication on a scale from
1 to 10 within 15 minutes of consuming marijuana and during 3 daily semirandom prompts. The ratings were categorized as not
intoxicated (0), low (1-3), and moderate to intense intoxication (4-10). The study analyzed the performance of models using
mobile phone data only, Fitbit data only, and a combination of both (MobiFit) in detecting acute marijuana intoxication.

Results: The eXtreme Gradient Boosting Machine classifier showed that the MobiFit model, which combines mobile phone
and wearable device data, achieved 99% accuracy (area under the curve=0.99; F1-score=0.85) in detecting acute marijuana
intoxication in natural environments. The F1-score indicated significant improvements in sensitivity and specificity for the
combined MobiFit model compared to using mobile or Fitbit data alone. Explainable artificial intelligence revealed that moderate
to intense self-reported marijuana intoxication was associated with specific smartphone and Fitbit metrics, including elevated
minimum heart rate, reduced macromovement, and increased noise energy around participants.

Conclusions: This study demonstrates the potential of using smartphone sensors and wearable devices for interpretable,
transparent, and unobtrusive monitoring of acute marijuana intoxication in daily life. Advanced algorithmic decision-making
provides valuable insight into behavioral, physiological, and environmental factors that could support timely interventions to
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reduce marijuana-related harm. Future real-world applications of these algorithms should be evaluated in collaboration with
clinical experts to enhance their practicality and effectiveness.

(JMIR AI 2025;4:e52270)   doi:10.2196/52270
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digital phenotyping; smart devices; intoxication; smartphone-based sensors; wearables; mHealth; marijuana; cannabis; data
collection; passive sensing; Fitbit; machine learning; eXtreme Gradient Boosting Machine classifier; XGBoost; algorithmic
decision-making process; explainable artificial intelligence; XAI; artificial intelligence; JITAI; decision support; just-in-time
adaptive interventions; experience sampling

Introduction

Background
Acute effects of marijuana use impair motor skills and cognitive
functions, such as attention and information processing [1-3],
leading to adverse outcomes like poor academic and work
performance, as well as an increased risk of motor vehicle
crashes and fatal collisions [2,4]. Delta-9 tetrahydrocannabinol
(THC), the principal psychoactive constituent of marijuana,
binds to brain receptors, inducing a feeling of “euphoria” or
being “high” [5]. Given the risks associated with THC-induced
impairment, there is a critical need to detect episodes of
marijuana intoxication in real time in the natural environment.

Several studies have explored the use of phone sensors or
wearable devices to detect acute marijuana consumption. For
example, a laboratory study with 10 participants used
smartphone sensors (accelerometer, gyroscope) to detect acute
marijuana use (3% or 7% THC vs placebo) and found that gait
analysis with a support vector machine model achieved 92%
accuracy (F1-score=0.93) [6]. Another study (n=1) developed
an electrochemical biosensor ring that detected salivary THC
(minimum of 0.5 μM) and blood alcohol levels (minimum of
0.2 mM) within three minutes [7]. However, these studies were
conducted in controlled environments, highlighting the need
for research on using smartphone and wearable sensors to detect
acute marijuana use in nonlaboratory, natural settings.

Detecting marijuana use in daily life could enable Just-In-Time
interventions to reduce harm, such as avoiding driving while
intoxicated [8]. However, challenges exist in detecting acute
marijuana-related intoxication [9]. THC could be detected in
an individual’s blood or urine for several days after consumption
depending on factors such as recency, frequency, and chronicity
of use [10]. Thus, a person who tests positive for THC might
not be intoxicated or impaired at the time of testing [10].
Existing testing methods (eg, blood, urine, saliva, and breath)
are not suitable for real-time detection, as THC can remain
detectable in the body for days after consumption, which does
not necessarily indicate current impairment [10].

To address these limitations, our recent study [11] used passive
sensing via smartphones, coupled with self-reported intoxication,
to detect marijuana use with 90% accuracy, using sensor-derived
data from mobile phones alongside temporal variables, including
time of day and day of week. Building on these findings [11],
this study explores the use of wearable devices (eg, Fitbit) to
enhance detection capabilities by incorporating physiological

indicators, thereby improving the accuracy and immediacy of
identifying marijuana effects in natural environments.

Wearable device–reported heart rate (HR) was examined as a
potential physiological indicator of acute marijuana intoxication,
based on laboratory studies, showing a dose-dependent increase
in resting HR shortly after smoking or vaping marijuana [12-14].
Specifically, laboratory research reports that within 2-3 minutes
of smoking marijuana, there is an acute increase (20%-60%
dose-dependent) in resting HR [13], which might represent a
“physiological signal” of the onset of a marijuana smoking
episode. HR peaks 10-15 minutes after reaching maximum THC
levels, followed by a rapid decline [12-14]. While tolerance to
this effect may develop (eg, from a mean increase of 44.6 to
6.6 beats per minute (bpm) after 18-20 days of use) with chronic
use, [12-14]. The acute HR increases have been validated in
laboratory settings but have remained unexplored in real-world
contexts. This study examines using off-the-shelf wearable
devices, such as Fitbit, to detect acute HR increases as a
physiological signal potentially correlated with self-reported
marijuana intoxication.

Research Objectives and Contributions
While laboratory studies have established the link between HR
changes and marijuana intoxication [12-14], its applicability in
real-world scenarios is unexplored. To address this gap, we
propose that combining wearable device data with smartphone
sensors could improve algorithms for detecting marijuana
intoxication in real-life settings. To enhance the interpretability
of our algorithms and provide insights for just-in-time adaptive
interventions, we incorporated explainable artificial intelligence
(XAI) into our machine-learning pipeline. XAI helps clarify the
role of digital biomarkers associated with self-reported
marijuana intoxication in natural environments.

This study aims to determine whether data from smartphones
(eg, accelerometer and GPS) and wearable devices (eg, Fitbit)
can detect self-reported marijuana intoxication (“feeling high”)
in the natural environment, a topic not previously investigated.
Two hypotheses drive this research: (1) the novel MobiFit
model, which combines smartphones and Fitbit data will
outperform models that use only one data source in detecting
self-reported intoxication; (2) HR and daily behavioral data (eg,
step count) from Fitbit are important features for detecting
self-reported marijuana intoxication. If either hypothesis is
validated, it indicates the value of integrating wearable device
data into daily life monitoring.

This study evaluates the performance of sensor-based models
using (1) only smartphone sensors, (2) only Fitbit data, and (3)
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the combined MobiFit model. We also used XAI to enhance
understanding of key digital features from both smartphone
sensors and Fitbit data associated with self-reported marijuana
intoxication. Identifying smartphone-based sensors and Fitbit
features that accurately detect self-reported marijuana
intoxication in natural environments could ultimately trigger
just-in-time interventions.

This study presents a comprehensive approach toward using
mobile and wearable technology for detecting self-reported
acute marijuana intoxication in real-life settings, emphasizing
interpretability and transparency through XAI. This study
demonstrates the potential of integrating smart devices with
advanced analytical techniques to improve detection accuracy
and support timely interventions based on detected intoxication
levels.

Methods

Recruitment and Participants
A total of 57 participants aged 18-24 years were recruited
through flyers, advertisements, and local communities.
Eligibility criteria were (1) using marijuana at least twice a
week, (2) owning a personal mobile phone, (3) not currently
seeking treatment for substance abuse, (4) no self-reported
history of psychosis, and (5) not taking any medication or using
any medical device (eg, pacemaker) that could affect HR. Of
the 57 participants, 24 participants were excluded from the
analysis due to missing data (eg, no HR data and no mobile
sensor data).

The final analysis focused on 33 participants aged 18-24 years,
with an average age of 19.64 (SD 1.77) years. Among these, 23
participants identified as White, 4 participants as Black, and 6
participants as other race or ethnicity. The average age of first
marijuana use was 16.48 (SD 1.84, range 13-22) years, and the
average age of regular marijuana use was 17.03 (SD 1.72) years.
In this subset, 24% (n=8) reported daily marijuana use, 9%
(n=3) reported using it 5-6 times per week, and 67% (n=22)
reported using it 2-4 times per week. Notably, 97% (n=32) of
participants primarily used iOS smartphones, with only 3%
(n=1) using Android devices.

Ethical Considerations
This naturalistic, observational follow-along study was approved
by the university’s institutional review board (Stevens 2020-008
[23-COAS3], Rutgers Pro2019002365). In line with similar
Institutional Review Board–approved observational studies
[15], all participants were informed about local medical and
mental health resources. The study obtained a National Institutes
of Health Certificate of Confidentiality. Written consent was
obtained from participants, who were informed about privacy
protections and the voluntary nature of their participation [16].
The research staff explained the types of data to be collected,
the duration of data collection, and the purpose of the study.

Study Design
Participants completed a baseline laboratory assessment
including interviews, questionnaires, and cognitive testing. They
downloaded study apps from the App Store or Google Play

Store to their smartphones. Research staff trained participants
on how to use the apps and the study provided Fitbit Charge 2
for data collection. The AWARE mobile app [17] delivered
experience sampling method (ESM) questions on marijuana
use. Participants wore the Fitbit Charge 2 wristband to collect
data on HR, physical activity (eg, step count), and sleep (eg,
time, duration, and quality; see Table S2 in Multimedia
Appendix 1 for Fitbit variables). The study collected continuous
sensor data from smartphones and Fitbit devices, along with
self-reported data on marijuana intoxication, for up to 30 days.
A 30-day period was chosen to ensure sufficient data, given the
study’s inclusion criteria of frequent marijuana use. At the end
of the study, participants completed a debriefing interview about
their experience.

Participants were compensated for their time and effort,
receiving US $75 for completing the baseline assessment, and
US $25 for the debriefing interview. They earned US $10 for
each day on which they completed more than 75% of data
collection (eg, Fitbit and ESM).

Mobile Sensing Framework and Applications for Data
Collection

AWARE App
AWARE is a mobile sensing framework [17] that passively and
continuously collects data from smartphone sensors. This data
can be used to infer human behavior patterns using various
sensors: location (eg, distance traveled and circadian rhythm),
physical movements (eg, acceleration and activity), device usage
(eg, unlock, charge, keypress, and app usage), social patterns
(eg, communication and conversations), and environmental
context (eg, Wi-Fi, Bluetooth, sound or ambient noise, and
light). The app, developed to track participants’ natural
behaviors in real-life settings, runs in the background 24/7 and
collects sensor data with associated metadata, such as time
stamps and communication logs. The data is transferred to a
secure MySQL database owned and operated by the research
team.

ESM
The mobile app also captured self-reports of marijuana use by
participants. Two types of surveys were used [18]. Participants
manually reported marijuana use within 15 minutes of
consumption, detailing the amount used, mode of consumption,
and the people whom the participant consumed marijuana with.
They also rated their subjective intoxication on a scale from 0
(none) to 10 (a lot) [19]. Two hours later, the app prompted
participants to complete an end-session survey indicating when
intoxication symptoms subsided. In addition, fixed-time surveys
were delivered daily at 10 AM, 3 PM, and 8 PM to collect
information on the participants’daily lives, including time since
last marijuana use, cravings, mood, and feelings (eg, relaxed,
anxious, and sad), and other substance use (eg, alcohol and
tobacco). Survey response windows were open for 5 hours to
accommodate participants’ schedules.

Fitbit Charge 2
Participants were provided with Fitbit Charge 2 devices and
asked to wear them as much as possible. Fitbit collected

JMIR AI 2025 | vol. 4 | e52270 | p.38https://ai.jmir.org/2025/1/e52270
(page number not for citation purposes)

Bae et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


physiological data (eg, HR), activity data (eg, step count), and
sleep. The study hypothesized that HR and behavioral data could
signal episodes of acute marijuana intoxication. Fitbit data were
retrieved from the Fitbit server at the end of the study using the
Fitbit application programming interface.

Preparing Self-Report and Fitbit Data for Analysis
An episode of self-reported subjective marijuana intoxication
was defined based on the ESM item: “How high are you feeling
right now?” rated from 0 to 10 (0=not high to 10=a lot) [18,19].
To include episodes in the analysis, both start and end times
had to be reported to calculate duration and label the sensor
data. To capture behaviors without marijuana use, 1556 reports
where participants answered “no” to the question “Did you
smoke marijuana since the last report?” during afternoon

(n=1151) and evening (n=950) surveys were labeled as “0” for
the subjective rating of marijuana intoxication.

From all participants, we received 641 self-reports (mean 9.86,
SD 8.49; median 7, IQR 4-13) and 1556 with no marijuana use
reports (Figure 1). Out of 641 reports, 168 reports had a
subjective intoxication rating of 0 and 10, and 6 reports had no
rating. After excluding 6 reports without ratings and 108
duplicate reports, 527 samples remained. Reports with missing
start and end times, or implausible episode durations (eg, longer
than 3 hours) were excluded based on laboratory research
indicating that smoked or vaped marijuana effects last less than
3 hours [20]. A total of 136 self-reports were excluded for
exceeding this duration, leaving 1556 reports where no
marijuana use was recorded [20].

Figure 1. Flowchart of participants and the data included in the analyses.

For model building, episodes without mobile sensor data (n=72)
were excluded, leaving 221 marijuana self-reports. Furthermore,

episodes without Fitbit sensor data (n=17) were excluded,
leaving 50 participants. These participants provided 132
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marijuana use self-reports and 909 “no marijuana use” reports.
We analyzed reports from each participant, excluding those
who only reported not using marijuana or had a rating of 0 for
subjective intoxication, leaving a total of 642 with no marijuana
use report or who reported 0 subjective intoxications when using
marijuana and 34 people. Finally, to prevent participants from
using Fitbit incorrectly, we excluded users without HR data,
leaving a total of 33 people, who provided a total of 769 events:
640 “no marijuana use” reports and 129 marijuana use
self-reports.

Extracting Smartphone and Fitbit Sensor Features
Following previous studies, we extracted audio features to detect
social interactions [21,22] potentially associated with marijuana
use. Audio features were extracted using the conversation
plug-in, which detects whether a person was engaged in a
conversation. Raw audio signals are converted to amplitude
using the Euclidean norm [23], which categorizes ambient levels
into silence, noise, voice, and unknown [24]. We also computed
device use features, such as smartphone unlock minutes and the
duration of device interaction sessions. In addition to audio
features, we extracted GPS features to examine movement
patterns related to marijuana use [25-28]. These included the
radius of gyration, time at a location cluster, total distance
traveled, number of clusters within a 5-minute window,
acceleration, and phone angles. Environmental features, such
as the number of Bluetooth devices detected, the most frequently
contacted Wi-Fi access point, and light features (eg, average
[avg], and maximum [max] lux) were also extracted. For most
features, we calculated the minimum (min), max, avg, median
(med), and SD. Further details on smartphone features can be
found in Multimedia Appendix 1.

We used a 5-minute time window for extracting sensor feature
statistics, as laboratory studies show a dose-dependent acute in
resting HR within 2-3 minutes of marijuana use. Using larger
time intervals could include data not related to marijuana use,
given the average reported marijuana session duration is 75 (SD
46.2) minutes.

Raw data for HR, sleep, and steps were extracted from Fitbit.
We first obtained per-minute HR and step count data using the
Fitbit application programming interface. To exclude outliers,
we refined data selection to omit instances where HR was below
40 bpm, as recommended by the American Heart Association
[29,30]. We extracted feature statistics such as avg, SD, min,
med, and max HR within a 5-minute window to explore the
relationship between HR and marijuana intoxication levels
(“moderate-intensive,” “low,” and “none”). Resting HR was

defined as HR data collected when the participant was sedentary
(ie, no steps taken) for more than 5 minutes. To further analyze
HR patterns related to marijuana intoxication, we examined the
degree of peakedness (kurtosis) and asymmetry (skewness) in
HR data, as these features may reveal physiological changes
associated with marijuana intoxication [31]. For more details,
refer to Table S2 in Multimedia Appendix 2.

Ground Truth and Labeling Sensor Data
To accurately label the collected sensor data, we defined the
duration of marijuana use episodes as those equal to or less than
3 hours, based on reported start and end times. We excluded 3
hours of sensor data following the reported end time to account
for the continued effects of marijuana, even when participants
reported a subjective intoxication level of 0. For example, if
marijuana use was reported from 6 PM to 6:30 PM, data from
6:30 PM to 9:30 PM were excluded to account for residual
effects. We also excluded data from 30 minutes before the
reported start time to account for potential delays in
self-reporting, based on pilot study findings that delays could
range from 5 to 15 minutes. To collect nonmarijuana data, we
randomly sampled sensor data from days when participants did
not use marijuana (ie, nonmarijuana days). These samples were
labeled using morning, afternoon, and evening surveys in which
participants reported “no” to the ESM item “Did you smoke
marijuana since the last report?” and indicated that the last use
was more than 5 hours before the ESM time stamp (Figure 2).

We aimed to capture acute intoxication versus nonuse,
classifying intoxication levels into three categories: 0 as “not
intoxicated,” 1-3 as “low intoxication,” and 4-10 as
“moderate-intensive intoxication” (MI). In total, we labeled
32,722 sensor stream samples (5-minute windows) as “not
intoxicated” (154 from self-initiated survey coded as 0 high,
and 32,586 from time-based self-reports), 423 samples as “low
intoxication” (ratings between 1 and 3) and 772 samples as
“moderate-intensive” (ratings between 4 and 10, with 10
indicating “a lot”).

Data from smartphones and Fitbit resulted in two datasets of
different sizes. To ensure consistency, we down-sampled the
smartphone dataset to include only samples overlapping with
Fitbit data during the same time frames. This resulted in three
datasets: (1) eXtreme Gradient Boosting (XGBoost)-Mobile:
mobile phone only, (2) XGBoost-Fitbit: Fitbit-only, and (3)
XGBoost-MobiFit: combined mobile and Fitbit data. The
rationale for choosing Machine Learning (ML) models is
detailed in Multimedia Appendix 3 and model comparison with
different classifiers can be found in Multimedia Appendix 4.
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Figure 2. Marijuana use episodes and labeling principle.

ML Pipeline

Feature Selection
We began data analysis by randomly partitioning the labeled
sensor data into training (80%) and test (20% holdout) datasets.
As shown in Figure 3, we first calculated Pearson correlation
coefficients between features in the training dataset to identify

highly covariant feature pairs (correlation coefficients >0.9)
[32]. We then systematically removed one feature from each
pair to reduce redundancy and improve model performance by
retaining the most relevant and independent features. Next, we
selected statistically significant features with a Gini coefficient
importance [33] greater than 0.005. Details can be found in
Multimedia Appendix 2.

Figure 3. Study overview. AI: artificial intelligence; HR: heart rate; SHAP: Shapley Additive exPlanations; SMOTE: Synthetic Minority Over-Sampling
Technique; XGBoost: eXtreme Gradient Boosting Machine.
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Hyper-Parameter Tuning and Cross-Validation
As shown in Figure 3, during hyper-parameter tuning in the
training dataset, we used cross-validation to randomly leave
10% of the samples out, training the model on the remaining
90% and testing on the withheld 10%. We used the Synthetic
Minority Over-Sampling Technique [34] to ensure equal
representation across all classes. We further optimized model
performance with a Bayesian-optimization-driven method called
Optuna [35] to select the best combination of hyperparameters
and 10-fold cross-validation on models with Optuna-optimized
hyperparameters.

For the final model evaluation, we used the reserved test data
(20% unseen data, as shown in Figure 3). The model was
evaluated on predictions made on the test data. Finally, as shown
in Figure 3 (right column), we conducted an XAI analysis to
better understand the decision-making process of our final
predictive model. We generated SHapley Additive exPlanations
(SHAP) on the unseen test data to ensure our findings were
explainable for data the model had not seen.

Model Evaluation Metrics
We evaluated model performance using F1-score, recall, and
precision, and selecting the best model based on the F1-score
[36]. Low precision indicates too many false positives (ie,
detecting intoxication when there is none), here we would
mistakenly intervene or notify the participant. Low recall
indicates too many false negatives (ie, not detecting intoxication
when it occurs), potentially leading to unsafe behaviors such
as impaired driving. Therefore, while we prioritize the F1-score,
we also consider precision and recall.

Given our imbalanced samples, we used the area under the curve
(AUC) metric, which provides a robust evaluation across all
classification thresholds and is resilient to class imbalance.

XAI: Interpretation Approaches for Black-Box ML
Models
To enhance algorithmic transparency, we used SHAP, a widely
used interpretability method for ML models [37,38]. SHAP
explains how specific data features influence model predictions,
providing insights into the model’s decision-making process.
We identified the top 30 most significant features associated
with marijuana intoxication reports, including their importance
scores and visual summaries calculated by SHAP (see “Key
Features Contributing to Model Performance” under the Results
section). XGboost was selected due to its superior performance
compared to other classifiers. The use of tree SHAP in this
context reduces the computation time for SHAP values from
exponential to polynomial [37].

Results

Timing, Duration, and Rating of Subjective Marijuana
Intoxication
During the 30-day period, participants averaged 14 (SD 8.59)
days of active participation. A total of 129 ESM self-initiated
reports of marijuana use met the criteria for inclusion in the
analysis: 101 reports of subjective marijuana intoxication
(feeling high rated 1-10 out of 10) and 28 reports of feeling not
high (0). Events not involving marijuana use were assigned a
high rating of 0.

Tables 1 and 2 show the distribution of self-reported subjective
marijuana intoxication across participants. Most episodes of
intoxication (n=75) lasted between 30 minutes and 3 hours, with
54 episodes lasting up to 30 minutes (Table 1). Marijuana use
was most often reported between 10 PM and 11 PM (n=24).
Table 2 shows the distribution of ESM responses throughout
the day. The average response latency to an ESM prompt
expired. Most self-initiated reports of marijuana use occurred
in the evenings: 14% (n=18) between 6 PM and 9 PM, and 39%
(n=50) between 9 PM and midnight. On average, young adults
rated their feeling of being high at 3.63 (SD 2.72) out of 10
when using marijuana (Table 3).

Table 1. Distribution of the duration of self-reported marijuana use episodes (n=129) across participants.

Number of eventsDurationa (hours)

54<0.5

20<1

23<1.5

13<2.0

13<2.5

6<3

aDuration refers to the window of smoking episodes. From small (30 minutes) to relatively large windows (3 hours).
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Table 2. Distribution of the start time of marijuana use episodes during the day (n=129).

Number of eventsClock time (hours)

70-1

81-2

22-3

03-4

04-5

05-6

06-7

17-8

08-9

59-10

810-11

211-12

612-13

613-14

514-15

415-16

316-17

417-18

518-19

619-20

720-21

1021-22

2422-23

1623-0

Table 3. Distribution of self-reported “feeling high” during marijuana use.

Number of eventsHigh ratinga

280

91

92

173

144

145

176

107

78

49

010

a0-10 scale representing an intensity of feeling high, 10=a lot from the self-initiated reports of marijuana use. In our study, a value of 0 for the high
report is labeled as “no-intoxication.”
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Model Comparison: Mobile Only, Fitbit Only, and
Mobile and Fitbit Integration
The first part of our analysis aimed to determine whether
smartphone sensor features alone could be used for real-time
detection of subjective marijuana intoxication and whether
adding Fitbit data would improve model performance, justifying
the added complexity of Fitbit data collection. We compared
three ML models using the XGBoost classifier: (1) smartphone
sensors only (XGBoost-Mobile), (2) Fitbit features only
(XGBoost-Fitbit), and (3) a combined model using smartphone
and Fitbit features (XGBoost-MobiFit).

Among the 3 models tested, the XGBoost-MobiFit model, which
integrates smartphone and Fitbit data, had the best performance,
achieving 99% accuracy, 92% precision, 79% recall, 85%
F1-score, and 99% AUC on the test dataset (Figure 4 and Table
4). These metrics indicate the XGBoost-MobiFit model’s
superior ability to accurately identify MI compared to
low-intoxication and not-intoxicated states. While the
XGBoost-Fitbit performed reasonably well, it did not match
the performance of the XGBoost-MobiFit model in detecting
marijuana intoxication. XGBoost-Fitbit achieved accuracy of
98%, 79% precision, 70% recall, 74% F1-score, and 97% AUC.
These results suggest that using only Fitbit data may not be as
effective as combining it with smartphone sensor data for

detecting subjective marijuana intoxication. Based on these
findings, the added burden of wearing and charging the Fitbit
device seems justified in future deployments. The combined
model (XGBoost-MobiFit) demonstrated improved performance
in detecting subjective marijuana intoxication compared to using
smartphone or Fitbit data alone.

Combining Fitbit data with mobile data resulted in a significant
improvement over the Fitbit-only model. The mobile-only model
achieved an AUC of 96%, an F1-score of 72%, a recall of 75%,
and a precision of 70%. These results indicate that including
Fitbit data adds value beyond what can be achieved with
smartphone-based sensor data alone, as evidenced by a 13%
improvement in F1-score.

In summary, three key findings emerged: the XGBoost-Mobile
model had the lowest performance (F1-score=0.72, recall=0.75,
precision=0.70); the XGBoost-Fitbit model (F1-score=0.74,
recall=0.70, precision=0.79) generally performed lower than
the combined model; and the XGBoost-MobiFit model was the
best performer with an F1-score of 0.85, recall of 0.79, and
precision of 0.92. As highlighted earlier, high precision and
recall are critical so we focused on the F1-score to identify the
best-performing model. The model comparison with different
classifiers is provided in Multimedia Appendix 4.

Figure 4. Model comparison to detect acute marijuana intoxication “low-intoxicated” (rating=1-3) versus “moderate-intensive intoxicated” (rating=
4-10) versus “not-intoxicated” (rating=0). XGBoost-MobiFit: phone sensors and Fitbit (AUC=0.99; accuracy=0.99; left), XGBoost-Mobile:
smartphone-based sensors (samples overlapping with Fitbit; AUC=0.96; accuracy=0.97; middle) and XGBoost-Fitbit: Fitbit only (AUC=0.97;
accuracy=0.98; right). AUC: area under the curve; ROC: receiver-operating characteristic curve; XGBoost: eXtreme gradient boosting.

Table 4. Comparison of three XGBoost models using features selected in detecting moderate-intensive marijuana intoxication, low-intoxication, and
not-intoxicated classes on the test dataset.

AccuracyPrecisionRecallF1-scoreAUCaMachine learning model

0.990.920.790.850.99XGBoost-MobiFit

0.970.700.750.720.96XGBoost-Mobile

0.980.790.700.740.97XGBoost-Fitbit

aAUC: area under the curve.

Understanding Model Performance in Detecting the
Risk State of “Moderate and Intensive Marijuana
Intoxication”
For predicting the MI class alone, the MobiFit model
outperformed the mobile and Fitbit-only models, exhibiting a
substantial improvement in the F1-score of 20% and 18%,

respectively (Table 5). This improvement in F1-score highlights
the benefits of integrating data from both devices: enhanced
precision and recall for the MI class compared to the
not-intoxicated (N) and low-intoxicated (L) classes (Table 6).
The XGBoost-Mobile model exhibited a notably high false
negative rate for instances labeled as “not-intoxicated,” often
misclassifying them as “moderate-intensive intoxicated.”
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However, it showed better accuracy in distinguishing
“low-intoxicated” instances. In contrast, the XGBoost MobiFit
model demonstrated a higher true positive rate compared to the
other models, accurately identifying 76% of MI samples among
the total samples belonging to that class. While the
XGBoost-Mobile and Fitbit models achieved recall rates of
61% and 63% in predicting MI, they incorrectly predicted 56

and 53 out of 143 actual MI samples as other classes. In
comparison, the best-performing MobiFit model achieved 108
true positives out of the 143 actual MI samples. The higher
precision of the MobiFit model further supports its superior
performance, though there remains room for improvement as
it missed 35 samples, as shown in Table 6.

Table 5. Performance comparison of three XGBoosta models in detecting the subjective sense of moderate-intensive marijuana intoxication class.

MI AUCdMI F1-scoreMI recallMIc precisionMLb model

0.990.820.760.89XGBoost-MobiFit

0.960.620.610.64XGBoost-Mobile

0.980.640.630.65XGBoost-Fitbit

aXGBoost: eXtreme Gradient Boosting.
bML: machine learning
cMI: moderate-intensive intoxication.
dAUC: area under the curve.

Table 6. Confusion matrix for XGBoost-MobiFit, XGBoost-Mobile, and XGBoost-Fitbit model for 3 classes.

Predicted

MIcLbNa

XGBoostd -MobiFit

Actual

1376541N

15029L

108035MI

XGBoost-Mobile

Actual

50596452N

05228L

87056MI

XGBoost-Fitbit

Actual

48146499N

03941L

90152MI

aN: not-intoxicated.
bL: low-intoxication.
cMI: moderate-intensive intoxication.
dXGBoost: eXtreme Gradient Boosting.

Key Features Contributing to Model Performance

Overview
To explore the algorithms’ performance in predicting the MI
class, we used SHAP summary visualizations [37,38] to identify
patterns of acute marijuana intoxication. We determined the
key features contributing significantly to the model’s predictions

based on mean absolute SHAP values across all instances, with
a focus on the MI class.

Figures 5 and 6 present the SHAP visualizations. In Figure 5,
the length of each bar on the left indicates the feature’s
contribution to the model, with longer bars signifying a stronger
influence on the outcome. The SHAP summary plots on the
right of Figure 5 illustrate how features influence the MI
prediction class, with the strongest influence at the top. The

JMIR AI 2025 | vol. 4 | e52270 | p.45https://ai.jmir.org/2025/1/e52270
(page number not for citation purposes)

Bae et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


color shading indicates the direction of the feature’s effect, with
blue for low values, purple for median values, and red for high
values. Plots extending to the left indicate a negative

contribution to the prediction, while those extending to the right
positively contribute to MI predictions.

Figure 5. Explanations generated by SHAP summary plot. Impact of features on best performing XGBoost-MobiFit model (left) and binary model
output identifying moderate-intensive intoxication (MI; SHAP>0) from nonmoderate-intensive intoxication (N and L) classes (SHAP<0; right). HR:
heart rate. SHAP: SHapley Additive exPlanations; WTSD: weighted stationary latitude and longitude standard deviation; XGBoost: eXtreme Gradient
Boosting.

JMIR AI 2025 | vol. 4 | e52270 | p.46https://ai.jmir.org/2025/1/e52270
(page number not for citation purposes)

Bae et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Explanations generated by SHAP summary plot. Impact of features on XGBoost-Mobile model (top left) and binary model output identifying
MI (SHAP>0) from nonmoderate-intensive intoxication (N and L) classes (SHAP<0; top right), impact of features on XGBoost-Fitbit model (bottom
left) and binary model output identifying MI (SHAP>0) from nonmoderate-intensive intoxication (N and L) classes (SHAP<0; bottom right). MI:
moderate-intensive intoxication; SHAP: SHapley Additive exPlanations; WTSD: weighted stationary latitude and longitude standard deviation; XGBoost:
eXtreme Gradient Boosting.

Impact of Average Key Features on Model Output
Magnitude
The top five influential features in detecting the three
classifications (Figure 5, left) and affecting the MI outputs
(Figure 5, right) included time of day, radius of gyration,

minimum HR, day of the week, and minutes awake during sleep.
Among physical activities and physiological signals, a diverse
range of features extracted from various sensors, including those
beyond time-based attributes from both mobile and Fitbit
combined sensors, was chosen as the top 30 crucial elements
for distinguishing between not-intoxicated (N), low-intoxication
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(L), and MI. The SHAP value, signifying the average impact
magnitude on the model’s output, played a pivotal role in this
determination (Figure 5, left).

Impact of Unique Key Features on Mobile and Fitbit
Model Outputs
Similar to the best-performing MobiFit model, the Mobile model
(Figure 6) highlighted key features with overlapping impacts
on the model’s outcomes. The only exception was in specific
movement and environmental context features, as shown in the
top left and right graphs of Figure 6. However, the Fitbit model
showed a more significant impact on HR features, with all four
HR features ranking within the top 10 for all three classes
(shown in the bottom-left graph in Figure 6), and for the MI
classes compared to the non-MI classes (bottom-right graph in
Figure 6).

Key Features Explaining MI

Overview
To specifically examine the influence of key features on the
“risk” state of MI, we present comprehensive details for each
key feature within the model.

A partial dependence plot (PDP) in Figure 7 illustrates the
overall relationship between a feature and the outcome. The
vertical axis represents SHAP values, signifying the effect of
the chosen feature on predictions, while the horizontal axis
represents actual feature values across instances. Each point
represents an instance’s feature value and its corresponding
SHAP value. An upward PDP slope indicates a positive impact
of the feature on MI prediction, while a downward slope
indicates a negative impact. The surface on the PDP plot (eg,
min HR and sum of moving minutes in Figure 7, top left) shows
the combined impact of the two features on MI predictions,
with greater values corresponding to increased prediction values.

In the following section, we introduce the key features
contributing to MI, including elevated and fluctuating HR,
reduced large-scale movement patterns, increased ambient noise
and voice energy, and extended sleep patterns.

Figure 7. Interaction effects of total minutes spent moving on minimum HR values (top left), SD (top middle), and skewness (top right) of HR, and
an explanation of skewness [39] (bottom). HR: heart rate; SHAP: SHapley Additive exPlanations.

Elevated and Fluctuating HRs
We investigated the impact of recent physical activity (measured
as the sum of minutes spent moving based on Fitbit data) on
HR in relation to self-reported marijuana intoxication using a
PDP. The SHAP values for minimum HRs showed significant
elevation, with an average increase from approximately 80 bpm
to peaks of 90 bpm and reaching up to 100 bpm (ranging from
60 to 120 bpm, with a few data points exceeding 120 bpm).
These elevated HRs corresponded to moderate-intensive
self-reported marijuana intoxication (SHAP value>0) in young
adults compared to other classes (not- and low-intoxicated).

The SHAP values clearly indicate a positive increase in
minimum HR associated with a higher likelihood of

self-reported MI, irrespective of the impact of the sum of
minutes spent moving. The total movement time during
self-reported MI influenced the rise in minimum HR, as shown
in Figure 7 (top left), where the red values represent a maximum
of 5 minutes of movement (our analysis uses 5-minute
windows). While HR can fluctuate due to various factors,
including physical activity, substance use (eg, alcohol), caffeine,
meals, and mental state (eg, stress and anxiety), further research
is needed to explore these additional influences.

In brief, patterns for the SD of HRs exhibited fluctuations, but,
in general, showed an increase when young adults reported MI
(Figure 7, top middle). Negative skewness (indicating a
“left-skewed” distribution) in HR was consistently associated
with MI. This skewness suggests that there were more HR data
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points on the right side of the mean (indicating that the median
was greater than the mean), leading to a distribution stretched
toward higher HR values (Figure 7, top right).

Decreased Large-Scale Movements
During MI, individuals showed a tendency for limited
large-scale movement, often restricted to a radius of

approximately 5 km. Notably, instances where the radius of
gyration exceeded approximately 10 km were not associated
with MI. This finding suggests that when young adults reported
MI (rated 4-10), they were less inclined to engage in extensive
travel (Figure 8). However, they still demonstrated movement
within an average radius of 5 km.

Figure 8. Influence of radius of gyration (unit: meters). SHAP: SHapley Additive exPlanations.

Elevated Surrounding Noise Energy
Interestingly, while the variance in environmental noise energy
increased (with data points deviating further from the mean),
the average noise energy decreased, though it exhibited an
overall upward trend (Figure 9, left). Instances of MI were
associated with increased noise variability (calculated based on
the amplitude of audio samples), followed by a subsequent
reduction (Figure 9, right).

Analyzing ambient sounds provides insights into the
environmental context where individuals reporting MI might
be located. This could include situations such as marijuana
smoking, socializing with friends, or engaging with media like
television or music. Although GPS-generated features were the
primary indicators, MI may or may not be directly linked to
specific locations such as shared social spaces (eg, lounges) or
entertaining venues (eg, bars, pubs, or clubs). Nevertheless, it
remains plausible that young adults reporting MI may choose
to stay in noisy environments.

Figure 9. Influence of mean (left) and SD (right) noise energy (unit: Joule). SHAP: SHapley Additive exPlanations.
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Prolonged Sleep Patterns
Distinct sleep patterns were linked to episodes of self-reported
MI. Individuals who reported MI demonstrated extended sleep
durations, spanning approximately 8 to 11 hours (Figure 10,
left) the day before self-reported intoxication. In contrast,
instances with low or no reported intoxication generally
corresponded to healthy sleep durations, averaging around 6-7
hours, with some patterns as short as 2 hours.

There was also a positive correlation between the duration of
minutes awake after falling asleep and self-reported MI,
particularly when the period involved less than 50 minutes of
wakefulness. However, an increase in extended minutes awake

after falling asleep (if >50 minutes, extending beyond
approximately an hour) did not show any significant association
with a likelihood of MI (Figure 10, middle). Regarding sleep
start times, the data indicated peaks at both 11 PM and early
morning hours, with a rise in sleep start times continuing until
around 4 AM (Figure 10, right).

In summary, elevated minimum HR values were clearly linked
to a higher likelihood of self-reported MI. However, we
observed that GPS-travel patterns (macromovements) did not
appear to increase during self-reported marijuana intoxication.
Interestingly, extended sleep hours and minutes awake during
sleep [40] the day before self-reported marijuana intoxication
were associated with MI.

Figure 10. Total sleep duration (left), minutes awake during sleep (middle), and sleep start time (right). SHAP: SHapley Additive exPlanations.

Additional Analyses for Real-World Feasibility
To enhance the practicality of our ML model in real-world
settings, we conducted supplementary analyses to evaluate our
top-performing model, the XGBoost-MobiFit model, under
different scenarios. These scenarios involved: (1) excluding
GPS-derived travel data due to potential privacy concerns or
GPS deactivation; (2) excluding sleep data in cases where users
did not provide sleep information; and (3) excluding both
GPS-derived travel and sleep data. This approach aims to
explore the feasibility of offering more flexible data collection
options, potentially addressing privacy concerns and incomplete
data issues.

In brief, excluding GPS-derived features
(XGBoost-MobiFit-GPS excluded) resulted in a 15% decrease
in the F1-score compared to the best model, with a 10%
reduction in sensitivity (recall). Excluding sleep data
(XGBoost-MobiFit-Sleep excluded) led to a 24% decrease in
the F1-score compared to the best model. When both GPS and
sleep features were excluded (XGBoost-MobiFit-GPS-Sleep
excluded), the model experienced a 16% reduction in F1-score
and showed the lowest recall for identifying self-reported MI
classes compared to the best-performing model. Please refer to
Multimedia Appendix 5 for a detailed description of the
additional analyses and results.

Discussion

Overview
The ability to detect subjective reports of acute marijuana
intoxication in natural environments using mobile sensors has
the potential to enable just-in-time interventions [41] to reduce

marijuana-related harms. To the best of our knowledge, this is
the first study that demonstrates the impact of integrating
smartphone-based and wearable sensor features on the
enhancement of the performance and interpretability of
algorithms in detecting acute marijuana intoxication in
naturalistic environments.

As hypothesized, we found that the XGB-MobiFit model, which
combined smartphone sensor data with Fitbit features
outperformed models that used only mobile or only Fitbit data.
By integrating sensors from both smartphones and wearable
devices, our best-performing algorithm balances specificity and
sensitivity on unseen samples, enabling interpretable,
transparent, and unobtrusive detection of acute subjective
marijuana intoxication in natural environments. This opens up
opportunities for real-time monitoring in everyday settings and
the implementation of just-in-time adaptive interventions.

XAI visualizations supported our second hypothesis,
highlighting HR, GPS, and physical movement data as key
features that contributed to self-reported marijuana intoxication
predictions. These findings were observed beyond the influences
of simply applying time of day and day of the week features
(ranked 1st and 4th, respectively), as validated in [11],
particularly during instances of self-reported subjective
marijuana intoxication in naturalistic environments.

Interpretable Behavioral and Physiological Signals of
Marijuana Intoxication in Real-World Settings
To explain the results of the black-box ML models to detect
marijuana intoxication in everyday settings, our study integrated
sensors from smartphones and a wearable device, identified key
sensor features, and used XAI to facilitate the interpretation of
model results. The findings are consistent with prior research
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conducted in controlled laboratory settings, which consistently
found an acute increase in resting HR following marijuana use
[12-14]. Our results suggest the potential for HR with behavioral
factors to detect marijuana intoxication “outside of laboratory
settings” using off-the-shelf devices in naturalistic environments.
While many factors can affect HR in daily life, this study yielded
significant HR features and insights from the elevated HR
patterns during self-reported acute marijuana intoxication. Future
research could explore associations between HR and other
physiological and behavioral indicators of marijuana use, such
as respiration, to better capture marijuana intoxication in natural
environments [42].

The use of XAI visualization could help increase transparency
and accountability when conducted as part of a substance use
detection system [43, 44]. It is promising to use XAI as it
enables researchers and clinicians to understand how algorithms
arrive at decisions and identify key behavioral and physiological
attributes, providing opportunities to improve detection accuracy
and enhance trust in the algorithm over time.

Real-Time Detection and Intervention Potential
Compared to an average 30-minute marijuana episode, the
5-minute window used in the best-performing model is small
enough to predict marijuana intoxication in near real-time.
Detecting marijuana intoxication in near real-time promotes
just-in-time intervention, which serves as a crucial first step
toward reducing possible marijuana-related harm in a timely
manner.

Our best detection model is unlikely to misclassify a “high”
state as not high, which demonstrates the potential for using
our detection algorithm with unseen data in real-world contexts.
On the unseen test set, we obtained 85% precision (92%
precision for 3 classes) in specifically identifying self-reported
moderate-intensive marijuana intoxication. Passive sensing
using smartphone-based sensors has been investigated in the
context of alcohol intoxication [25,26,43], and here we extend
this research to self-reported marijuana intoxication [11] beyond
smartphone-based sensors, which could ultimately be useful
for JIT interventions [41] to reduce marijuana-related harm.
The value to society and individuals of reducing
marijuana-related harm is clear. If individuals choose to use
such a personal detection system, they will need to keep their
phone charged and with them when using marijuana and wear
a device (eg, Fitbit) and keep it charged as well.

For real-time modeling using the XGBoost algorithm, deploying
the estimated model onto a computing device is an indispensable
phase. We envisage two primary deployment scenarios: first,
local assessments can be generated by deploying the model
directly onto users’devices, such as smartphones. This approach
ensures seamless functionality even without an internet
connection but requires adequate storage and computational
capacity. Second, cloud-based computation can be used. While
this approach relies on a stable internet connection, it effectively
offloads the computational burden from the user’s device.
Real-world applications introduce pragmatic considerations
such as battery longevity, which could be affected by the
model’s continuous operation, and user privacy during data
transmission and generation of model results.

Therefore, a comprehensive assessment of the model’s
feasibility in real-time operational settings is important. Our
proposed generalized model, designed to operate across a diverse
demographic spectrum rather than relying on individual-specific
(idiographic) models, offers advantages in terms of scalability
and practicality.

Privacy Considerations and User-Centric
Configuration Choices
To highlight the benefits of combining sensor features from
both smartphone and wearable devices while addressing
potential privacy concerns, particularly related to location data,
we aim to offer participants additional configuration choices
rather than study withdrawal. For example, participants can
deactivate GPS sensors if desired. This is demonstrated by our
testing of the best-performing model, XGBoost-MobiFit, where
we excluded location features. The analysis revealed a 15%
(XGBoost-MobiFit-GPS excluded) decrease in F1-score from
the best model. As proposed by Bae et al [43], collecting GPS
data and using rounded GPS data extraction (ie, less precise
location data) could be a viable approach. This avoids using
raw latitude and longitude, which may contain sensitive
information on specific locations. Researchers and clinicians
could consider providing alternative options instead of
completely disabling GPS, as GPS data contributes to the
model’s accuracy.

Moreover, to assess the efficacy of our top-performing model,
we conducted tests after excluding sleep-related features
(Multimedia Appendix 5). The analysis revealed a 24%
(XGBoost-MobiFit-Sleep excluded) decrease in the F1-score
compared to the best model’s performance. While participants
may benefit from the option to disable sensors when necessary,
it is important to note that this could potentially decrease the
model’s ability to detect marijuana intoxication.

By building a system that prioritizes privacy and user autonomy,
we can provide a valuable tool to reduce marijuana-related harm
to individuals and society. Ultimately, each person will have to
decide for themselves whether the benefits of a detection and
intervention system outweigh the tradeoffs in minimizing
possible marijuana-related harms to themselves and the broader
community.

Limitations and Future Work
The first limitation of this study is relying on self-reporting as
the ground truth, which may be subjective. This study extends
prior ESM work, which codes self-reported marijuana use as
yes or no [45], by asking participants to rate marijuana
intoxication from 0 to 10, which may be subject to recall or
other biases in reporting. The broad categorization might
overlook nuanced differences within three categories:
low-intoxication (1-3), moderate-intensive marijuana
intoxication (4-10), and not-high (0), which could affect the
accuracy of the classifiers. Future analyses examining the
performance of mobile and wearable sensors against different
thresholds for a subjective marijuana intoxication outcome could
be valuable.
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Another limitation was the size, diversity, and duration of the
participants in the study. Since the participants were all young
adults, the finding may not be generalizable to a broader age
group. In addition, the level of compliance (63%) in completing
the morning, afternoon, and evening surveys is relatively low.
Thus, it is unclear whether all episodes of marijuana use were
reported by participants, which could limit model performance.
However, since there is no real-time accessible biological testing
method at the time of publication, validating self-reported data
with the current method still represents the best alternative. The
current findings warrant future replication in a larger and more
diverse group of participants over a longer period to address
the limitations and validate the findings.

In addition, our model performed best when tested on the same
participants it was trained on (with no overlap between training
and testing data). While this has a valid use case, it assumes
that we can always collect labeled training data for participants
for whom we would like to apply the model. By applying more
testing data, using more sophisticated sensor features, and better
model tuning, future models could improve generalization over
unseen testing participants. The HR data only holds significance
when examined together with activity data. An acute increase
in HR by itself is nonspecific and may not be associated with
marijuana use or intoxication. False alarms triggered by the
algorithm could erode trust in an automated system, whereas
low sensitivity to actual marijuana use could result in
marijuana-related harm. Therefore, it is important to investigate
the interplay between human activities associated with marijuana
intoxication and physiological signals in a larger population,
and how these interactions can contribute to intervention
delivery in real-world contexts.

Finally, it is crucial to acknowledge that the potential impact
of polysubstance use on the interpretation of physiological
signals associated with self-reported cannabis intoxication was
not included. While ESM is used to collect information on the
use of other substances, our analysis did not account for the
effects of polysubstance use due to the limited scope of the
study. The presence of polysubstance use could potentially

confound the physiological signals attributed to marijuana. This
may lead to inaccuracies in our algorithm, particularly in
distinguishing between marijuana intoxication and the effects
of other substances. Thus, while our study provides valuable
insights into self-reported marijuana intoxication, it has
limitations in addressing the full spectrum of real-world
polysubstance use. Future research should include developing
algorithms that can differentiate between the physiological
signals associated with different substances, including
polysubstance use.

Conclusions
Our study demonstrates that integrating features from
smartphone-based sensors and wearable devices significantly
improves the detection of self-reported marijuana intoxication
in natural environments among young adults. The
XGBoost-MobiFit model, which combines data from both
smartphone sensors and wearable devices, achieved an F1-score
of 0.85 in detecting moderate to intensive self-reported
marijuana intoxication, outperforming models that relied solely
on smartphone sensors. The results suggest that incorporating
wearable device data enhances the XGBoost model’s
performance by 13%, justifying the additional complexity of
using wearable devices among young adults.

Key features contributing to the detection of self-reported “MI”
included an acute increase in HR (measured by Fitbit),
macromovement indicators (derived from GPS data), and
prolonged sleep patterns the night before self-reported marijuana
intoxication (measured by Fitbit).

Future research should focus on refining the algorithms that
integrate smartphone and Fitbit sensor data in larger, more
diverse samples. In addition, exploring how these algorithms,
informed by XAI, can support the development of just-in-time
interventions for clinicians is essential. Such interventions could
offer context-adaptive, personalized strategies to minimize
potential marijuana-related harms, such as intoxicated driving,
therefore reducing the frequency and severity of acute
marijuana-related incidents among young adults.
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Abstract

Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement
of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis,
prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of
specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care. For example, an echocardiogram
is a type of laboratory test that is extremely important and not easily accessible. The increasing demand for echocardiograms
underscores the imperative for more efficient scheduling protocols. Despite this pressing need, limited research has been conducted
in this area.

Objective: The study aims to develop an interpretable machine learning model for determining the urgency of patients requiring
echocardiograms, thereby aiding in the prioritization of scheduling procedures. Furthermore, this study aims to glean insights
into the pivotal attributes influencing the prioritization of echocardiogram appointments, leveraging the high interpretability of
the machine learning model.

Methods: Empirical and predictive analyses have been conducted to assess the urgency of patients based on a large real-world
echocardiogram appointment dataset (ie, 34,293 appointments) sourced from electronic health records encompassing administrative
information, referral diagnosis, and underlying patient conditions. We used a state-of-the-art interpretable machine learning
algorithm, the optimal sparse decision tree (OSDT), renowned for its high accuracy and interpretability, to investigate the attributes
pertinent to echocardiogram appointments.

Results: The method demonstrated satisfactory performance (F1-score=36.18% with an improvement of 1.7% and
F2-score=28.18% with an improvement of 0.79% by the best-performing baseline model) in comparison to the best-performing
baseline model. Moreover, due to its high interpretability, the results provide valuable medical insights regarding the identification
of urgent patients for tests through the extraction of decision rules from the OSDT model.

Conclusions: The method demonstrated state-of-the-art predictive performance, affirming its effectiveness. Furthermore, we
validate the decision rules derived from the OSDT model by comparing them with established medical knowledge. These
interpretable results (eg, attribute importance and decision rules from the OSDT model) underscore the potential of our approach
in prioritizing patient urgency for echocardiogram appointments and can be extended to prioritize other laboratory test appointments
using electronic health record data.

(JMIR AI 2025;4:e64188)   doi:10.2196/64188
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Introduction

Background
In the present medical landscape, the intricate interplay between
innovative techniques has expanded the horizons of medical
knowledge and opened avenues for unprecedented precision in
patient care. The increasingly sophisticated laboratory tests play
a crucial role in this transformative process. Born out of
meticulous research and honed by the rigors of scientific
scrutiny, these tests provide clinicians with a multifaceted toolkit
to decipher the intricacies of illnesses, capturing the nuances of
each condition, guiding medical professionals toward
evidence-based interventions, and empowering medical
professionals to tailor treatments with personalized precision.

However, a pivotal factor to take into consideration is the limited
availability of certain state-of-the-art laboratory tests, as they
often involve intricate equipment and elaborate protocols. This
is evident from their expensive nature, the scarcity of skilled
medical professionals capable of operating these laboratories,
and the limited accessibility across different regions or during
specific time frames [1]. As a result, the transformative potential
of these laboratory tests is mitigated by the practical challenges
they pose in terms of affordability [2]. The potential significant
advantages of laboratory tests, coupled with their limited
availability, render them a scarce resource, resulting in many
patients having to endure wait times for access to laboratory
tests. Consequently, predicting and prioritizing which patients
require testing has emerged as an important research problem.

The rise of health IT and the subsequent influx of electronic
health record (EHR) data, combined with the power of machine
learning, offers new opportunities to revolutionize the
prioritization of medical laboratory tests [3]. By delving into
vast amounts of historical patient information, machine learning
algorithms can discern intricate patterns and correlations that
might otherwise elude human observation. The predictive
outcomes generated by machine learning algorithms can
contribute to refining testing protocols, enabling medical
practitioners to make data-driven decisions regarding the
prioritization and scheduling of laboratory tests based on patient
information. In this study, we aim to elucidate methods for
evaluating patients’ urgency for tests, seeking to refine the
allocation of scarce laboratory tests by harnessing the power of
machine learning and analyzing historical EHRs. Specifically,
we aim to contribute by applying an optimal sparse decision
tree (OSDT) to a new domain—predicting the urgency of
medical laboratory tests, using echocardiograms as a case study.
Based on our literature review, OSDT stands out as one of the
most suitable methods for achieving both optimal performance
and interpretability in predicting the urgency of patients
requiring echocardiograms. Our ultimate objective is to ensure
prompt access for patients with the most critical needs.

Related Work

Echocardiogram and Patient Prioritization Techniques
An echocardiogram is one the most cost-effective means for
screening cardiac anatomy, uses ultrasound to evaluate the
cardiac structures, and provides critical information for medical

providers [4]. It functions as a crucial precursor to a detailed
diagnosis, capable of screening cardiac anatomy and providing
essential information for assessing cardiovascular conditions
such as murmurs, stenosis, and regurgitation. Additionally, it
plays a crucial role in diagnosing valvular morphology and
uncovering the root causes of valve diseases [5]. A
comprehensive echocardiographic assessment can provide both
diagnostic and prognostic information, thus facilitating risk
stratification and establishing baseline data for future evaluations
[5].

The echocardiogram, although immensely valuable, is not
always easily attainable due to the increasing demand for the
test. For example, there has been an observed increase in the
prevalence of rheumatic heart disease, which stands as the most
predominant form of valvular heart disease and impacts
approximately 41 million individuals in developing countries
[6]. In recent years, there has been a notable escalation in the
demand for pediatric cardiology services, leading to documented
workloads that have exhibited a substantial upsurge of up to
51% over the past decades [7]. Furthermore, there has been an
increase in the prevalence of children with asymptomatic
murmurs who necessitate evaluation through echocardiogram
[8]. The increasing demands pose challenges to echocardiogram
laboratories in resource management, requiring medical
institutions to establish more effective scheduling protocols to
prioritize patients in critical need of echocardiogram lab
appointments.

Patient prioritization techniques can be broadly classified into
scoring systems and machine learning classification–based
systems [9]. Scoring systems, particularly those using regression
techniques, have gained prominence for their ability to allocate
medical resources. These systems heavily rely on the expertise
of medical professionals to assign priority scores to patients.
Examples include the Salisbury priority scoring system, allowing
surgeons to assign relative priorities, and the Italian waiting
time prioritization system, which reallocates outpatient referrals
based on clinical priorities prescribed by general practitioners
[9]. These methods, however, exhibit various limitations. First,
there may be inherent bias (eg, subjective judgments obtained
through experience by medical professionals) as these
approaches often necessitate input from medical specialists’
judgments. A machine learning and data-driven method can
serve as a complement to these types of systems. Second, these
methods might be tailored for a particular patient prioritization
task (eg, surgery or referral), and demand a high level of
specialized medical knowledge for their design, making them
difficult to generalize to other tasks [10]. Third, certain methods
lack transparent decision rules for assessing the significance of
input attributes, thereby posing challenges for their practical
applications [11]. Machine learning classification-based methods
typically rely on a large amount of patients’ information (eg,
EHRs) to autonomously discern patterns and generate
predictions. This process aids in patient prioritization and avoids
limitations associated with scoring systems [12]. The existing
methods, however, fail to transform the prediction process and
outcomes into clear and executable rules, limiting the practical
application of these approaches [9]. Moreover, existing studies
predominantly center around 5 clinical areas, including cataract
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surgery, general surgical procedures, hip and knee replacements,
magnetic resonance imaging scanning, and children’s mental
health using specific predictive attributes and expert systems
[13]. There is a crucial need for new methods that apply more
broadly to general laboratory test prioritization.

To summarize, our literature review underscores the need for
new methods of prioritizing patients, which leverage machine
learning and data-driven techniques to complement existing
methods, ensure transparency, and have the potential to be
generalized to various patient prioritization tasks. Consequently,
using extensive patient historical EHRs combined with an
interpretable machine learning approach emerges as a potential
solution to address these gaps.

Leveraging Machine Learning for Optimizing the Use
of Scarce Laboratories Tests
When a large number of patient EHRs, which contain numerous
hidden patterns, are available, integrating machine learning into
health care practices emerges as a potential solution to address
pressing issues such as the continual demand for medical
services outpacing available resources. Specifically, machine
learning, with its capacity to analyze vast data and discern
intricate patterns, empowers health care professionals to make
data-driven decisions regarding the allocation of laboratory
tests. By developing predictive models using historical EHRs,
machine learning models can identify individuals who are more
likely to benefit from specific tests, ensuring that scarce
resources are allocated where they can yield the greatest impact.
Furthermore, such methods ensure critical cases receive prompt
attention, leading to expedited diagnoses and interventions [14].
Moreover, the prediction results can potentially streamline the
testing process by reducing unnecessary tests [15].

The integration of machine learning techniques to optimize the
allocation of limited medical tests and laboratory resources has
attracted considerable research attention. Research by Elitzur
et al [16] delves into the use of prediction models to allocate
medical tests efficiently. The study uses historical patient data
to develop models that identify the most suitable candidates for
specific tests, thereby enhancing resource allocation and
streamlining the testing process. In a similar vein, Marescotti
et al [17] investigate the orchestration of laboratory workflows
through machine learning-driven prioritization. By considering
factors such as clinical urgency and resource availability, their
work demonstrates how machine learning algorithms can ensure
timely and effective laboratory test processing, contributing to
both improved patient care and optimized resource use.
Similarly, Zhang et al [18] estimate the probability of requiring
mechanical ventilation for in-hospital patients and contribute
to the literature by identifying which patients require medical
devices (ie, critical medical resources) more urgently.

However, while the potential benefits of machine learning in
optimizing resource allocation are evident, challenges remain.
A recent study underscores the need for further research and
development in the area of machine learning models’
interpretability and fairness, ensuring that data-driven decisions
in health care maintain transparency [19]. The research gap
drives us to use an interpretable and efficient machine learning
method for laboratory tests and patient optimization.

Interpretable Machine Learning
Medical research is often at the forefront of technological
innovation, with machine learning algorithms being harnessed
to analyze vast datasets, predict disease outcomes, and assist in
clinical decision-making. However, as these algorithms become
increasingly sophisticated, they tend to function as “black
boxes,” where the reasoning behind their predictions remains
obscured. This opacity not only raises concerns about
trustworthiness but also impedes the adoption and acceptance
of these tools by medical professionals [19].

In medical research, the concept of interpretability holds
profound significance. The intricate interplay between
cutting-edge technology and human well-being underscores the
critical need to not only generate accurate predictions but also
to understand the underlying rationale behind those predictions.
The complexity of medical data, coupled with the potential
life-altering consequences of decisions made based on data and
machine learning models, demands a heightened level of
transparency and comprehensibility requirements [20].

The interpretability of machine learning models empowers
health care providers to understand the factors that led to a
specific decision, enabling them to fine-tune treatment strategies
according to their medical judgment and the patient’s unique
circumstances. Consequently, there has been a surge in post
hoc techniques for elucidating black box machine learning
models in a manner interpretable by humans. The most
prominent techniques among these include local, model-agnostic
methods that aim to explain individual predictions of a given
black box classifier, such as local interpretable model-agnostic
Explanation and Shapley additive explanation [21]. Due to their
high generalizability, post hoc methods have been used to
explain a wide array of machine learning models across various
domains. However, previous research has indicated that there
are common limitations associated with these post hoc
techniques, including local interpretability, sensitivity to
perturbations, and difficulties in choosing interpretable surrogate
models [21].

In health care, arguably, a more appropriate research direction
for using interpretable machine learning is tree-based models
because much of the data related to patient prioritization is
structured data (eg, tabular EHRs). Tree-based machine learning
models can perform comparably to complex models (eg, deep
learning models), especially after thorough preprocessing of
tabular data [22]. In contrast to post hoc explainable machine
learning techniques, tree-based models are logical models that
consist of statements involving logical operations, providing
clear and interpretable decision rules [22]. This interpretability
is highly valuable in health care, as it allows medical
professionals to not only make accurate predictions but also
understand the underlying factors driving those predictions,
enhancing transparency and trust in the decision-making process.

Since our research aims to use historical EHR data for patient
prioritization, it is crucial to acknowledge another notable
characteristic of patient prioritization-related information: the
prevalence of numerous categorical variables (eg, patient
demographic information such as gender and age groups).
Furthermore, the outcomes of patient prioritization are also
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expressed as categorical variables. For example, preventive
interventions often involve categorical decisions, such as
determining which individuals should undergo selective or
indicated interventions or identifying those most likely to benefit
from specific treatments [23]. In such scenarios, an efficient
tree-based approach tailored to categorical variables is highly
valuable. In this study, we focus on a cutting-edge decision tree
algorithm–OSDT [24].

A decision tree features a hierarchical structure that is composed
of a root node, branches, internal nodes, and leaf nodes in a tree
format. Each path from the root node to the leaf node illustrates
a rule to partition the data and leads to the final classification.
The tree-based method presents a clear pattern for the
decision-making process; thus, it is considered a transparent
and highly interpretable model [25]. The results of the tree-based
models are extremely useful for medical decision-making [26],
and the performance of decision tree classifiers is verified by
researchers on medical data [27]. Nevertheless, concerns have
been raised regarding the suboptimality of decision tree
algorithms [24,28]. To address this issue, OSDT has been
introduced, aiming to ensure optimal solutions for binary
variables in a computationally efficient manner [24].

The OSDT algorithm addresses various limitations observed in
prior tree-based methods. Unlike previous approaches that often
focused on finding the optimal tree within a fixed number of
nodes or limited topology, OSDT tackles these shortcomings
by identifying optimal trees through the use of a regularized
loss function. This loss function strikes a balance between
accuracy and the number of leaves, thereby enhancing the
efficiency of the decision tree model. Furthermore, OSDT
improves computational efficiency and interpretability by
incorporating a series of analytical bounds that effectively
reduce the search space while still identifying the optimal tree.
By implementing these bounds, the algorithm streamlines the
search process, leading to expedited identification of the optimal
decision tree structure. Moreover, the OSDT algorithm has
undergone mathematical validation, demonstrating its efficacy
in constructing optimal trees for structured tabular datasets with
attributes having binary values. It establishes its effectiveness
in addressing binary classification problems. The algorithm is
designed to uphold commendable levels of accuracy and is
anticipated to meet the demands of medical prediction tasks
with stringent interpretability requirements.

Methods

Study Design
In this study, we conducted empirical and predictive analyses
using echocardiogram data extracted from EHRs at a large
multispecialty hospital and medical facility. The dataset included
administrative details, referral diagnoses, and patient conditions.
To explore attributes relevant to echocardiogram prioritization,
we used the OSDT algorithm due to its high accuracy and
interpretability. We aim to enhance the scheduling of
echocardiogram laboratory appointments by enabling the
prioritization of patients with urgent needs based on our model’s
predictions. To be noted, our proposed method is not intended

to replace human expertise but to complement it, offering
valuable insights that guide practitioners toward informed and
patient-centric choices.

Ethical Considerations
The Mayo Clinic Institutional Review Board, based on the
authors' submission notes and in accordance with the Code of
Federal Regulations, 45 CFR 46.102, deemed that this research
did not require IRB review.

Data Collection and Selection
The dataset comprises real-world data from one of the top
medical centers in the United States. The data were collected
over a 1-year period in 2019, including 34,293 echocardiogram
appointments. It consisted of 64 dummy-coded categorical
attributes, encompassing various aspects such as patient
demographics, medical history, clinical settings (eg, inpatient
or outpatient status), past procedures, future scheduled
procedures, and diagnose indicators for
echocardiogram-justifying signs (eg, heart murmurs, shortness
of breath, or chest pain) extracted from the clinical notes and
referrals in the EHRs (Table 1).

The dataset exhibited a notable class imbalance issue,
particularly evident in the examination of the
“MadeBeforeEcho” attribute. This attribute delineates whether
the downstream appointment following the echocardiogram
occurs before the scheduling date of the echocardiogram
appointment (not the actual appointment date). Within the “Y”
category, the distribution revealed 84% nonurgent cases and
16% urgent cases. Conversely, in the “N” category, the
distribution portrayed 58% nonurgent cases and 42% urgent
cases. This observation underscored a substantial prevalence of
nonurgent cases within the “MadeBeforeEcho” attribute.
Furthermore, a similar pattern of imbalance is discerned when
analyzing attributes such as “ReferredType” and “SurgeryYN.”
These attributes also exhibit a significant majority of cases
concentrated within 1 category, indicating the need for careful
consideration of class distribution in subsequent predictions.

The response variable is determined by calculating the number
of days between the date the echocardiogram appointment was
generated in the system and the actual appointment date.
According to medical policy, appointments are classified as
urgent (ie, the response variable) if the number of days is 2 or
less, and nonurgent otherwise.

It is important to note that the features categorized under the
“Future Scheduled Process” were derived based on the date the
echocardiogram appointment is generated in the system, rather
than the actual appointment date (Figure 1). This approach
ensures that the model uses only the information available up
to the point of echocardiogram appointment generation, without
incorporating any data beyond this cutoff.

Of note, our dataset is a tabular dataset with attributes and
response variables having binary values. Therefore, OSDT is
highly suitable for serving this dataset, assisting us in making
predictions for patient prioritization.

JMIR AI 2025 | vol. 4 | e64188 | p.59https://ai.jmir.org/2025/1/e64188
(page number not for citation purposes)

Jiang et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Dataset and attribute statisticsa.

Summary statistics, n (%)DescriptionCategory and variable

UrgentNonurgent

Demographics

Age (years)

478 (6.41)1929 (7.18)—b0-18

1930 (25.90)6766 (25.19)—19-55

1342 (18.01)4954 (18.45)—56-65

1896 (25.44)6784 (25.26)—66-75

1775 (23.82)6398 (23.82)—Older than 75

Sex

3529 (47.55)11,829 (44.09)—Female

3892 (52.45)15,002 (55.91)—Male

Patient geolocation

2376 (31.96)9973 (37.14)—In_State

4301 (57.85)14,332 (53.37)—Out_of_State

758 (10.20)2550 (9.50)—Town

Clinical settings

ReferralType

606 (8.15)1156 (4.30)—External

6829 (91.85)25,699 (95.70)—Internal

The specialty that patient referred byReferredBy

1162 (15.63)8188 (30.49)—Cardiovascular medicine

142 (1.91)436 (1.62)—Family medicine

4 (0.05)145 (0.54)—Hospital medicine

591 (7.95)978 (3.64)—Internal medicine

359 (4.83)1096 (4.08)—Obstetrics and gynecology

401 (5.39)2302 (8.57)—Pediatric and adolescent medicine

4776 (64.24)13,710 (51.05)—Other

Referral originReferredFrom

0 (0.00)2 (0.01)—Arizona campus

0 (0.00)1 (0.00)—Florida campus

38 (0.51)154 (0.57)—Mayo Clinic health system

4463 (60.03)17,495 (65.15)—Rochester campus

2934 (39.46)9203 (34.27)—Other

Referred typeReferredType

4585 (61.52)18,706 (69.66)—Outpatient

2868 (38.48)8149 (30.34)—Other

Future scheduled process

The number of days between the date the
echocardiogram appointment was generated
in the system and the surgery date

Diff_surgery_after

461 (6.20)1449 (5.40)—0-1

492 (6.62)1607 (5.98)—2-5

JMIR AI 2025 | vol. 4 | e64188 | p.60https://ai.jmir.org/2025/1/e64188
(page number not for citation purposes)

Jiang et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Summary statistics, n (%)DescriptionCategory and variable

UrgentNonurgent

606 (8.15)1143 (4.26)—6-15

1494 (20.09)4715 (17.56)—16 and greater

4382 (58.94)17,941 (66.81)—None

Whether the next downstream appointment
after echocardiogram is made before the
date the echocardiogram appointment was
generated in the system or not

MadeBeforeEcho

4660 (62.53)23,845 (88.79)—Yes

2793 (37.47)3010 (11.21)—No

The department in which the appointment
happened after the date the echocardiogram
appointment was generated in the system

NextDepartment

1749 (23.47)12,012 (44.73)—Cardiovascular medicine

5704 (76.53)14,843 (55.27)Departments other than cardiovascular
medicine

Non-cardiovascular medicine

The number of days from the date the
echocardiogram appointment was generated
in the system to its following appointment

NextLength

1608 (21.63)4531 (16.87)—0-1

2018 (27.14)3301 (12.29)—1-5

618 (8.31)1,014 (3.78)—Greater than 5

3191 (42.92)18,009 (67.06)—None

Type of echocardiogram visitProcedure

362 (4.87)848 (3.16)—TEEc

6803 (91.50)23,293 (86.74)—TTEd

270 (3.63)2714 (10.11)—Other

Past procedures

Whether the patient had a cardiovascular
surgery within 6 months prior to the date
the echocardiogram appointment was gener-
ated in the system

SurgeryYN

264 (3.54)1708 (6.36)—Yes

7189 (96.46)25,147 (93.64)—No

Whether the patient had a surgery within 3
months after the date the echocardiogram
appointment was generated in the system

SurgeryYN_After

3053 (40.96)8914 (33.19)—Yes

4400 (59.04)17,941 (66.81)—No

Medical history

50 (0.67)115 (0.43)Alcohol abuseAlcohol

605 (8.12)962 (3.58)AnemiaAnemia

33 (0.44)87 (0.32)Blood lossBloodLoss

484 (6.49)1884 (7.02)—CHFe

274 (3.68)446 (1.66)Coagulation deficiencyCoagulopathy

192 (2.58)439 (1.63)Major depressive disorderDepression

230 (3.09)610 (2.27)—DMf
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Summary statistics, n (%)DescriptionCategory and variable

UrgentNonurgent

129 (1.73)317 (1.18)—DMcxg

19 (0.25)86 (0.32)Drug abuseDrugs

617 (8.28)1013 (3.77)Fluid and electrolyte disordersFluidsLytes

1 (0.01)0 (0.00)—HIV

786 (10.55)2201 (8.20)—Hypertension

277 (3.72)777 (2.89)HypothyroidismHypothyroid

197 (2.64)429 (1.60)—Liver

347 (4.66)464 (1.73)Lymph system cancerLymphoma

222 (2.98)251 (0.93)—Metastatic cancer

291 (3.90)581 (2.16)Neurological disordersNeuroOther

339 (4.55)980 (3.65)—Obesity

15 (0.20)58 (0.22)—Paralysis

153 (2.05)298 (1.11)Pulmonary circulation disordersPHTNh

53 (0.71)126 (0.47)Mental disorder characterized by a discon-
nection from reality

Psychoses

20 (0.27)41 (0.15)Chronic peptic ulcerPUDi

273 (3.66)650 (2.42)Chronic pulmonary diseasePulmonary

234 (3.14)965 (3.59)—PVDj

331 (4.44)950 (3.54)Renal failureRenal

150 (2.01)254 (0.95)Rheumatoid arthritis or collagen vascularRheumatic

380 (5.10)722 (2.69)Solid tumorTumor

573 (7.69)3367 (12.54)Valvular diseaseValvular

237 (3.18)248 (0.92)Weight lossWeightLoss

Diagnoses

25 (0.34)18 (0.07)MSSAk bacteremia, sepsisA

40 (0.54)47 (0.18)MRSAl, staph bacteremia, slaph, fungemia,
pseudomonas, candidemia, MRSA bac-
teremia

B

554 (7.43)1428 (5.32)Leukemia, AMLm, CMLn, lymphoma,

AMVo, myeloma

C

193 (2.59)561 (2.09)Diseases of the blood and blood-forming
organs and certain disorders involving the
immune mechanism

D

408 (5.74)1714 (6.38)Endocrine, nutritional and metabolic dis-
eases

E

46 (0.62)49 (0.18)Behavioral and neurodevelopmental disor-
ders

F

273 (3.66)590 (2.20)Muscular dystrophyG

28 (0.38)60 (0.22)Diseases of the eye and adnexa or disease
of the ear and mastoid process

H

4096 (54.96)11,302 (42.09)Heart failure, coronary artery, cardiac arrest,

STEMIp, stroke, cardia, hypertension, endo-

carditis, NSTEMIq, PEAr arrest, AFibs,
pulmonary embolism, pulmonary hyperten-
sion, and vegetation

I
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Summary statistics, n (%)DescriptionCategory and variable

UrgentNonurgent

392 (5.26)477 (1.78)Resp failure, respiratory, and pulmonaryJ

130 (1.74)357 (1.33)Liver and cirrhosisK

33 (0.44)36 (0.13)Diseases of the skin and subcutaneous tissueL

280 (3.76)503 (1.87)Diseases of the musculoskeletal system and
connective tissue

M

119 (1.60)397 (1.48)Diseases of the genitourinary systemN

57 (0.76)235 (0.88)Pre-eclampsia, preeclampsiaO

4 (0.05)12 (0.04)Certain conditions originating in the perina-
tal period

P

309 (4.15)2811 (10.47)Ehlers, coarc, PDAt, and congenitalQ

2811 (37.72)4111 (15.31)Murmur, hypoxemia, shortness, SOBu,
breath, shock, dyspnea, chest pain, troponin,
syncope, electrocardiogram, extremity,
mass, and swelling, edema

R

21 (0.28)100 (0.37)Injury, poisoning and certain other conse-
quences of external causes

S

1129 (15.15)5966 (22.22)Chemo, preoperative, pre-op, prenatal,
pregnancy, prior to, BMI, surgery, and
transplant

Z

aAll the features used in this study are complete for each patient, with no missing values. The diagnoses are derived from patients’ ICD-9 codes, and
the medical history is extracted from electronic health record notes using the medical center’s built-in natural language processing tools.
bNot applicable.
cTEE: transesophageal echocardiogram.
dTTE: transthoracic echocardiogram.
eCHF: congestive heart failure.
fDM: diabetes without chronic complications.
gDMcx: diabetes with chronic complications.
hPHTN: pulmonary hypertension.
iPUD: peptic ulcer disease.
jPVD: peripheral vascular disease.
kMSSA: methicillin-sensitive Staphylococcus aureus.
lMRSA: methicillin-resistant Staphylococcus aureus.
mAML: acute myeloid leukemia.
nCML: chronic myeloid leukemia.
oAMV: avian myeloblastosis virus.
pSTEMI: ST-elevation myocardial infarction.
qNSTEMI: non–ST-elevation myocardial infarction.
rPEA: pulseless electrical activity.
sAFib: atrial fibrillation.
tPDA: patent ductus arteriosus.
uSOB: shortness of breath.
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Figure 1. Timeline and process of echocardiogram appointment scheduling. Using MadeBeforeEcho as an example.

Problem Formulation: Urgency Prediction Using
OSDT

With data , where are M binary attributes and are the
response variable, we model an OSDT tree d with a collection
of H distinct leaves d = (p1,p2,...,pH). The objective function in
this study integrates the misclassification error with a sparsity
penalty imposed on the number of leaf nodes, denoted as
R(d,x,y). R(d,x,y) = l(d,x,y) + λHd, where l(d,x,y) represents the
misclassification error of the tree, which is computed as the
fraction of training data with incorrectly predicted labels. In
addition, Hd represents the number of leaves in tree d. To
regularize the model and discourage larger trees, a regularization
term λHd is introduced, where λ is a hyperparameter controlling
the strength of the penalty. A higher value of λ corresponds to
a stronger penalty on the size of the tree. This implies that the
tree is more likely to be shallower when achieving optimality.

By using OSDT, we aim to improve the overall performance
of the classification task while simultaneously upholding a
significant level of interpretability, thereby facilitating a
comprehensive understanding of the underlying patterns and
factors influencing the classification outcomes.

Results

Overview
In this section, we evaluated the proposed method against
state-of-the-art machine learning models. We then highlighted
attribute importance and provided clear interpretations of derived
results within specific patient cohorts for transparency and
clarity.

Performance Evaluation
We demonstrated the performance of our OSDT model by
comparing it to commonly used machine learning models as

baselines, including naive Bayes, generalized linear model, fast
large margin, logistic regression, neural network, vanilla
decision tree, random forest, gradient boosted trees, and support
vector machine. The evaluation metrics used for the binary
classification are accuracy, precision, recall, F1-score, and
F2-score. Accuracy is a metric that quantifies the overall
correctness of a machine learning model. It represented the
proportion of correct predictions made by the model across all
categories or classes. Precision and recall, on the other hand,
measured the model’s ability to accurately predict a specific
category or class. Precision focused on the proportion of true
positive predictions relative to all positive predictions made by
the model. Recall, also known as sensitivity, gauged the model’s
capability to correctly detect instances of a specific category.
It quantified the proportion of true positive predictions relative
to all actual positive instances present in the data. The F1-score
has been widely used in the context of imbalanced classification
problems and serves as a prominent metric. It is computed as
the harmonic mean of the precision and recall scores, providing
a balanced assessment of the model’s performance by
considering both precision and recall simultaneously. The
F2-score assigns greater weight to recall than precision, proving
beneficial when the consequences of false negatives (ie, missed
positive cases where patients are in urgent condition but remain
unidentified by the model) outweigh those of false positives (ie,
incorrectly identified positive cases). All metrics mentioned
exhibited a range of values between 0 and 1, whereby a higher
value indicated superior performance.

Compared with various baselines, the performance of the OSDT
model achieved the highest accuracy, recall, F1-score, and
F2-score (Table 2). The performance reported is based on 5-fold
cross-validation. These results indicated the predictive capability
of the OSDT model in our research context, demonstrating the
overall performance and effectiveness of the OSDT model.
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Table 2. OSDTa performance comparisons with baselinesb.

F2-scorec (%), mean
(SD)

F1-score (%), mean
(SD)

Recall (%), mean
(SD)

Precision (%),
mean (SD)

Accuracy (%), mean
(SD)

Algorithm

4.13 (1.02)6.41 (1.09)3.34 (0.59)81.3 (7.11)78.86 (0.24)Naïve Bayes

7.27 (0.93)11.01 (1.03)5.93 (0.69)78.05 (5.00)79.23 (0.22)Generalized linear model

20.86 (2.17)28.21 (1.7)17.76 (1.4)68.94 (2.57)80.26 (0.47)Fast large margin

7.55 (0.78)11.41 (1.49)6.16 (0.86)77.68 (4.26)79.26 (0.22)Logistic regression

14.66 (0.56)21.26 (0.66)12.14 (0.39)85.59 (4.59)80.49 (0.29)Deep learning

25.96 (3.15)33.53 (4.5)22.45 (4.1)69.18 (4.5)80.69 (0.2)Decision tree

8.96 (2.67)13.42 (0.57)7.34 (0.31)78.19 (5.54)79.45 (0.18)Random forest

17.85 (1.95)25.18 (2.25)14.94 (1.55)80.8 (2.96)80.64 (0.29)Gradient boosted trees

27.39 (1.95)34.48 (4.02)24.06 (3.4)61.42 (5.57)80.3 (0.84)SVMd

28.18 (0.55)36.18 (0.66)24.56 (0.59)68.75 (1.7)81.21 (0.20)OSDT (ours)

aOSDT: optimal sparse decision tree.
bOSDT is an algorithm that makes decisions based on direct constraints rather than generating probability scores. As a result, metrics like the receiver
operating characteristic curve, precision and recall curve, and area under curve are not applicable for this method.Although the CIs for SVM and OSDT
overlap, it is noteworthy that SVM exhibits a significantly larger SD. This indicates that OSDT is more robust in this scenario, delivering a more stable
and reliable performance despite the overlapping intervals.

c ; β=2.
dSVM: support vector machine.

Interpreting Prediction Results
OSDT, as a tree-based model, possesses the notable advantage
of providing interpretable prediction results. We conducted an
analysis of the decision trees generated using the entire dataset
as well as specific patient cohorts. The objective is to extract
the most influential rules that demonstrate both high accuracy
and coverage, thereby aiming to uncover the underlying factors
that drive the urgent decision of echocardiogram appointments.

We first identified several key categories and attributes that
significantly influenced the urgency of patients’echocardiogram
appointments (Table 3). First, the most important categories
included “future scheduled process,” pertaining to clinic
scheduling policies, and “diagnosis,” indicative of patients’
health conditions. Second, within the top 12 important attributes,
a cluster of attributes related to future scheduled processes
emerged as the most prominent. These attributes encompassed
scenarios if the next downstream appointment following the
echocardiogram was scheduled prior to the echocardiogram
appointment (ie, “MadeBeforeEcho”), instances where the next
appointment did not pertain to the cardiovascular department
(ie, “NextDepartment”), cases where no subsequent appointment
was scheduled after the echocardiogram appointment (ie,
“NextLength_None”), and situations where the time gap
between the echo appointment and the subsequent one was less
than a day (“NextLength_1”). The absence of a downstream
appointment before the echocardiogram could be attributed to
the clinic's practice of tailoring subsequent appointments based
on the results of the echocardiogram. Consequently, it became
imperative for medical providers to accord priority to the
echocardiogram appointments of these patients, as the results
would furnish vital evidence for guiding appropriate follow-up
care and future steps. Third, attributes related to diagnoses

assumed the second tier of importance, particularly whether
patients exhibited respiratory and cardiac symptoms (ie, “R”)
or had documented cardiovascular conditions (ie, “I”). Patients
diagnosed with heart-related issues, such as heart murmurs,
shortness of breath, and chest pain, typically require expedited
access to echocardiography results to determine the next course
of action. Fourth, clinical setting attributes and demographic
information are also important to patient prioritization. In the
context of inpatients, health care providers tended to assign
earlier echocardiogram appointment slots as part of a strategy
to reduce the length of hospital stays. Additionally, when
prioritizing patients with heart conditions, individuals referred
by cardiologists received preferential treatment in terms of
scheduling. Furthermore, the medical facility providing the data
adopted a proactive approach by expediting echocardiogram
appointments for out-of-state patients, aiming to minimize their
duration of stay. This proactive stance facilitated timely
evaluation and management, thereby contributing to a more
efficient allocation of resources and an enhanced patient
experience. Among medical history attributes, the presence of
fluid and electrolyte disorders (ie, “FluidsLytes”) emerged
within the top 12, which underscored the strong correlation
between fluid and electrolyte disorders and heart failure, further
emphasizing its relevance in patient prioritization [29].

These results underscore the significance of admission and
policy-related information in determining the urgency of
echocardiogram appointments. They reflected the complexities
of the scheduling process and highlighted the need for tailored
appointment allocation strategies based on patients’ referral
status and downstream appointment requirements.

We subsequently focus on a specific patient cohort for further
analysis. The “MadeBeforeEcho” attribute clearly emerged as
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exceptionally significant among the dataset’s attributes. It was
noteworthy to highlight that, based on the data, there were no
urgent cases when the “MadeBeforeEcho” variable was marked
as “N.” Consequently, we conducted an investigation
specifically focusing on patients whose subsequent downstream
appointment was scheduled before the date the echocardiogram
appointment was generated in the system. This subset of the
patient cohort served as an illustrative example of how decision
trees could provide a high degree of interpretability in the
context of patient prioritization (Figure 2). Upon scrutiny of the
subdecision tree for this cohort depicted, several noteworthy
observations emerged. Primarily, it became evident that the

most crucial attribute for this cohort is “R,” signifying whether
the patient presents with respiratory and cardiac symptoms,
which served as the root node of the subtree. The pathway
leading to categorizing a patient case as urgent depended on
multiple conditions: the patient exhibited respiratory and cardiac
symptoms, had an appointment scheduled within the cardiology
department, hailed from out of state, and had a subsequent
appointment scheduled following the echocardiogram. In
contrast, patients without respiratory and cardiac symptoms
tended toward classification as nonurgent. This tendency toward
nonurgency was particularly pronounced in cases lacking a
scheduled appointment subsequent to the echocardiogram.

Table 3. Attribute importance and category importancea.

Attribute importanceMeaningsCategory and attribute

Future scheduled process (importance=0.0369)

0.0279Whether the next downstream appointment after echocardiogram is
made before the date the echocardiogram appointment was generated
in the system or not.

MadeBeforeEcho

0.0049The department in which the appointment happened after the date
the echocardiogram appointment was generated in the system.

NextDepartment

0.0035No following appointment scheduled after the date the echocardio-
gram appointment was generated in the system.

NextLength_None

0.0006The number of days from the date the echocardiogram appointment
was generated in the system to its following appointment is less than
1 day.

NextLength_1

Diagnoses (importance=0.0154)

0.0147If have murmur, hypoxemia, shortness, SOBb, breath, shock, dysp-
nea, chest pain, troponin, syncope, electrocardiogram, extremity,
mass, swelling, and edema.

R

0.0007If have heart failure, coronary artery, cardiac arrest, STEMIc, stroke,

cardia, hypertension, endocarditis, NSTEMId, PEAe arrest, AFibf,
pulmonary embolism, pulmonary hypertension, and vegetation.

I

Demographic (importance=0.0369)

0.0029Patient is from out of state.Geo_Out of State

0.0013Patient is from the local town.Geo_Town

0.0011Age between 19 and 55 years.AGE_19-55

Clinical settings (importance=0.0053)

0.0047Referred type-inpatient or outpatient.ReferredType

0.0006The specialty that patient referred by is cardiovascular disease de-
partment.

ReferredBy_CV

0.0021If have fluid and electrolyte disordersFluidsLytes (medical history; impor-
tance=0.0021)

aThe relative importance scores of the attribute category and individual attributes are determined by the Gini index of the optimal sparse decision tree.
The feature importance values are relative importance values and do not have a fixed absolute range. We presented only the most important features.
bSOB: shortness of breath.
cSTEMI: ST-elevation myocardial infarction.
dNSTEMI: non–ST-elevation myocardial infarction.
ePEA: pulseless electrical activity.
fAFib: atrial fibrillation.
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Figure 2. The OSDT for patients whose next downstream appointment after the echocardiogram is scheduled before the date the echocardiogram
appointment was generated in the system. OSDT: optimal sparse decision tree. λ=0.0008; accuracy: 83.69%.

Analyses on Diverse Patient Cohorts
In order to enhance the validity of the decision trees and gain
more valuable medical insights, we conducted more analyses
on smaller patient cohorts. Specifically, we focus on patients
who have no next downstream appointment after
echocardiogram and are categorized as inpatients. Furthermore,
we narrowed down the patient cohort based on specific medical
history and presented a compilation of rules extracted from the
decision tree (Table 4).

A decision rule was defined as the pathway from the root of a

decision tree to a leaf node . The accuracy and coverage of
a decision rule served as critical metrics for evaluating its
effectiveness and applicability. Accuracy, denoting the capacity
of a decision rule to effectively forecast the outcome of interest,
was quantified as the proportion of records that fulfill both the
rule’s precondition and its consequent within the precondition.

This metric was computed as , where “number of Correct
Predictions” denoted the count of instances where the decision
rule accurately anticipated the desired outcome and “Total
number of Instances” represented the entire dataset or the set
of instances under consideration, which elucidated how accuracy
measures the precision of a decision rule in making predictions
based on its specified conditions and its congruence with actual
outcomes within the dataset. Coverage, on the other hand,
measured the proportion of cases or individuals to which the

decision rule could be applied. It could be calculated as . It
signified the generalizability and practical scope of the rule in
real-world scenarios. A decision rule with high coverage
indicates its ability to be applied to a wide range of cases or
individuals, thereby increasing its usefulness in practice.

In the context of patients with congestive heart failure (CHF),
anemia played a significant role in determining the urgency of

echocardiogram appointments (Table 4). Anemia could have
detrimental effects on cardiac function through various
mechanisms [29]. First, it induces cardiac stress by increasing
heart rate and stroke volume. Additionally, anemia could lead
to reduced renal blood flow and fluid retention, adding further
strain to the heart. Prolonged anemia, regardless of its underlying
cause, could contribute to the development of left ventricular
hypertrophy, which exacerbates CHF by promoting cardiac cell
death through apoptosis. Notably, patients with anemic CHF
often exhibited resistance to CHF medications, and numerous
studies consistently demonstrated that these individuals have a
higher mortality rate compared to patients with non-anemic
CHF [30]. Anemia also played a critical role in patients with
coagulopathy, as it exacerbated bleeding, which in turn further
worsens coagulopathy [30].

For patients with hypothyroidism, fluid and electrolyte disorders
served as strong indicators. Hypothyroidism, a prevalent
endocrine disorder, was associated with the development of
congestive heart failure. Electrolyte disturbances were
commonly observed in patients with chronic heart failure [31].
Echocardiogram has been a suitable modality for guiding fluid
resuscitation in critically ill individuals. It allowed for the
evaluation of fluid responsiveness based on several parameters,
such as the left ventricle, aortic outflow, inferior vena cava, and
right ventricle [32].

The impact of alcohol consumption on cardiovascular health
was multifaceted. Extensive research has demonstrated that the
consumption of alcohol at levels surpassing approximately 1 to
2 drinks per day was associated with hypertension [28]. This
condition adversely affects the elasticity of arteries, leading to
diminished blood and oxygen flow to the heart and consequently
contributing to the onset of heart disease [33]. These
pathophysiological changes increase the risk of heart disease.
Consequently, patients with a history of alcohol abuse and
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concomitant hypertension might require an urgent
echocardiogram to assess the potential cardiac implications
arising from these interconnected conditions.

Patients diagnosed with valvular heart conditions would fall
into the urgent category if they also exhibited cardiovascular
issues and a history of congestive heart failure. These attributes
collectively signaled the presence of potentially serious cardiac
problems, indicating a compelling need for an echocardiogram
to obtain detailed cardiac information and facilitate accurate
diagnoses. In the case of patients grappling with depression,
their urgency classification as “urgent” was contingent upon
the presence of co-occurring health issues. Extensive research
has established a substantial influence of depression on the
outcomes of concurrent medical conditions. Consequently, when
depression coincided with other health problems, it necessitated
an “urgent” classification, acknowledging its significant impact
on overall health outcomes [34]. Regarding patients with
obesity, an “urgent” classification applied if they additionally
exhibited fluid and electrolyte disorders. Research findings have
illuminated a connection between overweight or obesity and

specific physiological factors, such as lower reactance and
hypertonicity. Furthermore, individuals with overweight and
those with obesity with lower reactance tended to demonstrate
significantly elevated serum sodium levels compared to
individuals with a normal weight. These associations
underscored the importance of promptly addressing the medical
needs of patients with obesity with fluid and electrolyte
disorders, warranting an “urgent” classification for their cases
[35].

Overall, the decision rules extracted from our analyses aligned
closely with medical knowledge, providing reliable insights for
identifying urgent echocardiogram appointments for patients.
The congruence between the rules and medical understanding
not only validated the effectiveness of our model but also
highlighted the consistent application of medical principles in
the decision-making process. This focused analysis contributed
to a better understanding of the OSDT model’s validity and
offered valuable medical perspectives to enhance the
identification of urgent patients’echocardiogram appointments.

Table 4. Decision rules for specific patient cohorts.

Rule coverage (%)Rule accuracy (%)Rules for a patient to be classified as urgentCohort

14.20100The department in which the appointment happened after the echocardiogram ap-
pointment was generated in the system=non-cardiovascular disease, AGE<75,
anemia=yes

CHFa

53.0399Anemia=YesCoagulopathy

32.91100Fluid and electrolyte disorders=yes, Whether the patient had a cardiovascular
surgery within six months prior to the echocardiogram appointment=no

Hypothyroid

43.75100Hypertension=yesAlcohol

6.36100I=1(has cardiovascular conditions), CHF=yesValvular

24.49100Z=1 (has factors influencing health status and contact with health service)Depression

23.75100Geo!=Town, E=0 (has no nutritional and metabolic diseases), fluid and electrolyte
disorders=yes

Obesity

aCHF: congestive heart failure.

Discussion

Overview
The primary objective of our study is to forge an effective
tree-based classification machine learning model geared toward
prioritizing the allocation of echocardiogram appointments for
patients with a heightened need for timely diagnostics. Our
long-term goal is to streamline the scheduling process, ensuring
that patients’ medical requirements are promptly addressed,
thereby minimizing delays and optimizing their health care
experience. Moreover, our study aspired to delve deeper into
the intricate attributes that contribute to the urgency of
echocardiogram lab appointments. Recognizing the intricate
interplay of medical, logistical, and patient-specific variables,
we sought to unravel the complex rules and dynamics that
govern appointment prioritization. By harnessing the inherent
interpretability of our model, we aim to uncover hidden insights
and relationships within a large amount of EHR data, shedding
light on the critical determinants that underscore the need for
rapid scheduling. The implications of our study extended beyond

the realm of predictive modeling. We aimed to empower health
care professionals with a powerful tool that not only optimizes
resource allocation but also enriches their decision-making
process.

Principal Results
The findings demonstrate promising results by accurately
predicting the urgency of echocardiogram appointments and
providing valuable insights into the critical guidelines applicable
to specific patient cohorts. In summary, the study emphasizes
two key points: (1) among the various attributes examined, it
is observed that admission-related attributes exert a significant
influence on the level of urgency for patients’ echocardiogram
appointments; and (2) the urgency of scheduling echocardiogram
appointments can be influenced by the presence of comorbidities
that exacerbate patients’ conditions. In the case of congestive
heart failure, anemia emerges as a significant attribute,
highlighting its relevance in contributing to the urgency of
echocardiogram appointments. Similarly, coagulopathy is
identified as an important attribute for patients with congestive
heart failure, further emphasizing the need for prompt
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assessment. For patients with hypothyroidism, the presence of
fluid and electrolyte disorders serves as a concerning indicator,
warranting the prioritization of an echocardiogram. Additionally,
hypertension is found to be a critical medical knowledge for
patients with a history of alcohol abuse, underscoring the
urgency of echocardiogram in this population.

Our work is unique in applying an advanced binary decision
tree model that offers inherent interpretability, avoiding the
limitations of post hoc techniques like local interpretable
model-agnostic Explanation and Shapley additive explanation,
such as local interpretability constraints, sensitivity to
perturbations, and difficulties in selecting appropriate surrogate
models. We extract interpretable rules grounded in medical
knowledge, making this the first study to introduce tree-based
interpretable machine learning for patient prioritization and the
stratification of medical test urgency. Furthermore, the
tree-based model allows us to derive rules that are easily
understandable to medical professionals. These rules can be
assessed for alignment with existing medical knowledge and
applied in real-world practice by health care providers.

Limitations
The research has several limitations that could be addressed in
future work. First, the accuracy of the prediction model hinges
on the quality and completeness of available data; incomplete
or missing data may compromise the reliability of predictions.
Furthermore, it is essential to recognize that the effectiveness
of the model may vary when applied to diverse patient
populations or health care settings. This variation can be
attributed to the unique attributes and patterns present in the
training data, which significantly impact the model’s
performance. Moreover, the predictions rely on the elapsed days
between the appointment scheduling date and the appointment
date. Nonurgent patients may inadvertently be grouped with

urgent cases due to cancellations and rescheduling of
echocardiogram appointments. While this offers a broad
indication of urgency, it may overlook critical factors that
influence appointment priority. Integrating essential clinical or
contextual details, such as the patient’s medical history,
symptom severity, or health care resource availability, into the
model could provide more comprehensive insights.

Conclusions
This research adapts the OSDT algorithm to assess the urgency
of patients in need of echocardiograms. The OSDT model
demonstrates better performance over alternative machine
learning models, highlighting its predictive accuracy and
effectiveness. Furthermore, it identifies key attributes and rules
governing the prioritization of echocardiogram appointments.

The analysis of decision trees generated by the OSDT model
reveals the significance of admission- and policy-related
attributes, such as downstream appointment scheduling and
patient referral status, in determining appointment urgency.
Moreover, the analyses of specific patient cohorts provide
medical insights into the role of comorbidities, such as anemia
in patients with CHF and coagulopathy, and fluid and electrolyte
disorders in patients with hypothyroidism. These insights align
with established medical knowledge and enhance the
identification of urgent echocardiogram appointments.

In summary, this study facilitates the development of effective
scheduling protocols for echocardiogram appointments by
harnessing machine learning techniques and integrating medical
insights. This approach enhances the overall efficiency and
effectiveness of echocardiogram services, ultimately benefiting
patient care. The findings can also be generalized to inform the
establishment of efficient scheduling protocols and the
promotion of equitable access to various other medical
laboratory tests.
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Abstract

Background: The rapid advancement of deep learning in health care presents significant opportunities for automating complex
medical tasks and improving clinical workflows. However, widespread adoption is impeded by data privacy concerns and the
necessity for large, diverse datasets across multiple institutions. Federated learning (FL) has emerged as a viable solution, enabling
collaborative artificial intelligence model development without sharing individual patient data. To effectively implement FL in
health care, robust and secure infrastructures are essential. Developing such federated deep learning frameworks is crucial to
harnessing the full potential of artificial intelligence while ensuring patient data privacy and regulatory compliance.

Objective: The objective is to introduce an innovative FL infrastructure called the Personal Health Train (PHT) that includes
the procedural, technical, and governance components needed to implement FL on real-world health care data, including training
deep learning neural networks. The study aims to apply this federated deep learning infrastructure to the use case of gross tumor
volume segmentation on chest computed tomography images of patients with lung cancer and present the results from a
proof-of-concept experiment.

Methods: The PHT framework addresses the challenges of data privacy when sharing data, by keeping data close to the source
and instead bringing the analysis to the data. Technologically, PHT requires 3 interdependent components: “tracks” (protected
communication channels), “trains” (containerized software apps), and “stations” (institutional data repositories), which are
supported by the open source “Vantage6” software. The study applies this federated deep learning infrastructure to the use case
of gross tumor volume segmentation on chest computed tomography images of patients with lung cancer, with the introduction
of an additional component called the secure aggregation server, where the model averaging is done in a trusted and inaccessible
environment.

Results: We demonstrated the feasibility of executing deep learning algorithms in a federated manner using PHT and presented
the results from a proof-of-concept study. The infrastructure linked 12 hospitals across 8 nations, covering 4 continents,
demonstrating the scalability and global reach of the proposed approach. During the execution and training of the deep learning
algorithm, no data were shared outside the hospital.

Conclusions: The findings of the proof-of-concept study, as well as the implications and limitations of the infrastructure and
the results, are discussed. The application of federated deep learning to unstructured medical imaging data, facilitated by the PHT
framework and Vantage6 platform, represents a significant advancement in the field. The proposed infrastructure addresses the

JMIR AI 2025 | vol. 4 | e60847 | p.72https://ai.jmir.org/2025/1/e60847
(page number not for citation purposes)

Choudhury et alJMIR AI

XSL•FO
RenderX

mailto:ananya.aus@gmail.com
http://www.w3.org/Style/XSL
http://www.renderx.com/


challenges of data privacy and enables collaborative model development, paving the way for the widespread adoption of deep
learning–based tools in the medical domain and beyond. The introduction of the secure aggregation server implied that data
leakage problems in FL can be prevented by careful design decisions of the infrastructure.

Trial Registration: ClinicalTrials.gov NCT05775068; https://clinicaltrials.gov/study/NCT05775068

(JMIR AI 2025;4:e60847)   doi:10.2196/60847

KEYWORDS

gross tumor volume segmentation; federated learning infrastructure; privacy-preserving technology; cancer; deep learning;
artificial intelligence; lung cancer; oncology; radiotherapy; imaging; data protection; data privacy

Introduction

Federated learning (FL) allows the collaborative development
of artificial intelligence models using large datasets, without
the need to share individual patient-level data [1-4]. In FL,
partial models trained on separate datasets are shared, but not
the data itself, hence a global model is derived from the
collective set of partial models. This study introduces an
innovative FL framework known as the Personal Health Train
(PHT) that includes the procedural, technical, and governance
components needed to implement FL on real-world health care
data, including the training of deep learning neural networks
[5]. The PHT infrastructure is supported by a free and
open-source infrastructure known as “priVAcy preserviNg
federaTed leArninG infrastructurE for Secure Insight
eXchange,” that is, Vantage6 [6]. We will describe in detail an
architecture for training a deep learning model in a federated
way with 12 institutional partners located in different parts of
the world.

Sharing patient data between health care institutions is tightly
regulated due to concerns about patient confidentiality and the
potential for misuse of data. Data protection laws—including
the European Union’s General Data Protection Regulations;
Health Insurance Portability and Accountability Act of 1996
(HIPAA) in the United States; and similar regulations in China,
India, Brazil, and many other countries—place strict conditions
on the sharing and secondary use of patient data [7].
Incompatibilities between laws and variations in the
interpretation of such laws lead to strong reluctance about
sharing data across organizational and jurisdictional boundaries
[8-10].

To address the challenges of data privacy, a range of approaches
have been published in the literature. Differential privacy,
homomorphic encryption, and FL comprise a family of
applications known as “privacy enhancing technologies”
[11-13]. The common goal of privacy-enhancing technologies
is to unlock positively impactful societal, economic, and clinical
knowledge by analyzing data en masse, while obscuring the
identity of study subjects that make up the dataset. Academic
institutions are more frequently setting up controlled workspaces
(eg, secure research environments [SREs]), where multiple
researchers can collaborate on data analysis within a common
cloud computing environment, but without allowing access to
the data from outside the SRE desktop; however, this assumes
that all the data needed have been transferred into the SRE in
the first place [14,15]. Similarly, the National Institutes of
Health has set up an “Imaging Data Commons” to provide

secure access to a large collection of publicly available cancer
imaging data colocated with analysis tools and resources [16].
Other researchers have shown that blockchain encryption
technology can be used to securely store and share sensitive
medical data [17]. Blockchain ensures data integrity by
maintaining an audit trail of every transaction, while zero trust
principles make sure the medical data are encrypted and only
authenticated users and devices interact with the network [18].

From a procedural point of view, the PHT manifesto for FL
rules out the sharing of individual patient-level data between
institutions, no matter if the patient data have been deidentified
or encrypted [19]. The privacy-by-design principle here may
be referred to as “safety in numbers,” that is, any single
individual’s data values are obscured, by computing either the
descriptive statistics or the partial model, over multiple patients.
PHT allows sufficiently adaptable methods of model training,
such as iterative numerical approximation (eg, bisection) or
federated averaging (FedAvg [20]), and does not mandatorily
require model gradients or model residuals, which are
well-known avenues of privacy attacks [21-24]. Governance is
essential with regards to compliance with privacy legislation
and division of intellectual property between collaboration
partners. A consortium agreement template for PHT has been
made openly accessible [25], which is based on our current
consortium ARGOS (artificial intelligence for gross tumor
volume segmentation) [26]. Technologically, PHT requires 3
interdependent components to be installed—“tracks” are
protected telecommunications channels that connect partner
institutions, “trains” are Docker containerized software apps
that execute a statistical analysis that all partners have agreed
upon, and “stations” are the institutional data repositories that
hold the patient data [23]. It is this technological
infrastructure—the tracks, trains, and stations—that is supported
by the aforementioned Vantage6 software, for which detailed
stand-alone documentation exists [27].

The paper proposes a federated deep learning infrastructure
based on the PHT manifesto [19], which provides a governance
and ethical, legal, and social implications framework for
conducting FL studies across geographically diverse data
providers. The research aims to showcase a custom FL
infrastructure using the open-source Vantage6 platform,
detailing its technological foundations and implementation
specifics. The paper emphasizes the significance of the
implemented custom federation strategy, which maintains a
strict separation between intermediate models from both internal
and external user access. This approach is crucial for
safeguarding the security and privacy of sensitive patient data,
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as it prevents potential reverse engineering of intermediate
results that could compromise confidentiality. This aggregation
strategy is particularly important in the case of deep
learning–based studies where multiple iterations of models or
gradients are necessary to derive an optimal global model.

To demonstrate the infrastructure’s robustness and practical
applicability, the study presents a proof-of-concept involving
the development of a federated deep learning algorithm based
on 2D convolutional neural network (CNN) architecture [28].
This algorithm was implemented to automatically segment gross
tumor volume (GTV) from lung computed tomography (CT)

images of patients with lung cancer. Figure 1 [29] demonstrates
a manual segmentation and deep learning–based segmentation
of a tumor in the chest CT image of a patient. The subsequent
sections provide a comprehensive account of the precise
technical specifications of the infrastructure that links 12
hospitals across 8 nations, covering 5 continents. The algorithm
developed learns from the distributed datasets and deploys it
using the infrastructure. However, it is important to mention
that the choice of the use case is only exemplary in nature, and
the infrastructure is equipped to train any kind of deep learning
architecture for relevant clinical use cases.

Figure 1. Illustrative result on a hold-out validation slice; the main bulk of the gross tumor volume as determined by the oncologist (middle) has been
correctly delineated by the deep learning algorithm (right), but a small tumor mass adjacent and to the lower right of the main gross tumor volume mass
has been missed (reproduced from Figure 6 of Chapter 4 of the thesis by Patil [29], which is published under the Taverne License [Article 25fa of the
Dutch Copyright Act]).

The research used a deep learning architecture because in recent
times the application of deep learning in health care has led to
impressive results, specifically in the areas of natural language
processing and computer vision (medical image analysis), with
the promise for more efficient diagnostics and better predictions
of treatment outcomes in future [30-35]. However, for robust
generalizability, and to earn clinicians’acceptance, it is essential
that artificial intelligence apps are trained on massive volumes
of diverse and demographically representative health care data
across multiple institutions. Given the barriers to data sharing,
this is clearly an area where FL can play a vital role. Many
studies have been published that present FL on medical data
including federated deep learning [36-40]. However, only a
limited number of studies have documented the use of dedicated
frameworks and infrastructures in a transparent manner. The
adoption of a custom federation strategy or absence of explicit
reporting on the used infrastructure is observed in most of the
studies. Table 1 summarizes the small number of FL studies
that have been published in connection with deep learning
investigations related to medical image segmentations to date.

The paper primarily focuses on demonstrating the training and
aggregation mechanism of a deep learning architecture within
a FL framework. It deliberately avoids delving into the
optimization of model performance or clinical accuracy, as these

aspects fall outside the paper’s scope. Instead of emphasizing
the selection of an optimal CNN architecture or aggregation
strategy [39], the research concentrates on elucidating the
functionality of the FL infrastructure. Existing literature has
shown that FL models can achieve performance comparable to
centrally trained models [38,41,45-47]. This supports the
assumption that, given identical datasets and CNN architectures,
a model trained using FL would likely yield similar results to
one trained through centralized methods. The paper operates
under this premise, prioritizing the explanation of the FL process
over demonstrating performance parity with centralized training
approaches.

The study highlights 3 key points as follows:

• FL is particularly well suited for deep learning applications,
which typically require vast amounts of data. This makes
it an ideal showcase for the federated approach.

• When implementing federated deep learning, it is crucial
to have a robust infrastructure and use a customized, secure
aggregation strategy. These elements are essential for
safeguarding the privacy of sensitive patient information.

• FL in real-world medical data is not just a technological
challenge; it requires a comprehensive strategy that
addresses ethical, legal, governance, and organizational
aspects, as highlighted by the PHT manifesto.
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Table 1. Existing studies from the literature focusing on federated deep learning on medical images.

ScaleData typeInfrastructure and clinical use case

NVIDIA FLARE/CLARA

3 centersDICOM MRIProstate segmentation of T2-weighted MRIa [41]

7 centersChest CTbCOVID-19 pneumonia detection [42]

Tensorflow federated

3 datasetsChest CTCOVID-19 prediction from chest CT images [43]

OpenFL

71 centersBrain MRIGlioblastoma tumor boundary detection [44]

aMRI: magnetic resonance imaging.
bCT: computed tomography.

The findings of the proof-of-concept study, as well as the
implications and limitations of the infrastructure and the results,
are discussed. The subsequent section of the paper is structured
as follows: the Methods section describes the approach taken,
followed by the Results, which detail the implementation of the
infrastructure and a proof-of-concept execution. Finally, the
paper concludes with a Discussion section.

Methods

Overview
When conducting a federated deep learning study, it is crucial
to consider several key perspectives, which include both
technical as well as organizational and legal aspects. These key
factors have been instrumental in designing the infrastructure
architecture used for training the deep learning algorithm. In
this section, we discuss the technical details while adhering to
an Ethics-Legal-Social Impact framework as laid down by the
PHT manifesto. The technical design decisions are based on
the following assumptions:

Data Landscape
Understanding the data landscape is crucial in designing and
deploying FL algorithms. The technological approaches for
handling horizontally partitioned data, where each institution
contains nonoverlapping human subjects but the domain of the
data (eg, CT images of lung cancer) is the same across different
institutions, can differ significantly from those used for vertically
partitioned data, where each institution contains the same human
subjects but the domain of the data do not overlap (eg, CT scans
in one, but socioeconomic metrics in another). Additionally,
unstructured data, such as medical images, requires different
algorithms and preprocessing techniques compared with
structured data. In this paper, the architecture will only focus
on CT scans and horizontally partitioned patient data.

Data Preprocessing
In a horizontally partitioned FL setting, the key preprocessing
steps can be standardized and sent to all partner institutions.

However, the workflow needs to handle differences in patients,
scan settings, and orientations. Anonymization, quality
improvements, and DICOM standardization ensure homogeneity
and high quality across hospitals. These offline preprocessing
steps, applied consistently to the horizontally partitioned data,
enabled using the same model across institutions, crucial for
the FL study’s success.

Network Topology of the FL Infrastructure
The network topology choice for implementing FL can vary
from client-server, peer-to-peer, tree-based hierarchical, or
hybrid topologies. While peer-to-peer architecture is more
cost-effective and offers a high capacity, it has the disadvantages
of a lack of security and privacy constraints and a complex
troubleshooting process in the event of a failure. The choice of
network topology for this study is based on a client-server
architecture, offering a single point of control in the form of the
central server.

Choice of Model Aggregation Site
For a client-server architecture, the model aggregation can occur
either in one of the data providers’ machines, the central server,
or in a dedicated aggregation server. For this implementation,
we opted to use a dedicated aggregation server. The details and
benefits of the implementation are discussed in the next section.

Training Strategy
The communication mechanism for transferring weights can be
either synchronous, asynchronous, or semisynchronous, and
weights can be consolidated using ensemble learning, FedAvg,
split learning, weight transfer, or swarm learning. The strategy
used for this study is based on a synchronous mechanism using
the FedAvg algorithm. This gives a simple approach, where the
averaging algorithm waits for all the data centers to transfer the
locally trained model before initiating the averaging.

Based on the assumption, Figure 2 depicts the overall
architecture of the federated deep learning study presented in
the paper. The next section describes the FL Infrastructure in
detail.
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Figure 2. Overall architecture of ARGOS (artificial intelligence for gross tumor volume segmentation) federated deep learning architecture adapted
from Vantage6. The figure depicts a researcher connected to the central server, a secure aggregation server, trains carrying models, connected data
stations, and the communicating tracks.

The ARGOS Federated Deep Learning Infrastructure

Overview
In accordance with the PHT principles, the ARGOS
infrastructure is comprised of 3 primary categories of
components, labeled as the data stations, the trains, and the
track. Furthermore, the architectural framework encompasses
various roles that map to the level of permissions and access,
specifically a track provider, the data providers, and the
researcher. The infrastructure implementation can be further
categorized into 3 important components: a central coordination
server, a secure aggregation server (SAS), and the nodes located
at each “data station.” In the following sections, we attempt to
describe each of these components and the respective
stakeholders responsible for maintaining them.

Central Coordinating Server
The central coordination server is located at the highest
hierarchical level and serves as an intermediary for message
exchange among all other components. The components of the
system, including the users, data stations, and SAS, are
registered entities that possess well-defined authentication
mechanisms within the central server. It is noteworthy that the
central acts as a coordinator rather than a computational engine.
Its primary function is to store task-specific metadata relevant

to the task initiated for training the deep learning algorithm. In
the original Vantage6 infrastructure, the central server also
stores the intermediate results. In the ARGOS infrastructure,
the central server is designed to not store any intermediate
results but only the global aggregated model at the end of the
entire training process.

Secure Aggregation Server
The SAS refers to a specialized station that contains no data
and functions as a consolidator of locally trained models. The
aggregator node is specifically designed to possess a
Representational State Transfer (REST)–application
programming interface (API) termed as the API Forwarder. The
API Forwarder is responsible for managing the requests received
from the data stations and subsequently routing them to the
corresponding active Docker container, running the aggregation
algorithm.

To prevent any malicious or unauthorized communication with
the aggregator node, each data station is equipped with a JSON
Web Token (JWT) that is unique for each iteration. The API
Forwarder only accepts communications that are accompanied
by a valid JWT. The implementation of this functionality
guarantees the protection of infrastructure users and effectively
mitigates the risk of unauthorized access to SAS. Figure 3 shows
the architecture and execution mechanism for the SAS.
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Figure 3. Architecture of the secure aggregation server, showing incoming and outgoing requests from the data station nodes. The upload and download
folders are temporary locations used within the running Docker container to store the local and averaged models through disk read or write operations.
The API forwarder, running at port 5050 and embedded within the Vantage6 infrastructure, forwards the incoming requests from the data station nodes
to the algorithm API running at local port 7000 within the Docker container through HTTP requests. The SAS is hosted behind the firewall of a proxy
server, which allows only hypertext transfer protocol secure (HTTPS) communication from the participating nodes. API: application programming
interface; FedAvg: federated averaging; JWT: JSON Web Token.

Data Stations
Data stations are devices located within the confines of each
hospital’s jurisdiction that are not reachable or accessible from
external sources other than Vantage6. The data stations
communicate with the central server through a pull mechanism.
Furthermore, the data stations not only serve as hosts for the
infrastructure node but also offer the essential computational
resources required for training the deep learning network. The
infrastructure node is the software component installed in the
data stations that orchestrates the local execution of the model
and its communication with the central server and the SAS.
Each data station is equipped with at least 1 graphics processing

unit (GPU), which enables the execution of CNNs.
Preprocessing of the raw CT images was executed locally, using
automated preprocessing scripts packaged as Docker containers,
and the preprocessed CT images are stored within a file system
volume in each station. The CNN Docker is designed and
allowed to access the preprocessed images during training. The
primary function of the data station is to receive instructions
from both the SAS and the central server, perform the
computations needed for training the CNN algorithm, and
subsequently transmit the model weights back to the respective
sources. Figure 4 depicts the architectural layout of the data
station and node component of the infrastructure.

Figure 4. Architecture of the data station node component. The node runs the CNN algorithm to learn from the local data. The node further sends and
receives model weights from the secure aggregation server. The train and validation folders are persistent locations within the data stations, storing the
preprocessed NIFTI images. At the end of each training cycle, the intermediate averaged model is first evaluated on the validation sample. CNN:
convolutional neural network; HTTPS: hypertext transfer protocol secure; NIFTI: neuroimaging informatics technology initiative.

JMIR AI 2025 | vol. 4 | e60847 | p.77https://ai.jmir.org/2025/1/e60847
(page number not for citation purposes)

Choudhury et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Train
The “train” in the form of a Docker image encompasses several
components bundled together: an untrained U-Net [48,49], a
type of CNN architecture designed for image segmentation tasks
for training on local data; the aggregation algorithm used for
consolidating the models; and a secondary Python Flask API
known as the Algorithm API for facilitating the communication
of these models. The Algorithm API is designed to cater to
requests from the API Forwarder and is built within the
algorithm container. Two levels of API ensured that the node
could handle multiple requests and divert to appropriate Docker
containers. Furthermore, the first level of API also helps in
restricting malicious requests by checking the JWT token
signature, so that the models within the master Docker container
are protected. Each data station is responsible for training and
transmitting the CNN model to the aggregator server. This
suggests that the aggregation algorithm exhibits a waiting period
during which it ensures that all data stations have effectively
transmitted their models to the server before proceeding to the
next iterations. The process is executed in an iterative manner
until convergence is achieved or the specified number of
iterations is attained.

Tracks and Track Provider
The various infrastructure components establish coordination
among themselves through the use of secure communication
channels commonly referred to as the “tracks.” The
communication channels are enabled with end-to-end
encryption. The responsibility for the maintenance of the
infrastructure, including the hosting of the central coordinating
server and the specialized SAS, lies with the track provider.
The track provider is additionally accountable for the
maintenance of the “tracks” and aids the data providers in
establishing the local segment of the infrastructure known as
the “nodes.”

Data Provider
Data providers refer to hospitals and health care organizations
that are responsible for curating the pertinent datasets used for
training the deep learning network. The responsibility of hosting
the data stations within their respective local jurisdiction lies
with the data provider. They exercise authority over the data as
well as the infrastructure component called the node.

Researcher
The researcher is responsible for activating the deep learning
algorithm and engaging in the authentication process with the
central coordinating server using a registered username and
password. This allows the researcher to establish their identity
and gain secure access to the system, with their communication
safeguarded through end-to-end encryption. The researcher can
then assign tasks to individual nodes, monitor progress, and
terminate tasks in the event of failure. Importantly, the

researcher’s methodology is designed to keep the intermediate
outcomes of the iterative deep learning training process
inaccessible, ensuring that the ultimate global model can only
be obtained upon completion of all training iterations, thereby
mitigating the risk of unauthorized access by malicious
researchers to the intermediate models and providing a security
mechanism against insider attacks.

Training Process
Each of the components described above works in a coordinated
manner to accomplish the convergence of the deep learning
algorithm. The training process begins with the researcher
authenticating with the central server. Upon successful
authentication, the researcher specifies the task details, including
a prebuilt Docker image, input parameters, number of iterations,
and the identity of the SAS. The task is then submitted to the
central server, which forwards it to the connected nodes. The
SAS is the first to receive the task request. It downloads the
specified Docker image from the registry and initiates the master
algorithm. The master algorithm orchestrates the training at
each data station node through the central server. The central
server then forwards a subtask request to all the data stations.
Like the SAS, the data nodes download the same Docker image
and initiate the node part of the algorithm. The node algorithm
runs the learning process on local data for the specified number
of epochs. After each training cycle, the node algorithm sends
the local model weights to the SAS.

The SAS verifies the JWT signature of each received model
and forwards the request to the Algorithm API. The Algorithm
API extracts the weight and metadata information of the models.
Once the SAS receives all the required locally trained models
for that cycle, it initiates the FedAvg algorithm to consolidate
the models and create an intermediate averaged model, which
is stored locally. This completes the first iteration of the training
cycle. For the second and subsequent iterations, the data stations
request the SAS to send the intermediate averaged model
weights from the previous iteration. The SAS validates these
requests and sends the model weights to the data stations, which
then use them for further training on their local data. This cycle
of training and averaging continues until the model converges
or the desired number of iterations is reached.

At the end of the training process, the SAS sends a notification
to the researcher indicating the successful completion of the
task. The researcher can then download the final global model
from the server. It is important to note that during the training
iterations, the researcher or other users of the infrastructure do
not have access to the intermediate averaged models generated
by the SAS. This design choice prevents the possibility of insider
attacks and data leakage, as users cannot regenerate patterns
from the training data using the intermediate models. Figure 5
shows the diagrammatic representation of the training process
spread across the infrastructure components.
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Figure 5. Process illustration of federated deep learning training. All entities, including the researcher, the central aggregation server, and the data
stations, first authenticate with the central server. The researcher creates a task description and submits the task to the central server, which then forwards
the request to the secure aggregation node to start the master task. The master task then sends a request to all data stations to download the algorithm
Docker image and start training on the local data. Researchers can monitor the algorithm’s execution status on the central server using the “check status”
function, which reports whether each iteration is completed or aborted as processed by the secure aggregation server and data stations. At the end of
each local training, the data stations send the models to the API forwarder of the secure aggregation node by authenticating against a valid JWT token.
The JWT token ensures that no unauthorized data station is able to send or receive models from the secure aggregation server. API: application
programming interface; CNN: convolutional neural network; JWT: JSON Web Token.
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Code Availability
The federated deep learning infrastructure and the algorithm
used in this research are open source and publicly available.
The codebase, encompassing the components of the
infrastructure, the algorithm, and wrappers for running it in the
infrastructure and the researcher notebooks, are all available
and deposited on GitHub, a public repository platform, under
the Apache 2.0 license. This open access allows the research
community to scrutinize and leverage our implementation for
further development in the field of FL.

The Vantage6 (version 2.0.0) [27,50] open-source software was
customized to cater to the specific requirements for running the
deep learning algorithm. The central server (Vantage6 version
2.0.0) and the aggregator server were hosted by Medical Data

Works BV in 2 separate cloud machines (Microsoft Azure). At
each participating center, the “node” component of the software
was installed and setup either on a physical or cloud machine
running Ubuntu (version 16.0) or above with an installation of
Python, (version 3.7 or above; Python Software Foundation),
Docker Desktop (personal edition), and NVIDIA CUDA GPU
interface (version 11.0). The source code of the customized
“node” [51] and setup instructions [52] are available on
respective GitHub repositories. The federated deep learning
algorithm was adapted to the infrastructure as Python scripts
[53] and wrapped in a Docker container. Separately, the
“researcher” notebooks [54] containing python scripts for
connecting to the infrastructure and running the algorithms are
also available on GitHub. Table 2 provides an outline of the
resource requirement and computational cost of the experiment.

Table 2. Resource requirement and computational cost.

Average execution time (per iteration)Resource requirementEnd points

HardwareSoftware

N/AbCentral server •• 4 CPUsaUbuntu (version 16) and
above • 16 GB RAM

• Docker Desktop • 20 GB Disk Space
• Python (3.7 or above)
• Vantage6 (version 2.0.0)

40 minsData station •• 4 CPUsUbuntu (version 16) and
above • 1 GPUc

• Docker Desktop • 16 GB RAM
• Python (3.7 or above) • 40 GB disk space
• Vantage6 (version 2.0.0)
• CUDA GPU Interface (ver-

sion 11.0)

60 secondsSecure aggregation server •• 4 CPUsUbuntu (version 16) and
above • 16 GB RAM

• Docker Desktop • 40 GB disk space
• Python (3.7 or above)
• Vantage6 (version 2.0.0)

aCPU: central processing unit.
bNot applicable.
cGPU: graphics processing unit.

Ethical Considerations
The work was performed independently with the ethics board’s
approval from each participating institution. Approvals from
each of the participating institutions including soft copies of
approval have been submitted to the leading partner. The lead
partner’s institutional review board approval (MAASTRO
Clinic, The Netherlands) is “W 20 11 00069” (approved on
November 24, 2020). The authors attest that the work was
conducted by the ethical standards of the responsible committee
on human experimentation (institutional and national) and with
the Helsinki Declaration of 1975.

Results

Overview
The study was carried out and concluded in 4 primary stages
using an agile approach as follows: planning, design and

development, partner recruitment, and execution of federated
deep learning. The planning phase of the study, which
encompassed a meticulous evaluation and determination of the
following inquiries, held equal significance to the description
of the clinical issue and data requirements.

• What are the minimum resource requirements for each
participating center?

• How to design a safe and robust infrastructure to effectively
address the requirements of a federated deep learning study?

• How can a reliable and data-agnostic federated deep
learning algorithm be designed?

• What are the operational and logistical challenges associated
with conducting a large-scale federated deep learning study?

The second phase, that is, the design and development phase,
primarily focused on the creation, testing, and customization
of the Vantage6 infrastructure for studies specifically focused
on deep learning. To meet the security demands of these
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investigations, this study involved the development of the SAS,
which was not originally included in the Vantage6 architecture.
The CNN algorithm was packaged as a Docker container and
made compatible with the Vantage6 infrastructure, allowing it
to be easily deployed and used within the Vantage6 ecosystem.
Prior to the deployment of the algorithm, it underwent testing
using multiple test configurations consisting of data stations
that were populated with public datasets.

The primary objective of the third phase entailed the recruitment
of partners who displayed both interest and suitability from
various global locations. The project consortium members
became part of the project by obtaining the necessary
institutional review board approvals and signing an infrastructure
user agreement. This agreement enabled them to install the
required infrastructure locally and carry out algorithmic
execution. The inclusion criteria for patient data, as well as the
technology used for data anonymization and preprocessing,
were provided to each center. The team collaborated with each
partner center to successfully implement the local component
of the infrastructure.

The concluding stage of the study involved the simultaneous
establishment of connections between all partner centers and
the existing infrastructure. The algorithm was subsequently
initiated by the researcher and the completion of the

predetermined set of federated iterations was awaited across all
centers.

Proof of Concept
The architectural strategy described above was implemented
among ARGOS consortium partners on real-world lung cancer
CT scans. For an initial “run-up” of the system, we deployed
the abovementioned PHT system across 12 institutions, located
in 8 countries and 4 continents. A list of members participating
in the ARGOS consortium can be found on the study protocol
[26]. In total, 2078 patients’ data were accessible via the
infrastructure for training (n=1606) and holdout validation
(n=472). For this initial training experiment, the 12 centers were
divided into 2 groups. The first, referred to as group A,
comprised 7 collaborators, and we were able to reach a total of
64 iterations of model training each with 10,000 steps per
iteration. Likewise, group B comprising 6 hospitals was able
to train the deep learning model for 26 iterations. It was
observed that no significant improvement of the model was
observed for both groups after 26th iteration. The results from
the proof-of-concept study are shown in Figure 6.

While the training time for the models was similar at each
center, how quickly they could be uploaded and downloaded
depended heavily on the quality of the internet connection. This
meant the entire process was significantly slowed down by the
center with the slowest internet.
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Figure 6. Plots showing the results from training the convolutional neural network on two groups as follows: group 1 (A, B, E, H, I, K, L) and group
2 (A, C, D, F, G, M). (A) Average Dice score per iteration of the model trained on group 1. (B) Average Dice score per iteration of the model trained
on group 2. (C) Average training loss per iteration of the model trained on group 1. (D) Average training loss per iteration of the model trained on group
2.

Discussion

This study demonstrated the feasibility of a privacy-preserving
federated deep learning infrastructure and presented a
proof-of-concept study for GTV segmentation in patients with
lung cancer. Using the PHT framework, the infrastructure linked
12 hospitals across 8 nations, showcasing its scalability and
global applicability. Notably, throughout the process, no patient
data were shared outside the participating institutions, addressing
significant data privacy concerns. The introduction of a SAS
further ensured that model averaging occurred in a secure
environment, mitigating potential data leakage issues in FL.

One of the most used methodologies in recent years has been
the use of FL for promoting research on privacy-sensitive data.
To orchestrate FL on nonstructured data in the horizontal
partitioning context, it is essential to develop specialized

software for edge computation and technical infrastructures for
cloud aggregation. These infrastructures enable federated
machine learning (FML) responsibilities to be carried out in a
secure and regulated manner. However, only a limited number
of these studies have documented the background governance
strategies and the ethical, legal, and social implications
framework for conducting such studies.

The study presented a novel approach for executing large-scale
federated deep learning on medical imaging data, integrating
geographically dispersed real-world patient data from
cross-continental hospital sites. The deep learning algorithm
was designed to automatically delineate the GTV from chest
CT images of patients with lung cancer who underwent
radiotherapy treatment. The underlying FL infrastructure
architecture was designed to securely perform deep learning
training and was tested for vulnerabilities from known security
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threats. This paper predominantly discussed the FL infrastructure
architecture and presented a firsthand experience of conducting
such studies. The preliminary training of the deep learning
algorithm serves as the feasibility demonstration of the
methodology, and further refinement is required to achieve
acceptable clinical-grade accuracy and generalizability.

The study used an open-source and freely accessible
technological stack to demonstrate the feasibility and
applicability of federated deep learning. Vantage6, a
Python-based FL infrastructure, is used to train and coordinate
deep learning execution. TensorFlow and Flask, both
open-source Python libraries, are used for the development of
the algorithm, subsequently encapsulated within Docker services
for containerization purposes. The communication channels
between the hospital, central server, and the aggregation node
have been secured using Hypertext Transfer Protocol Secure
and Secure Hash Algorithm encryption. The hospital sites’
computer systems were based on the Ubuntu operating system
and equipped with at least 1 GPU to enhance computational
capabilities. The participating centers had the flexibility to
choose any CUDA-compatible GPU devices and determine the
number of GPUs to use, enabling resource-constrained centers
to contribute. However, a limitation exists in terms of
computational time due to the synchronous training process
being dependent on the slowest participant.

The infrastructure has been tested against known security attacks
and as defined by the Open Worldwide Application Security
Project top-ten categories [55]. It has been found that the
Vantage6 app is impeccable against insecure design, software
and data integrity failures, security logging and monitoring
failures, and server-side request forgery and sufficiently secured
against broken access control, cryptographic failures, injection,
security misconfigurations, vulnerable and outdated components,
and finally identification and authentication failures. Since the
infrastructure is dependent on other underlying technologies
like Docker and Flask-API, the security measures in these
technologies also affect the overall security of the infrastructure.
Additionally, the infrastructure is hosted behind proxy firewalls,
adding to its overall security against external threats.

In this study, we implemented a SAS positioned between the
data nodes (eg, hospitals and clinics) and the central server. The
SAS plays a crucial role in strengthening the privacy and
confidentiality of the learning process. The SAS acts as an
intermediary that temporarily stores the local model updates
from the participating data nodes, ensuring complete isolation
from the central server, researchers, and any external intruders.
The key benefits of using a dedicated SAS over a random
aggregation mechanism in FL are as follows:

• Privacy protection of individual user data and model
updates:
• The secure aggregation protocol ensures that the central

server only learns the aggregated sum of all user
updates, without being able to access or infer the
individual user’s private data or model updates.

• By isolating the intermediate updates, the secure
aggregation process prevents external attackers from
performing model inversion attacks.

• Tolerance to user dropouts:
• The SAS is designed to handle situations where some

users fail to complete the execution. In the case of
synchronous training, the server stores the latest
successful model, enabling data nodes to pick up where
they left off instead of restarting from scratch.

• Integrity of the aggregation process:
• The secure aggregation protocol provides mechanisms

to verify the integrity of the intermediate models by
allowing only the known data nodes to send a model.
This maintains the reliability and trustworthiness of
the FL system.

FL offers 2 main approaches for model aggregation: sending
gradients or weights [56,57]. In gradient sharing, data nodes
update local models and transmit the gradients of their
parameters for aggregation. Conversely, weight sharing involves
sending the fully updated model weights directly to the server
for aggregation. Sharing gradients have a higher risk of model
inversion attacks. In the study presented here, the data nodes
sent model weights instead of model gradients, thus preventing
the “gradient leakage” problem. However, weight sharing is not
failproof either [58], and the SAS plays a crucial role again in
preventing users—internal or external—from accessing the
weights from the aggregator machine.

The deployment of the FL infrastructure and training of the
deep learning algorithm presented unique challenges that needed
to be catered to. Some of them are listed below:

• Heterogeneity across hospitals: Initially, it was not possible
to confirm the technology environment at each site. This
required significant work to overcome the obstacles
connected with each center while deploying a functional
infrastructure, good communication, and efficient
algorithms.

• Inconsistent IT policies: Standardizing the setup across
institutions was hindered by varying IT governance and
network regulations in different health care systems across
different countries.

• Clinical expertise gap: The predominance of medical
personnel over IT specialists at participating hospitals
necessitated extensive documentation to ensure clinician
comprehension of the FL process.

• Network bottlenecks: Network configurations at
participating sites significantly impacted training duration,
often leading to delays in model convergence.

The study presented in the paper has identified several areas
that require further investigation and improvement. While the
findings are valuable, the infrastructure, algorithm, and
processes still need to be made more secure, private, trustworthy,
robust, and seamless [59]. For example, incorporating
homomorphic encryption of the learned models will enhance
privacy and provide model obfuscation against inversion attacks.
Finally, to further enhance confidence and trust in federated
artificial intelligence, it is crucial to conduct additional studies
involving a larger number of participating centers and a thorough
clinical evaluation of the models.
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Abstract

Background: Chat-based counseling services are popular for the low-threshold provision of mental health support to youth. In
addition, they are particularly suitable for the utilization of natural language processing (NLP) for improved provision of care.

Objective: Consequently, this paper evaluates the feasibility of such a use case, namely, the NLP-based automated evaluation
of satisfaction with the chat interaction. This preregistered approach could be used for evaluation and quality control procedures,
as it is particularly relevant for those services.

Methods: The consultations of 2609 young chatters (around 140,000 messages) and corresponding feedback were used to train
and evaluate classifiers to predict whether a chat was perceived as helpful or not. On the one hand, we trained a word vectorizer
in combination with an extreme gradient boosting (XGBoost) classifier, applying cross-validation and extensive hyperparameter
tuning. On the other hand, we trained several transformer-based models, comparing model types, preprocessing, and over- and
undersampling techniques. For both model types, we selected the best-performing approach on the training set for a final
performance evaluation on the 522 users in the final test set.

Results: The fine-tuned XGBoost classifier achieved an area under the receiver operating characteristic score of 0.69 (P<.001),
as well as a Matthews correlation coefficient of 0.25 on the previously unseen test set. The selected Longformer-based model
did not outperform this baseline, scoring 0.68 (P=.69). A Shapley additive explanations explainability approach suggested that
help seekers rating a consultation as helpful commonly expressed their satisfaction already within the conversation. In contrast,
the rejection of offered exercises predicted perceived unhelpfulness.

Conclusions: Chat conversations include relevant information regarding the perceived quality of an interaction that can be used
by NLP-based prediction approaches. However, to determine if the moderate predictive performance translates into meaningful
service improvements requires randomized trials. Further, our results highlight the relevance of contrasting pretrained models
with simpler baselines to avoid the implementation of unnecessarily complex models.

Trial Registration: Open Science Framework SR4Q9; https://osf.io/sr4q9

(JMIR AI 2025;4:e63701)   doi:10.2196/63701
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language model; natural language processing; deep learning
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Introduction

Most mental health disorders develop early in life [1,2], causing
a massive burden on an individual [3], as well as societal, level
[4]. This makes early intervention in youth highly relevant [5].
In sharp contrast to the need, accessing help has been described
as challenging for young people [5-7]. Therefore, low-threshold
services are needed to tackle the burden of mental illness [8].

One such form of intervention gaining popularity is chat-based
counseling hotlines [9-11]. Smartphones and chat interactions
play a crucial role in youth life [12,13]. The ability to access
help within their native digital life reduces numerous health
care barriers, making the services a common first access point
of help for youth [14]. Indeed, heavy utilization and adoption
of those services have been reported globally [14-16]. In
addition, the first evidence supports the acceptability [14] and
effectiveness [17] of 24/7 chat services.

Considering the increasingly established relevance of those
hotlines, the implementation of technological innovation could
be highly impactful for the timely and efficient provision of
care to youth. Repeatedly, artificial intelligence (AI) has been
framed as a key potential for improvements in mental health
care [18,19], as well as within digital settings [20]. As AI
depends on the availability of large and high-dimensional
datasets, chat services seem a quite promising candidate for
that. This has indeed been used for diverse natural language
processing (NLP) approaches, the subbranch of AI dealing with
language. For example, an NLP-based triaging system has been
reported to be able to reduce waiting times for those in crisis at
a chat hotline [21]. Data-driven decisions regarding further
treatment paths have also been investigated by looking into the
prediction of recurrent chatting [22] or premature departure
from conversations [23]. As suicide risk is a common case at
chat hotline services [24], other work focused on early detection
and intervention in those situations. Here, several model
structures and algorithmic approaches have been suggested
[25,26].

This study intends to contribute to the development of NLP
approaches within youth chat counseling hotlines. Specifically,
the promising but underinvestigated use case of automated
evaluation of service quality will be explored. A recent study
linked asynchronous chat counseling interactions with reported
outcomes and satisfaction of the chatters, using a large dataset
of more than 150,000 clients and reporting promising effect
sizes of multiple R’s of around 0.45 [27]. Another past approach
investigated the prediction of chat quality on a label of 675
transcripts of chat counseling sessions [28]. However, while
we were not able to find a similar-minded approach within 24/7
hotline services, automated quality evaluation seems particularly
relevant for those. Early experiences with help seeking have
been linked with future help-seeking behavior in the past [29].
As often being the first contact with any kind of institutionalized
help for youth [14], the satisfaction with this interaction is
therefore arguably highly relevant for further help-seeking
behavior. The reliable identification of those with negative
experiences would allow a timely intervention by following up
or referrals to other services. Second, the low threshold nature

of counseling hotlines makes evaluation more difficult, as it is
hard to collect follow-up responses from young help seekers.
For example, the aforementioned study of chat hotline
effectiveness reported a response rate of 22% among the users
[17]. There is also the risk of a bias toward those more satisfied
being more likely to respond, which is seen as a common
methodical problem in evaluation sciences [30,31]. The ability
to estimate the satisfaction with the service out of the
conversation data for those who did not respond to any
follow-up surveys could therefore significantly improve the
evaluation and monitoring of the service quality.

In light of the relevance of the automated evaluation of chat
interactions at chat hotlines, as well as the interventions raising
relevance for youth mental health care, this project uses a
naturalistic sample of 2609 young chatters that were counseled
by the German 24/7 hotline service krisenchat. Feedback
regarding the perceived helpfulness of the chat is used to train
classifiers on the anonymized consultation texts. Performance
is evaluated on a previously unseen test set addressing the
feasibility of the approach, hypothesizing that we can
significantly predict the feedback response by the chatter.
Additionally, we assume that applying a pretrained
transformer-based model as the state-of-the-art NLP will allow
us to outperform a simpler non–transformer-based approach.

Methods

Preregistration
This study was preregistered at Open Science Framework [32].
The preregistration was updated once, as we adapted the used
statistical test for the algorithm comparison (see the Final
Evaluation section under Methods) and corrected the
questionnaire item used for the outcome variable. We used the
checklist for reporting machine learning studies by Klement
and El Emam [33], which can be found in Multimedia Appendix
1. Due to legal restrictions regarding the highly vulnerable
sample of this study, we are unable to share the dataset.
However, the code used for training the algorithm and predicting
the helpfulness can be found on GitHub [34], as a starting point
for future work.

Ethical Considerations
The data collected and used for this study were part of a larger
research project that was ethically approved by the University
of Leipzig (372/21-ek). Additionally, we submitted the proposed
secondary data analysis to the ethics committee of the
Humboldt-Universität zu Berlin. They confirmed that this
analysis does not require additional approval. Before the use of
this study, the data were subject to a multistep anonymization
procedure. Specifically, personally identifying information was
marked by counselors and deleted by the organization.
Additionally, there also was an automatized method in place to
delete names and locations that might have been missed by the
counselors. Finally, a k-anonymity principle was applied,
deleting all words that were not part of at least 5 different chats.

Setting and Intervention
The anonymized data used for this study were provided by
krisenchat, a German 24/7 chat counseling service for people
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aged up to 25 years. At krisenchat, those contacting the service
through WhatsApp are provided with chat counseling, either
by volunteer or employed psychologists, psychotherapists, or
social workers. A central aspect of the consultations is the
provision of exercises and resources, for example, by sharing
YouTube videos, blog posts, or providing them within the chat.
However, counselors are also trained in providing emotional
support as needed, as well as providing information about mental
health care structures in Germany, such as access to
psychotherapy or the youth office.

Sample
Data were accessed and shared by the organization on January
17, 2024. On this date, there were feedback questionnaires
available for 4560 chatters. Those questionnaires were sent out
as part of a larger research project on the service [14]. A total
of 264 participants were either younger than 13 years or older
than 25 years of age and therefore excluded. While the upper
age limit resulted from the scope of the service, the lower age
limit resulted from data privacy considerations. An additional
1631 of the chatters were in contact with the service in the last
4 months. A help seeker’s inactivity for at least 4 months is an
organizational requirement for assuming the consultation
purpose has ended and the chat is deleted by anonymization.
Accordingly, active chats were also excluded, leading to 2664
concluded conversations and the related feedback questionnaire,
with feedback provided between July 22, 2022, and September
17, 2023. For those cases, all messages exchanged between help
seekers and counselors within 72 hours before the response to
the feedback questionnaire were included. We then excluded
cases where conversations consisted of fewer than 10 messages.
This led to additional exclusions and resulted in a final sample
of 2609 chatters. Their consultations consisted of 141,404
messages, 82,335 by the help seekers and 59,052 by the
counselors. Therefore, on average, there were 54 messages
exchanged in the three days before the feedback response, 23
messages by the counselor and 31 messages by the help seeker.

Outcome Variable
The feedback questionnaire answered by the chatters included
several questions regarding the chat interaction (see Multimedia
Appendix 2 for the full questionnaire). For this study, we
decided on the use of a single item asking for the helpfulness
of the chat (“Did the chat help you?” in German: “Hat dir der
Chat geholfen?”), as being the most direct assessment available

of chat quality and success, as perceived by the young clients.
While the item had four possible answers (“Yes,” “Rather Yes,”
“Rather No,” and “No”), we decided to dichotomize it into
“Yes” or “No.” Reasons for that were improved actionability
(as most clinical decision-making is binary by nature, such as
providing additional help—yes or no), as well as considering
the high-class imbalance. Overall, 89% (n=2332) of the chatters
rated the chat as helpful. Specifically, 61 chatters responded
with “No,” 216 chatters responded with “Rather No,” 1138
chatters responded with “Rather Yes,” and 1194 chatters
responded with “Yes.”

Algorithm Training
All decisions regarding algorithmic specifications were made
on the 80% of the available data used as a training set.
Specifically, we separated the newest 20% of the consultations
(522 chats who submitted their feedback after May 27, 2023)
as a test set, a commonly used approach to mimic the evaluation
of a previously implemented model (eg, [35]).

For our non–transformer-based approach, we preprocessed the
data by lowering all words, deleting stop words, and using a
lemmanizer [36]. Afterward, a term frequency-inverse document
frequency (TF-IDF) vectorizer was used for feature extraction.
This vectorizer counts the occurrences of words and weights
them based on their frequency across the whole sample. This
algorithm was trained using a 5-times repeated 5-fold stratified
cross-validation principle. Hyperparameters were tuned using
Bayesian optimization maximizing the receiver operating
characteristic (ROC) area under the curve (AUC) score for 250
iterations. While there has been some discussion about the
applicability of this metric facing class imbalance (eg, [37]),
we saw its appropriateness backed up by systematic comparisons
[38] and analysis [39] on the issue. All hyperparameters
optimized during this procedure are summarized in Table 1.
Those also included, as suggested by a reviewer, the range of
ngrams used by the vectorizer. Therefore, bigrams and trigrams
of words of the messages were also usable as predictors. The
used over- or undersampling method was also selected during
this procedure, comparing oversampling, undersampling, and
Synthetic Minority Oversampling Technique [40]. As a
classifier, we applied and tuned an extreme gradient boosting
(XGBoost) [41] classifier, as well as a logistic regression. The
training pipeline can be found on GitHub.

Table 1. Overview of shortlisted transformer-based models.

SourceInput length, nModel

[42]512uklfr/gottbert-base

[43]512distilbert/distilbert-base-german-cased

[44]8192LennartKeller/longformer-gottbert-base-8192-aw512

We used hugging face for all transformer-based approaches
[42]. We shortlisted GottBERT [43], as well as a German
DistilBERT model [44], as language-specific models to be
evaluated. However, we assumed that a significant share of our
data would exceed those models’ input length. Therefore, we
also intended to evaluate a Longformer model [45]. This model

can process much longer input sequences at reasonable
computational costs by applying a sparse attention mechanism
(see Table 1 for the shortlisted models including links). We also
intended to explore over- and undersampling, as well as class
weights to tackle the class imbalance. To represent the chat
structure appropriately to the algorithm, we introduced two new
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special tokens to the models, named “[USER]” and “[CNSLR].”
Those were added at the beginning of each message, presenting
the conversation structure in a processable format to the models.
For hyperparameter tuning, a grid search across the learning

rate (2×10–5, 3×10–5, and 5×10–5) and the batch size (1, 2, and
4) was performed for the preselected most promising model.
The training and tuning were done at a stratified train-validation
split (70:30 of the data used for algorithm training), as the
repeated cross-validation principle applied for the TF-IDF
approach was infeasible due to computational costs. Therefore,
a train-validation-test split (56:24:20) was used as an evaluation
principle, with the same data being kept aside as final test data
for the nontransformer approach. All transformer-based models
were trained on an NVIDIA GeForce RTX 3090 graphics
processing unit with 24 GB video random access memory.

Final Evaluation
The 522 newest conversations with feedback were used as a
test set. The distribution of the outcome did not differ
significantly between the training and test data (t520=–1.1;
P=.30). We decided to predict the outcome with the best
performing TF-IDF approach and the most promising
transformer approach, as identified on the train set as described
above. We then applied a permutation test [46] to evaluate the
significance of both algorithms. Finally, we contrasted the
achieved AUCs of the two approaches, applying a DeLong test
[47], which has been suggested for this scenario [48]. We
decided for this procedure above the 5×2 McNemar test [49]
originally proposed in our preregistration. This reconsideration
was mainly made due to the inability of the McNemar test to
statistically compare AUC scores. The comparison of accuracies
seemed disadvantageous to us, as focusing on the performance

for one specific threshold. In contrast, considering the different
proposed use cases, we were more interested in a
threshold-independent comparison of classifier performance.
As a threshold-dependent metric, we reported the Matthews
correlation coefficient (MCC), which is particularly helpful in
cases of imbalanced classes [50]. We followed the suggestion
in the literature to use a default threshold of 0.5 [51] for the
calculation of a confusion matrix and the corresponding MCC
score.

Explainability
We used Shapley additive explanation (SHAP) values [52] as
an explainability framework. This game-theory–based approach
is applicable for transformer models [53] and XGBoost classifier
[54].

Results

Algorithm Training
For the TF-IDF-based approach, the best set of hyperparameters
selected through the tuning approach led to a mean ROC AUC
score of 0.70 (SD 0.02) across repeated cross-validation for the
XGBoost classifier. For this, a minimum occurrence of the word
stems for 20 different chatters and for five different counselors
was selected as a hyperparameter for the vectorizers. Random
oversampling was selected for handling class imbalance.
Counselors word stems were only selected when occurring in
30% or less of the conversations, while chatters word stems
were allowed in up to 90% of the conversations. In addition,
trigrams and bigrams were included, as well as predictors (see
Table 2 for all hyperparameters). This was slightly above the
performance of logistic regression, scoring 0.66 for the best set
of hyperparameters.
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Table 2. Overview of tuned hyperparameters (definitions adapted from [22]).

Selected
parame-
ter

Value rangeDescriptionHyperparameters

0.90.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0

Terms that appear in more chatter documents than the threshold value are
ignored. The value represents the proportion of documents

max_df_chatter

201, 2, 5, 10, 25, 50, 75, 100, 150,
200

Terms that appear in fewer chatter documents than the threshold value are
ignored

min_df_chatter

0.30.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0

Analogous to max_df_chatterfor counselor messagesmax_df_couns

51, 2, 5, 10, 25, 50, 75, 100, 150,
200

Analogous to min_df_chatter for counselor messagesmin_df_couns

Rando-
mOver-
Sampler

ROSa, RUSb, SMOTEcMethod for handling imbalanceSampling method

1.00.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0Subsample ratio of columns for growing treescolsample_bytree

0.10.005, 0.01, 0.05, 0.1, 0.2Learning rateeta

1.50, 0.25, 0.5, 1, 1.5, 2, 5, 10Minimum loss reduction to make a further split on a leaf nodegamma

162, 4, 6, 8, 10, 12, 14, 16Maximum depth of a treemax_depth

101, 5, 10, 20Minimum sum of instance weight (Hessian) needed in a childmin_child_weight

0.90.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0Subsample ratio of the training instances prior to growing treessubsample

TrueTrue, falseWhether to term frequencies should be reweighted by the inverse document
frequencies

use_idf

(1,3)(1,1), (1, 2), (1,3)Length of word sequences used as predictorsngram_range

aROS: random over sampler.
bRUS: random under sampler.
cSMOTE: Synthetic Minority Oversampling Technique.

For the transformer-based approach, we reached a ROC AUC
of 0.58 for the DistilBERT and 0.59 for the GottBERT models,
using class weights (9:1) and five epochs. Comparable
performances were reached when random oversampling was
used instead of the class weights. We expected the performance
to be limited by strong truncation. Therefore, we explored the
average length of the input sequence with DistilBERT as
tokenizer. Data points in the train set contained on average 1889
(SD 873) tokens, showing that those models could just use a
share of the available data on the chat conversations. However,
with the longest conversation holding 8507 tokens, the
Longformer model structure seemed capable of capturing nearly
all information contained in our data. Indeed, using the
Longformer model in combination with class weights (9:1),
three epochs, a learning rate of 3e-5, and a batch size of one
resulted in a significantly higher ROC AUC of 0.69. Neither

other methods for handling class imbalance nor different epoch
sizes lead to a further improved performance.

Final Evaluation
While the performance between the transformer and
non–transformer-based approach was similar during training
(0.69 vs 0.70), this comparison is limited by the differences in
the used validation principle. However, the large previously
unseen test set allowed us the comparison of the two
best-of-class models in a final evaluation. Here, we reached an
ROC AUC of 0.68 for the Longformer model and an ROC AUC
of 0.69 for the TF-IDF–based approach, both significantly
outperforming randomness in a permutation test (P<.001 for
both). However, as expected, considering the similar
performance, there was no significant difference between the
two approaches (P=.69). The ROC curves are plotted in Figure
1, showing how threshold and model performance interacted.
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Figure 1. ROC AUC curves comparing the two algorithms. AUC: area under the curve; ROC: receiver operating characteristic; XGB: extreme gradient
boosting.

Consequently, we used the TF-IDF approach as the simpler
algorithm for further insights, as well as the explainability
approach. The average precision score here was 0.93 (SD 0.02)
on the test set. The MCC score for the default threshold of 0.5
was 0.25 on the test set. The confusion matrix on this threshold

can be found in Figure 2. Here, a positive predictive value of
0.90 and a negative predictive value (NPP) of 0.50 were
achieved, with “positive” being coded as helpful. The sensitivity
was 0.98 and the specificity was 0.18.

Figure 2. Confusion matrix for the selected threshold for the TF-IDF algorithm. TF-IDF: term frequency-inverse document frequency.

JMIR AI 2025 | vol. 4 | e63701 | p.93https://ai.jmir.org/2025/1/e63701
(page number not for citation purposes)

Hornstein et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Explainability
We applied SHAP values on the vectorizer-based approach.
The most predictive word identified here was “no” by the
chatters, being associated with a higher chance of an unhelpful
perceived chat. Two other predictors of unhelpfulness were the
word “bad” (original: “schlimm”) by the counselor, as well as
“nevertheless” (original: “trotzdem”) by the chatter, and “further
on” (original: “weiterhin”) by the counselor. In addition, some
bigrams were among the most predictive variables. For example,
“shift end” (German: “Schicht endet”), indicating that a
counselor had to end a conversation due to their shift being
over, was associated with negative feedback. For an improved
understanding of the context those words were used, we looked
into chats using those and giving negative feedback afterward.
While “no” was used in diverse settings, there was a notable
number of cases where chatters denied the counselor’s offering
of further help such as an exercise. “Bad” was used on several
occasions where chatters reported highly traumatic experiences

they had. Finally, “further on” was a phrase repeatedly used by
counselors to announce the end of their shift and offer further
support from a colleague afterward. There were also several
words being predictive of perceived helpfulness. Several of
those implied that a chatter expressed satisfaction with the
interaction at the end of a chat. For example, the word stem
“thanks” (original: “dank”) was predictive of higher perceived
helpfulness, as was “great” (original: “toll”). We also
investigated those conversations that were predicted with the
highest likelihood of being labeled as unhelpful afterward.
Again, there were several cases included where chatters rejected
suggested exercises by the counselor. In addition, in several
conversations with a high risk of unhelpfulness, it was reported
that mental health care is already received, such as regularly
seeing a psychiatrist or being hospitalized in a clinic. As one
of the core functions of chat hotlines is the redirection into care,
it might be harder to make a satisfying offer to those. The 20
most predictive words as identified by the tree-based SHAP
approach can be found in Figure 3.

Figure 3. The 20 most predictive word stems as identified by the SHAP approach for the TF-IDF algorithm. SHAP: Shapley additive explanations;
TF-IDF: term frequency-inverse document frequency.
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Discussion

Primary Findings
This project investigated the use of NLP techniques for an
automated evaluation of the perceived helpfulness of chat-based
counseling. We were able to reach a ROC AUC of 0.67 on the
previously unseen test set for a transformer, as well as for a
non–transformer-based approach. Our explainability part
revealed several linguistic markers of perceived unhelpful chat
consultations such as the written expression of thankfulness, or
the extensive use of the word “no” for rejecting the different
offers made by counselors.

The reached performance was moderate, though significant and
in line with past work from the identical settings [22]. However,
the feasibility of an AI use case always depends on the
performance considering the proposed use case. The given study
implied two potential uses of predicted helpfulness of the chats.

The first use case was the real-time identification of unsuccessful
consultations, as perceived by the chatter. Due to the very
harmful impact of such experiences, those predictions could be
used for a tailored follow-up, for example, with details of
different treatment options for those affected. In our example,
we would have identified 30 of the 62 unhelpful rated
conversations with the approach, though 79% of all identified
cases would have been false negatives (with negative referring
to perceived unhelpfulness).

An alternative approach would have been a much stricter
threshold, letting us mark significantly less chats but with higher
NPP. For example, on a threshold of 0.3, our NPP would have
doubled. However, the consequences of wrongly identifying
chatters as unsatisfied might be less relevant than missing those
being unsatisfied in light of the possible negative consequences
of further help seeking. Overall, whether one of those
approaches could be valuable would depend on whether the
benefits for those correctly identified are larger than the costs
of providing the intervention based on the prediction. Finally,
this is an empirical question that we cannot answer here
sufficiently. This highlights the large need for randomized
controlled trials for prediction studies, moving from feasibility
to actually showing clinical benefits [55].

A second use case of the proposed algorithm lies less on the
individual and more on a population-based level. As evaluation
within naturalistic and low-threshold settings is commonly
difficult, the developed algorithm could be applied to those who
did not respond to feedback questionnaires. This application
would allow a better-informed estimation of satisfaction with
the service where just a minority provides active feedback. A
reliable estimate of this core metric of the service would propose
a huge value for organizational purposes. Without any
alternative of estimating the satisfaction of those not providing
feedback being available, the proposed algorithm already
provides an improvement over the status quo as clearly
performing above the chance level. However, particularly for
systematic comparison of, for example, monthly satisfaction,
the question arises whether the performance is sufficient for
reliable inference. Here, simulation studies might help to better

understand the relation between performance and the reliability
of algorithm-based evaluation.

Secondary Findings
Interestingly, there was no further gain in predictive capability
by using the computational heavy and pretrained Longformer
model. The failure of more complex NLP models to outperform
simpler ones is not unique to the given setting and has been
reported before [56-58]. However, based on the literature, we
started the work on this paper with an opposing hypothesis. For
example, a popular study [59] compared Bidirectional Encoder
Representations from Transformer–based approaches with
TF-IDF–based algorithms and reported a clearly better
performance for the former. An in-depth look into the used
methods provides several possible explanations for the diverging
results. First, the cited study used a larger sample of 50,000
distinct cases, while using the much smaller Bidirectional
Encoder Representations from Transformer base model.
Therefore, the dataset size might have been insufficient to
finetune such a sophisticated model. Second, the use case is
different, while algorithmic performance is highly case specific.
The cited study focuses on sentiment analysis. Arguably, the
extraction from word vectors into higher-dimensional spaces
like sentiment as done by transformer models is particularly
relevant here. While our explainability approach revealed some
sentiment-related predictors like words of thankfulness, overly
sentiment seemed less central than it is for movie reviews as in
the aforementioned study. Finally, it remains unclear how much
the advantage of simpler models is used in comparative studies.
For example, in our approach, we were able to perform extensive
hyperparameter tuning using sophisticated cross-validation
principles. The relevance of this to produce generalizable results,
and therefore, realistic performance estimates is well established
[60,61]. Such approaches are hard to reproduce at feasible
computational costs for transformer-based models for a lot of
ML practitioners in their day-to-day work. However, waiving
those techniques also for the baseline is arguably biasing the
comparison against them, as their better capability to be trained
with extended cross-validation principles is a real benefit that
might translate into predictive performance. Particularly, small
predictive performance differences as reported regularly (eg,
[25]) might disappear with decent hyperparameter tuning and
cross-validation.

In conclusion, while the actual outperformance seems dependent
on setting and data, the results of this study, as well as the
aforementioned studies, highlight the relevance of benchmarking
complex models with simpler ones. Otherwise, overly complex
models might be implemented without benefits. There are
numerous studies that apply interesting and promising
algorithmic approaches but do not compare them with a simpler
baseline at all (eg, [62-64]). However, we also argue that a fair
comparison includes the utilization of hyperparameter tuning
and cross-validation for computationally lighter models.

Limitations
There were limitations to the approach in this paper. First, while
we predicted the helpfulness of a chat as perceived by chatters,
this perception does not equal to actually being clinically
beneficial. For example, in the aforementioned study by Imel
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et al [27], the association between message content and
satisfaction was much stronger than the association between
content and symptom reduction. Therefore, future work could
benefit from associating chat messages with clinically validated
questionnaires as output. However, arguably changes in
symptoms are difficult to measure in hotline settings, where a
majority of chatters just contact the service once. Second, we
were only able to train the algorithms on the data of those who
responded to the feedback questionnaire. This might have
introduced a bias, in case of systematic differences between
those providing feedback and those who do not. Third, we
focused on the application of the Longformer model in the
transformer-based approach of this paper. Future work might
also benefit from exploring task-specific adaptions of the used
algorithms in detail. In addition, different methods of handling
long text inputs such as BELT [65] might enable a better
performance. Notably, there were no mental health–specific

smaller models available in German. Those exist for other
languages and use cases [66]. Such models, for example,
pretrained on youth mental health data in German, could provide
further performance gains as well. Finally, while we used a test
set for a final one-time evaluation, this test set still came from
the same chat counseling service. However, the relevance of
truly external test sets has been highlighted repeatedly as being
relevant for more valid claims regarding the generalizability of
a chosen approach (eg, [67]).

Conclusions
In summary, there is a predictive signal regarding the perceived
service quality in the chat messages at a 24/7 chat hotline for
youth. This opens interesting use cases in the quality control
and evaluation efforts at those hotlines. Future work such as
the randomized evaluation of interventions based on the
predicted helpfulness is needed for moving toward real-world
implementation.
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