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Abstract

Background: Acute marijuana intoxication can impair motor skills and cognitive functions such as attention and information
processing. However, traditional tests, like blood, urine, and saliva, fail to accurately detect acute marijuana intoxication in real
time.

Objective: This study aims to explore whether integrating smartphone-based sensors with readily accessible wearable activity
trackers, like Fitbit, can enhance the detection of acute marijuana intoxication in naturalistic settings. No previous research has
investigated the effectiveness of passive sensing technologies for enhancing algorithm accuracy or enhancing the interpretability
of digital phenotyping through explainable artificial intelligence in real-life scenarios. This approach aims to provide insights
into how individuals interact with digital devices during algorithmic decision-making, particularly for detecting moderate to
intensive marijuana intoxication in real-world contexts.

Methods: Sensor data from smartphones and Fitbits, along with self-reported marijuana use, were collected from 33 young
adults over a 30-day period using the experience sampling method. Participants rated their level of intoxication on a scale from
1 to 10 within 15 minutes of consuming marijuana and during 3 daily semirandom prompts. The ratings were categorized as not
intoxicated (0), low (1-3), and moderate to intense intoxication (4-10). The study analyzed the performance of models using
mobile phone data only, Fitbit data only, and a combination of both (MobiFit) in detecting acute marijuana intoxication.

Results: The eXtreme Gradient Boosting Machine classifier showed that the MobiFit model, which combines mobile phone
and wearable device data, achieved 99% accuracy (area under the curve=0.99; F1-score=0.85) in detecting acute marijuana
intoxication in natural environments. The F1-score indicated significant improvements in sensitivity and specificity for the
combined MobiFit model compared to using mobile or Fitbit data alone. Explainable artificial intelligence revealed that moderate
to intense self-reported marijuana intoxication was associated with specific smartphone and Fitbit metrics, including elevated
minimum heart rate, reduced macromovement, and increased noise energy around participants.

Conclusions: This study demonstrates the potential of using smartphone sensors and wearable devices for interpretable,
transparent, and unobtrusive monitoring of acute marijuana intoxication in daily life. Advanced algorithmic decision-making
provides valuable insight into behavioral, physiological, and environmental factors that could support timely interventions to
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reduce marijuana-related harm. Future real-world applications of these algorithms should be evaluated in collaboration with
clinical experts to enhance their practicality and effectiveness.

(JMIR AI 2025;4:e52270) doi: 10.2196/52270
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Introduction

Background
Acute effects of marijuana use impair motor skills and cognitive
functions, such as attention and information processing [1-3],
leading to adverse outcomes like poor academic and work
performance, as well as an increased risk of motor vehicle
crashes and fatal collisions [2,4]. Delta-9 tetrahydrocannabinol
(THC), the principal psychoactive constituent of marijuana,
binds to brain receptors, inducing a feeling of “euphoria” or
being “high” [5]. Given the risks associated with THC-induced
impairment, there is a critical need to detect episodes of
marijuana intoxication in real time in the natural environment.

Several studies have explored the use of phone sensors or
wearable devices to detect acute marijuana consumption. For
example, a laboratory study with 10 participants used
smartphone sensors (accelerometer, gyroscope) to detect acute
marijuana use (3% or 7% THC vs placebo) and found that gait
analysis with a support vector machine model achieved 92%
accuracy (F1-score=0.93) [6]. Another study (n=1) developed
an electrochemical biosensor ring that detected salivary THC
(minimum of 0.5 μM) and blood alcohol levels (minimum of
0.2 mM) within three minutes [7]. However, these studies were
conducted in controlled environments, highlighting the need
for research on using smartphone and wearable sensors to detect
acute marijuana use in nonlaboratory, natural settings.

Detecting marijuana use in daily life could enable Just-In-Time
interventions to reduce harm, such as avoiding driving while
intoxicated [8]. However, challenges exist in detecting acute
marijuana-related intoxication [9]. THC could be detected in
an individual’s blood or urine for several days after consumption
depending on factors such as recency, frequency, and chronicity
of use [10]. Thus, a person who tests positive for THC might
not be intoxicated or impaired at the time of testing [10].
Existing testing methods (eg, blood, urine, saliva, and breath)
are not suitable for real-time detection, as THC can remain
detectable in the body for days after consumption, which does
not necessarily indicate current impairment [10].

To address these limitations, our recent study [11] used passive
sensing via smartphones, coupled with self-reported intoxication,
to detect marijuana use with 90% accuracy, using sensor-derived
data from mobile phones alongside temporal variables, including
time of day and day of week. Building on these findings [11],
this study explores the use of wearable devices (eg, Fitbit) to
enhance detection capabilities by incorporating physiological

indicators, thereby improving the accuracy and immediacy of
identifying marijuana effects in natural environments.

Wearable device–reported heart rate (HR) was examined as a
potential physiological indicator of acute marijuana intoxication,
based on laboratory studies, showing a dose-dependent increase
in resting HR shortly after smoking or vaping marijuana [12-14].
Specifically, laboratory research reports that within 2-3 minutes
of smoking marijuana, there is an acute increase (20%-60%
dose-dependent) in resting HR [13], which might represent a
“physiological signal” of the onset of a marijuana smoking
episode. HR peaks 10-15 minutes after reaching maximum THC
levels, followed by a rapid decline [12-14]. While tolerance to
this effect may develop (eg, from a mean increase of 44.6 to
6.6 beats per minute (bpm) after 18-20 days of use) with chronic
use, [12-14]. The acute HR increases have been validated in
laboratory settings but have remained unexplored in real-world
contexts. This study examines using off-the-shelf wearable
devices, such as Fitbit, to detect acute HR increases as a
physiological signal potentially correlated with self-reported
marijuana intoxication.

Research Objectives and Contributions
While laboratory studies have established the link between HR
changes and marijuana intoxication [12-14], its applicability in
real-world scenarios is unexplored. To address this gap, we
propose that combining wearable device data with smartphone
sensors could improve algorithms for detecting marijuana
intoxication in real-life settings. To enhance the interpretability
of our algorithms and provide insights for just-in-time adaptive
interventions, we incorporated explainable artificial intelligence
(XAI) into our machine-learning pipeline. XAI helps clarify the
role of digital biomarkers associated with self-reported
marijuana intoxication in natural environments.

This study aims to determine whether data from smartphones
(eg, accelerometer and GPS) and wearable devices (eg, Fitbit)
can detect self-reported marijuana intoxication (“feeling high”)
in the natural environment, a topic not previously investigated.
Two hypotheses drive this research: (1) the novel MobiFit
model, which combines smartphones and Fitbit data will
outperform models that use only one data source in detecting
self-reported intoxication; (2) HR and daily behavioral data (eg,
step count) from Fitbit are important features for detecting
self-reported marijuana intoxication. If either hypothesis is
validated, it indicates the value of integrating wearable device
data into daily life monitoring.

This study evaluates the performance of sensor-based models
using (1) only smartphone sensors, (2) only Fitbit data, and (3)
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the combined MobiFit model. We also used XAI to enhance
understanding of key digital features from both smartphone
sensors and Fitbit data associated with self-reported marijuana
intoxication. Identifying smartphone-based sensors and Fitbit
features that accurately detect self-reported marijuana
intoxication in natural environments could ultimately trigger
just-in-time interventions.

This study presents a comprehensive approach toward using
mobile and wearable technology for detecting self-reported
acute marijuana intoxication in real-life settings, emphasizing
interpretability and transparency through XAI. This study
demonstrates the potential of integrating smart devices with
advanced analytical techniques to improve detection accuracy
and support timely interventions based on detected intoxication
levels.

Methods

Recruitment and Participants
A total of 57 participants aged 18-24 years were recruited
through flyers, advertisements, and local communities.
Eligibility criteria were (1) using marijuana at least twice a
week, (2) owning a personal mobile phone, (3) not currently
seeking treatment for substance abuse, (4) no self-reported
history of psychosis, and (5) not taking any medication or using
any medical device (eg, pacemaker) that could affect HR. Of
the 57 participants, 24 participants were excluded from the
analysis due to missing data (eg, no HR data and no mobile
sensor data).

The final analysis focused on 33 participants aged 18-24 years,
with an average age of 19.64 (SD 1.77) years. Among these, 23
participants identified as White, 4 participants as Black, and 6
participants as other race or ethnicity. The average age of first
marijuana use was 16.48 (SD 1.84, range 13-22) years, and the
average age of regular marijuana use was 17.03 (SD 1.72) years.
In this subset, 24% (n=8) reported daily marijuana use, 9%
(n=3) reported using it 5-6 times per week, and 67% (n=22)
reported using it 2-4 times per week. Notably, 97% (n=32) of
participants primarily used iOS smartphones, with only 3%
(n=1) using Android devices.

Ethical Considerations
This naturalistic, observational follow-along study was approved
by the university’s institutional review board (Stevens 2020-008
[23-COAS3], Rutgers Pro2019002365). In line with similar
Institutional Review Board–approved observational studies
[15], all participants were informed about local medical and
mental health resources. The study obtained a National Institutes
of Health Certificate of Confidentiality. Written consent was
obtained from participants, who were informed about privacy
protections and the voluntary nature of their participation [16].
The research staff explained the types of data to be collected,
the duration of data collection, and the purpose of the study.

Study Design
Participants completed a baseline laboratory assessment
including interviews, questionnaires, and cognitive testing. They
downloaded study apps from the App Store or Google Play

Store to their smartphones. Research staff trained participants
on how to use the apps and the study provided Fitbit Charge 2
for data collection. The AWARE mobile app [17] delivered
experience sampling method (ESM) questions on marijuana
use. Participants wore the Fitbit Charge 2 wristband to collect
data on HR, physical activity (eg, step count), and sleep (eg,
time, duration, and quality; see Table S2 in Multimedia
Appendix 1 for Fitbit variables). The study collected continuous
sensor data from smartphones and Fitbit devices, along with
self-reported data on marijuana intoxication, for up to 30 days.
A 30-day period was chosen to ensure sufficient data, given the
study’s inclusion criteria of frequent marijuana use. At the end
of the study, participants completed a debriefing interview about
their experience.

Participants were compensated for their time and effort,
receiving US $75 for completing the baseline assessment, and
US $25 for the debriefing interview. They earned US $10 for
each day on which they completed more than 75% of data
collection (eg, Fitbit and ESM).

Mobile Sensing Framework and Applications for Data
Collection

AWARE App
AWARE is a mobile sensing framework [17] that passively and
continuously collects data from smartphone sensors. This data
can be used to infer human behavior patterns using various
sensors: location (eg, distance traveled and circadian rhythm),
physical movements (eg, acceleration and activity), device usage
(eg, unlock, charge, keypress, and app usage), social patterns
(eg, communication and conversations), and environmental
context (eg, Wi-Fi, Bluetooth, sound or ambient noise, and
light). The app, developed to track participants’ natural
behaviors in real-life settings, runs in the background 24/7 and
collects sensor data with associated metadata, such as time
stamps and communication logs. The data is transferred to a
secure MySQL database owned and operated by the research
team.

ESM
The mobile app also captured self-reports of marijuana use by
participants. Two types of surveys were used [18]. Participants
manually reported marijuana use within 15 minutes of
consumption, detailing the amount used, mode of consumption,
and the people whom the participant consumed marijuana with.
They also rated their subjective intoxication on a scale from 0
(none) to 10 (a lot) [19]. Two hours later, the app prompted
participants to complete an end-session survey indicating when
intoxication symptoms subsided. In addition, fixed-time surveys
were delivered daily at 10 AM, 3 PM, and 8 PM to collect
information on the participants’daily lives, including time since
last marijuana use, cravings, mood, and feelings (eg, relaxed,
anxious, and sad), and other substance use (eg, alcohol and
tobacco). Survey response windows were open for 5 hours to
accommodate participants’ schedules.

Fitbit Charge 2
Participants were provided with Fitbit Charge 2 devices and
asked to wear them as much as possible. Fitbit collected
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physiological data (eg, HR), activity data (eg, step count), and
sleep. The study hypothesized that HR and behavioral data could
signal episodes of acute marijuana intoxication. Fitbit data were
retrieved from the Fitbit server at the end of the study using the
Fitbit application programming interface.

Preparing Self-Report and Fitbit Data for Analysis
An episode of self-reported subjective marijuana intoxication
was defined based on the ESM item: “How high are you feeling
right now?” rated from 0 to 10 (0=not high to 10=a lot) [18,19].
To include episodes in the analysis, both start and end times
had to be reported to calculate duration and label the sensor
data. To capture behaviors without marijuana use, 1556 reports
where participants answered “no” to the question “Did you
smoke marijuana since the last report?” during afternoon

(n=1151) and evening (n=950) surveys were labeled as “0” for
the subjective rating of marijuana intoxication.

From all participants, we received 641 self-reports (mean 9.86,
SD 8.49; median 7, IQR 4-13) and 1556 with no marijuana use
reports (Figure 1). Out of 641 reports, 168 reports had a
subjective intoxication rating of 0 and 10, and 6 reports had no
rating. After excluding 6 reports without ratings and 108
duplicate reports, 527 samples remained. Reports with missing
start and end times, or implausible episode durations (eg, longer
than 3 hours) were excluded based on laboratory research
indicating that smoked or vaped marijuana effects last less than
3 hours [20]. A total of 136 self-reports were excluded for
exceeding this duration, leaving 1556 reports where no
marijuana use was recorded [20].

Figure 1. Flowchart of participants and the data included in the analyses.

For model building, episodes without mobile sensor data (n=72)
were excluded, leaving 221 marijuana self-reports. Furthermore,

episodes without Fitbit sensor data (n=17) were excluded,
leaving 50 participants. These participants provided 132

JMIR AI 2025 | vol. 4 | e52270 | p. 4https://ai.jmir.org/2025/1/e52270
(page number not for citation purposes)

Bae et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


marijuana use self-reports and 909 “no marijuana use” reports.
We analyzed reports from each participant, excluding those
who only reported not using marijuana or had a rating of 0 for
subjective intoxication, leaving a total of 642 with no marijuana
use report or who reported 0 subjective intoxications when using
marijuana and 34 people. Finally, to prevent participants from
using Fitbit incorrectly, we excluded users without HR data,
leaving a total of 33 people, who provided a total of 769 events:
640 “no marijuana use” reports and 129 marijuana use
self-reports.

Extracting Smartphone and Fitbit Sensor Features
Following previous studies, we extracted audio features to detect
social interactions [21,22] potentially associated with marijuana
use. Audio features were extracted using the conversation
plug-in, which detects whether a person was engaged in a
conversation. Raw audio signals are converted to amplitude
using the Euclidean norm [23], which categorizes ambient levels
into silence, noise, voice, and unknown [24]. We also computed
device use features, such as smartphone unlock minutes and the
duration of device interaction sessions. In addition to audio
features, we extracted GPS features to examine movement
patterns related to marijuana use [25-28]. These included the
radius of gyration, time at a location cluster, total distance
traveled, number of clusters within a 5-minute window,
acceleration, and phone angles. Environmental features, such
as the number of Bluetooth devices detected, the most frequently
contacted Wi-Fi access point, and light features (eg, average
[avg], and maximum [max] lux) were also extracted. For most
features, we calculated the minimum (min), max, avg, median
(med), and SD. Further details on smartphone features can be
found in Multimedia Appendix 1.

We used a 5-minute time window for extracting sensor feature
statistics, as laboratory studies show a dose-dependent acute in
resting HR within 2-3 minutes of marijuana use. Using larger
time intervals could include data not related to marijuana use,
given the average reported marijuana session duration is 75 (SD
46.2) minutes.

Raw data for HR, sleep, and steps were extracted from Fitbit.
We first obtained per-minute HR and step count data using the
Fitbit application programming interface. To exclude outliers,
we refined data selection to omit instances where HR was below
40 bpm, as recommended by the American Heart Association
[29,30]. We extracted feature statistics such as avg, SD, min,
med, and max HR within a 5-minute window to explore the
relationship between HR and marijuana intoxication levels
(“moderate-intensive,” “low,” and “none”). Resting HR was

defined as HR data collected when the participant was sedentary
(ie, no steps taken) for more than 5 minutes. To further analyze
HR patterns related to marijuana intoxication, we examined the
degree of peakedness (kurtosis) and asymmetry (skewness) in
HR data, as these features may reveal physiological changes
associated with marijuana intoxication [31]. For more details,
refer to Table S2 in Multimedia Appendix 2.

Ground Truth and Labeling Sensor Data
To accurately label the collected sensor data, we defined the
duration of marijuana use episodes as those equal to or less than
3 hours, based on reported start and end times. We excluded 3
hours of sensor data following the reported end time to account
for the continued effects of marijuana, even when participants
reported a subjective intoxication level of 0. For example, if
marijuana use was reported from 6 PM to 6:30 PM, data from
6:30 PM to 9:30 PM were excluded to account for residual
effects. We also excluded data from 30 minutes before the
reported start time to account for potential delays in
self-reporting, based on pilot study findings that delays could
range from 5 to 15 minutes. To collect nonmarijuana data, we
randomly sampled sensor data from days when participants did
not use marijuana (ie, nonmarijuana days). These samples were
labeled using morning, afternoon, and evening surveys in which
participants reported “no” to the ESM item “Did you smoke
marijuana since the last report?” and indicated that the last use
was more than 5 hours before the ESM time stamp (Figure 2).

We aimed to capture acute intoxication versus nonuse,
classifying intoxication levels into three categories: 0 as “not
intoxicated,” 1-3 as “low intoxication,” and 4-10 as
“moderate-intensive intoxication” (MI). In total, we labeled
32,722 sensor stream samples (5-minute windows) as “not
intoxicated” (154 from self-initiated survey coded as 0 high,
and 32,586 from time-based self-reports), 423 samples as “low
intoxication” (ratings between 1 and 3) and 772 samples as
“moderate-intensive” (ratings between 4 and 10, with 10
indicating “a lot”).

Data from smartphones and Fitbit resulted in two datasets of
different sizes. To ensure consistency, we down-sampled the
smartphone dataset to include only samples overlapping with
Fitbit data during the same time frames. This resulted in three
datasets: (1) eXtreme Gradient Boosting (XGBoost)-Mobile:
mobile phone only, (2) XGBoost-Fitbit: Fitbit-only, and (3)
XGBoost-MobiFit: combined mobile and Fitbit data. The
rationale for choosing Machine Learning (ML) models is
detailed in Multimedia Appendix 3 and model comparison with
different classifiers can be found in Multimedia Appendix 4.
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Figure 2. Marijuana use episodes and labeling principle.

ML Pipeline

Feature Selection
We began data analysis by randomly partitioning the labeled
sensor data into training (80%) and test (20% holdout) datasets.
As shown in Figure 3, we first calculated Pearson correlation
coefficients between features in the training dataset to identify

highly covariant feature pairs (correlation coefficients >0.9)
[32]. We then systematically removed one feature from each
pair to reduce redundancy and improve model performance by
retaining the most relevant and independent features. Next, we
selected statistically significant features with a Gini coefficient
importance [33] greater than 0.005. Details can be found in
Multimedia Appendix 2.

Figure 3. Study overview. AI: artificial intelligence; HR: heart rate; SHAP: Shapley Additive exPlanations; SMOTE: Synthetic Minority Over-Sampling
Technique; XGBoost: eXtreme Gradient Boosting Machine.
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Hyper-Parameter Tuning and Cross-Validation
As shown in Figure 3, during hyper-parameter tuning in the
training dataset, we used cross-validation to randomly leave
10% of the samples out, training the model on the remaining
90% and testing on the withheld 10%. We used the Synthetic
Minority Over-Sampling Technique [34] to ensure equal
representation across all classes. We further optimized model
performance with a Bayesian-optimization-driven method called
Optuna [35] to select the best combination of hyperparameters
and 10-fold cross-validation on models with Optuna-optimized
hyperparameters.

For the final model evaluation, we used the reserved test data
(20% unseen data, as shown in Figure 3). The model was
evaluated on predictions made on the test data. Finally, as shown
in Figure 3 (right column), we conducted an XAI analysis to
better understand the decision-making process of our final
predictive model. We generated SHapley Additive exPlanations
(SHAP) on the unseen test data to ensure our findings were
explainable for data the model had not seen.

Model Evaluation Metrics
We evaluated model performance using F1-score, recall, and
precision, and selecting the best model based on the F1-score
[36]. Low precision indicates too many false positives (ie,
detecting intoxication when there is none), here we would
mistakenly intervene or notify the participant. Low recall
indicates too many false negatives (ie, not detecting intoxication
when it occurs), potentially leading to unsafe behaviors such
as impaired driving. Therefore, while we prioritize the F1-score,
we also consider precision and recall.

Given our imbalanced samples, we used the area under the curve
(AUC) metric, which provides a robust evaluation across all
classification thresholds and is resilient to class imbalance.

XAI: Interpretation Approaches for Black-Box ML
Models
To enhance algorithmic transparency, we used SHAP, a widely
used interpretability method for ML models [37,38]. SHAP
explains how specific data features influence model predictions,
providing insights into the model’s decision-making process.
We identified the top 30 most significant features associated
with marijuana intoxication reports, including their importance
scores and visual summaries calculated by SHAP (see “Key
Features Contributing to Model Performance” under the Results
section). XGboost was selected due to its superior performance
compared to other classifiers. The use of tree SHAP in this
context reduces the computation time for SHAP values from
exponential to polynomial [37].

Results

Timing, Duration, and Rating of Subjective Marijuana
Intoxication
During the 30-day period, participants averaged 14 (SD 8.59)
days of active participation. A total of 129 ESM self-initiated
reports of marijuana use met the criteria for inclusion in the
analysis: 101 reports of subjective marijuana intoxication
(feeling high rated 1-10 out of 10) and 28 reports of feeling not
high (0). Events not involving marijuana use were assigned a
high rating of 0.

Tables 1 and 2 show the distribution of self-reported subjective
marijuana intoxication across participants. Most episodes of
intoxication (n=75) lasted between 30 minutes and 3 hours, with
54 episodes lasting up to 30 minutes (Table 1). Marijuana use
was most often reported between 10 PM and 11 PM (n=24).
Table 2 shows the distribution of ESM responses throughout
the day. The average response latency to an ESM prompt
expired. Most self-initiated reports of marijuana use occurred
in the evenings: 14% (n=18) between 6 PM and 9 PM, and 39%
(n=50) between 9 PM and midnight. On average, young adults
rated their feeling of being high at 3.63 (SD 2.72) out of 10
when using marijuana (Table 3).

Table 1. Distribution of the duration of self-reported marijuana use episodes (n=129) across participants.

Number of eventsDurationa (hours)

54<0.5

20<1

23<1.5

13<2.0

13<2.5

6<3

aDuration refers to the window of smoking episodes. From small (30 minutes) to relatively large windows (3 hours).
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Table 2. Distribution of the start time of marijuana use episodes during the day (n=129).

Number of eventsClock time (hours)

70-1

81-2

22-3

03-4

04-5

05-6

06-7

17-8

08-9

59-10

810-11

211-12

612-13

613-14

514-15

415-16

316-17

417-18

518-19

619-20

720-21

1021-22

2422-23

1623-0

Table 3. Distribution of self-reported “feeling high” during marijuana use.

Number of eventsHigh ratinga

280

91

92

173

144

145

176

107

78

49

010

a0-10 scale representing an intensity of feeling high, 10=a lot from the self-initiated reports of marijuana use. In our study, a value of 0 for the high
report is labeled as “no-intoxication.”
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Model Comparison: Mobile Only, Fitbit Only, and
Mobile and Fitbit Integration
The first part of our analysis aimed to determine whether
smartphone sensor features alone could be used for real-time
detection of subjective marijuana intoxication and whether
adding Fitbit data would improve model performance, justifying
the added complexity of Fitbit data collection. We compared
three ML models using the XGBoost classifier: (1) smartphone
sensors only (XGBoost-Mobile), (2) Fitbit features only
(XGBoost-Fitbit), and (3) a combined model using smartphone
and Fitbit features (XGBoost-MobiFit).

Among the 3 models tested, the XGBoost-MobiFit model, which
integrates smartphone and Fitbit data, had the best performance,
achieving 99% accuracy, 92% precision, 79% recall, 85%
F1-score, and 99% AUC on the test dataset (Figure 4 and Table
4). These metrics indicate the XGBoost-MobiFit model’s
superior ability to accurately identify MI compared to
low-intoxication and not-intoxicated states. While the
XGBoost-Fitbit performed reasonably well, it did not match
the performance of the XGBoost-MobiFit model in detecting
marijuana intoxication. XGBoost-Fitbit achieved accuracy of
98%, 79% precision, 70% recall, 74% F1-score, and 97% AUC.
These results suggest that using only Fitbit data may not be as
effective as combining it with smartphone sensor data for

detecting subjective marijuana intoxication. Based on these
findings, the added burden of wearing and charging the Fitbit
device seems justified in future deployments. The combined
model (XGBoost-MobiFit) demonstrated improved performance
in detecting subjective marijuana intoxication compared to using
smartphone or Fitbit data alone.

Combining Fitbit data with mobile data resulted in a significant
improvement over the Fitbit-only model. The mobile-only model
achieved an AUC of 96%, an F1-score of 72%, a recall of 75%,
and a precision of 70%. These results indicate that including
Fitbit data adds value beyond what can be achieved with
smartphone-based sensor data alone, as evidenced by a 13%
improvement in F1-score.

In summary, three key findings emerged: the XGBoost-Mobile
model had the lowest performance (F1-score=0.72, recall=0.75,
precision=0.70); the XGBoost-Fitbit model (F1-score=0.74,
recall=0.70, precision=0.79) generally performed lower than
the combined model; and the XGBoost-MobiFit model was the
best performer with an F1-score of 0.85, recall of 0.79, and
precision of 0.92. As highlighted earlier, high precision and
recall are critical so we focused on the F1-score to identify the
best-performing model. The model comparison with different
classifiers is provided in Multimedia Appendix 4.

Figure 4. Model comparison to detect acute marijuana intoxication “low-intoxicated” (rating=1-3) versus “moderate-intensive intoxicated” (rating=
4-10) versus “not-intoxicated” (rating=0). XGBoost-MobiFit: phone sensors and Fitbit (AUC=0.99; accuracy=0.99; left), XGBoost-Mobile:
smartphone-based sensors (samples overlapping with Fitbit; AUC=0.96; accuracy=0.97; middle) and XGBoost-Fitbit: Fitbit only (AUC=0.97;
accuracy=0.98; right). AUC: area under the curve; ROC: receiver-operating characteristic curve; XGBoost: eXtreme gradient boosting.

Table 4. Comparison of three XGBoost models using features selected in detecting moderate-intensive marijuana intoxication, low-intoxication, and
not-intoxicated classes on the test dataset.

AccuracyPrecisionRecallF1-scoreAUCaMachine learning model

0.990.920.790.850.99XGBoost-MobiFit

0.970.700.750.720.96XGBoost-Mobile

0.980.790.700.740.97XGBoost-Fitbit

aAUC: area under the curve.

Understanding Model Performance in Detecting the
Risk State of “Moderate and Intensive Marijuana
Intoxication”
For predicting the MI class alone, the MobiFit model
outperformed the mobile and Fitbit-only models, exhibiting a

substantial improvement in the F1-score of 20% and 18%,
respectively (Table 5). This improvement in F1-score highlights
the benefits of integrating data from both devices: enhanced
precision and recall for the MI class compared to the
not-intoxicated (N) and low-intoxicated (L) classes (Table 6).
The XGBoost-Mobile model exhibited a notably high false
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negative rate for instances labeled as “not-intoxicated,” often
misclassifying them as “moderate-intensive intoxicated.”
However, it showed better accuracy in distinguishing
“low-intoxicated” instances. In contrast, the XGBoost MobiFit
model demonstrated a higher true positive rate compared to the
other models, accurately identifying 76% of MI samples among
the total samples belonging to that class. While the
XGBoost-Mobile and Fitbit models achieved recall rates of

61% and 63% in predicting MI, they incorrectly predicted 56
and 53 out of 143 actual MI samples as other classes. In
comparison, the best-performing MobiFit model achieved 108
true positives out of the 143 actual MI samples. The higher
precision of the MobiFit model further supports its superior
performance, though there remains room for improvement as
it missed 35 samples, as shown in Table 6.

Table 5. Performance comparison of three XGBoosta models in detecting the subjective sense of moderate-intensive marijuana intoxication class.

MI AUCdMI F1-scoreMI recallMIc precisionMLb model

0.990.820.760.89XGBoost-MobiFit

0.960.620.610.64XGBoost-Mobile

0.980.640.630.65XGBoost-Fitbit

aXGBoost: eXtreme Gradient Boosting.
bML: machine learning
cMI: moderate-intensive intoxication.
dAUC: area under the curve.

Table 6. Confusion matrix for XGBoost-MobiFit, XGBoost-Mobile, and XGBoost-Fitbit model for 3 classes.

Predicted

MIcLbNa

XGBoostd -MobiFit

Actual

1376541N

15029L

108035MI

XGBoost-Mobile

Actual

50596452N

05228L

87056MI

XGBoost-Fitbit

Actual

48146499N

03941L

90152MI

aN: not-intoxicated.
bL: low-intoxication.
cMI: moderate-intensive intoxication.
dXGBoost: eXtreme Gradient Boosting.

Key Features Contributing to Model Performance

Overview
To explore the algorithms’ performance in predicting the MI
class, we used SHAP summary visualizations [37,38] to identify
patterns of acute marijuana intoxication. We determined the

key features contributing significantly to the model’s predictions
based on mean absolute SHAP values across all instances, with
a focus on the MI class.

Figures 5 and 6 present the SHAP visualizations. In Figure 5,
the length of each bar on the left indicates the feature’s
contribution to the model, with longer bars signifying a stronger
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influence on the outcome. The SHAP summary plots on the
right of Figure 5 illustrate how features influence the MI
prediction class, with the strongest influence at the top. The
color shading indicates the direction of the feature’s effect, with

blue for low values, purple for median values, and red for high
values. Plots extending to the left indicate a negative
contribution to the prediction, while those extending to the right
positively contribute to MI predictions.

Figure 5. Explanations generated by SHAP summary plot. Impact of features on best performing XGBoost-MobiFit model (left) and binary model
output identifying moderate-intensive intoxication (MI; SHAP>0) from nonmoderate-intensive intoxication (N and L) classes (SHAP<0; right). HR:
heart rate. SHAP: SHapley Additive exPlanations; WTSD: weighted stationary latitude and longitude standard deviation; XGBoost: eXtreme Gradient
Boosting.
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Figure 6. Explanations generated by SHAP summary plot. Impact of features on XGBoost-Mobile model (top left) and binary model output identifying
MI (SHAP>0) from nonmoderate-intensive intoxication (N and L) classes (SHAP<0; top right), impact of features on XGBoost-Fitbit model (bottom
left) and binary model output identifying MI (SHAP>0) from nonmoderate-intensive intoxication (N and L) classes (SHAP<0; bottom right). MI:
moderate-intensive intoxication; SHAP: SHapley Additive exPlanations; WTSD: weighted stationary latitude and longitude standard deviation; XGBoost:
eXtreme Gradient Boosting.

Impact of Average Key Features on Model Output
Magnitude
The top five influential features in detecting the three
classifications (Figure 5, left) and affecting the MI outputs
(Figure 5, right) included time of day, radius of gyration,

minimum HR, day of the week, and minutes awake during sleep.
Among physical activities and physiological signals, a diverse
range of features extracted from various sensors, including those
beyond time-based attributes from both mobile and Fitbit
combined sensors, was chosen as the top 30 crucial elements
for distinguishing between not-intoxicated (N), low-intoxication
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(L), and MI. The SHAP value, signifying the average impact
magnitude on the model’s output, played a pivotal role in this
determination (Figure 5, left).

Impact of Unique Key Features on Mobile and Fitbit
Model Outputs
Similar to the best-performing MobiFit model, the Mobile model
(Figure 6) highlighted key features with overlapping impacts
on the model’s outcomes. The only exception was in specific
movement and environmental context features, as shown in the
top left and right graphs of Figure 6. However, the Fitbit model
showed a more significant impact on HR features, with all four
HR features ranking within the top 10 for all three classes
(shown in the bottom-left graph in Figure 6), and for the MI
classes compared to the non-MI classes (bottom-right graph in
Figure 6).

Key Features Explaining MI

Overview
To specifically examine the influence of key features on the
“risk” state of MI, we present comprehensive details for each
key feature within the model.

A partial dependence plot (PDP) in Figure 7 illustrates the
overall relationship between a feature and the outcome. The
vertical axis represents SHAP values, signifying the effect of
the chosen feature on predictions, while the horizontal axis
represents actual feature values across instances. Each point
represents an instance’s feature value and its corresponding
SHAP value. An upward PDP slope indicates a positive impact
of the feature on MI prediction, while a downward slope
indicates a negative impact. The surface on the PDP plot (eg,
min HR and sum of moving minutes in Figure 7, top left) shows
the combined impact of the two features on MI predictions,
with greater values corresponding to increased prediction values.

In the following section, we introduce the key features
contributing to MI, including elevated and fluctuating HR,
reduced large-scale movement patterns, increased ambient noise
and voice energy, and extended sleep patterns.

Figure 7. Interaction effects of total minutes spent moving on minimum HR values (top left), SD (top middle), and skewness (top right) of HR, and
an explanation of skewness [39] (bottom). HR: heart rate; SHAP: SHapley Additive exPlanations.

Elevated and Fluctuating HRs
We investigated the impact of recent physical activity (measured
as the sum of minutes spent moving based on Fitbit data) on
HR in relation to self-reported marijuana intoxication using a
PDP. The SHAP values for minimum HRs showed significant
elevation, with an average increase from approximately 80 bpm
to peaks of 90 bpm and reaching up to 100 bpm (ranging from
60 to 120 bpm, with a few data points exceeding 120 bpm).
These elevated HRs corresponded to moderate-intensive
self-reported marijuana intoxication (SHAP value>0) in young
adults compared to other classes (not- and low-intoxicated).

The SHAP values clearly indicate a positive increase in
minimum HR associated with a higher likelihood of

self-reported MI, irrespective of the impact of the sum of
minutes spent moving. The total movement time during
self-reported MI influenced the rise in minimum HR, as shown
in Figure 7 (top left), where the red values represent a maximum
of 5 minutes of movement (our analysis uses 5-minute
windows). While HR can fluctuate due to various factors,
including physical activity, substance use (eg, alcohol), caffeine,
meals, and mental state (eg, stress and anxiety), further research
is needed to explore these additional influences.

In brief, patterns for the SD of HRs exhibited fluctuations, but,
in general, showed an increase when young adults reported MI
(Figure 7, top middle). Negative skewness (indicating a
“left-skewed” distribution) in HR was consistently associated
with MI. This skewness suggests that there were more HR data
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points on the right side of the mean (indicating that the median
was greater than the mean), leading to a distribution stretched
toward higher HR values (Figure 7, top right).

Decreased Large-Scale Movements
During MI, individuals showed a tendency for limited
large-scale movement, often restricted to a radius of

approximately 5 km. Notably, instances where the radius of
gyration exceeded approximately 10 km were not associated
with MI. This finding suggests that when young adults reported
MI (rated 4-10), they were less inclined to engage in extensive
travel (Figure 8). However, they still demonstrated movement
within an average radius of 5 km.

Figure 8. Influence of radius of gyration (unit: meters). SHAP: SHapley Additive exPlanations.

Elevated Surrounding Noise Energy
Interestingly, while the variance in environmental noise energy
increased (with data points deviating further from the mean),
the average noise energy decreased, though it exhibited an
overall upward trend (Figure 9, left). Instances of MI were
associated with increased noise variability (calculated based on
the amplitude of audio samples), followed by a subsequent
reduction (Figure 9, right).

Analyzing ambient sounds provides insights into the
environmental context where individuals reporting MI might
be located. This could include situations such as marijuana
smoking, socializing with friends, or engaging with media like
television or music. Although GPS-generated features were the
primary indicators, MI may or may not be directly linked to
specific locations such as shared social spaces (eg, lounges) or
entertaining venues (eg, bars, pubs, or clubs). Nevertheless, it
remains plausible that young adults reporting MI may choose
to stay in noisy environments.

Figure 9. Influence of mean (left) and SD (right) noise energy (unit: Joule). SHAP: SHapley Additive exPlanations.
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Prolonged Sleep Patterns
Distinct sleep patterns were linked to episodes of self-reported
MI. Individuals who reported MI demonstrated extended sleep
durations, spanning approximately 8 to 11 hours (Figure 10,
left) the day before self-reported intoxication. In contrast,
instances with low or no reported intoxication generally
corresponded to healthy sleep durations, averaging around 6-7
hours, with some patterns as short as 2 hours.

There was also a positive correlation between the duration of
minutes awake after falling asleep and self-reported MI,
particularly when the period involved less than 50 minutes of
wakefulness. However, an increase in extended minutes awake

after falling asleep (if >50 minutes, extending beyond
approximately an hour) did not show any significant association
with a likelihood of MI (Figure 10, middle). Regarding sleep
start times, the data indicated peaks at both 11 PM and early
morning hours, with a rise in sleep start times continuing until
around 4 AM (Figure 10, right).

In summary, elevated minimum HR values were clearly linked
to a higher likelihood of self-reported MI. However, we
observed that GPS-travel patterns (macromovements) did not
appear to increase during self-reported marijuana intoxication.
Interestingly, extended sleep hours and minutes awake during
sleep [40] the day before self-reported marijuana intoxication
were associated with MI.

Figure 10. Total sleep duration (left), minutes awake during sleep (middle), and sleep start time (right). SHAP: SHapley Additive exPlanations.

Additional Analyses for Real-World Feasibility
To enhance the practicality of our ML model in real-world
settings, we conducted supplementary analyses to evaluate our
top-performing model, the XGBoost-MobiFit model, under
different scenarios. These scenarios involved: (1) excluding
GPS-derived travel data due to potential privacy concerns or
GPS deactivation; (2) excluding sleep data in cases where users
did not provide sleep information; and (3) excluding both
GPS-derived travel and sleep data. This approach aims to
explore the feasibility of offering more flexible data collection
options, potentially addressing privacy concerns and incomplete
data issues.

In brief, excluding GPS-derived features
(XGBoost-MobiFit-GPS excluded) resulted in a 15% decrease
in the F1-score compared to the best model, with a 10%
reduction in sensitivity (recall). Excluding sleep data
(XGBoost-MobiFit-Sleep excluded) led to a 24% decrease in
the F1-score compared to the best model. When both GPS and
sleep features were excluded (XGBoost-MobiFit-GPS-Sleep
excluded), the model experienced a 16% reduction in F1-score
and showed the lowest recall for identifying self-reported MI
classes compared to the best-performing model. Please refer to
Multimedia Appendix 5 for a detailed description of the
additional analyses and results.

Discussion

Overview
The ability to detect subjective reports of acute marijuana
intoxication in natural environments using mobile sensors has
the potential to enable just-in-time interventions [41] to reduce

marijuana-related harms. To the best of our knowledge, this is
the first study that demonstrates the impact of integrating
smartphone-based and wearable sensor features on the
enhancement of the performance and interpretability of
algorithms in detecting acute marijuana intoxication in
naturalistic environments.

As hypothesized, we found that the XGB-MobiFit model, which
combined smartphone sensor data with Fitbit features
outperformed models that used only mobile or only Fitbit data.
By integrating sensors from both smartphones and wearable
devices, our best-performing algorithm balances specificity and
sensitivity on unseen samples, enabling interpretable,
transparent, and unobtrusive detection of acute subjective
marijuana intoxication in natural environments. This opens up
opportunities for real-time monitoring in everyday settings and
the implementation of just-in-time adaptive interventions.

XAI visualizations supported our second hypothesis,
highlighting HR, GPS, and physical movement data as key
features that contributed to self-reported marijuana intoxication
predictions. These findings were observed beyond the influences
of simply applying time of day and day of the week features
(ranked 1st and 4th, respectively), as validated in [11],
particularly during instances of self-reported subjective
marijuana intoxication in naturalistic environments.

Interpretable Behavioral and Physiological Signals of
Marijuana Intoxication in Real-World Settings
To explain the results of the black-box ML models to detect
marijuana intoxication in everyday settings, our study integrated
sensors from smartphones and a wearable device, identified key
sensor features, and used XAI to facilitate the interpretation of
model results. The findings are consistent with prior research

JMIR AI 2025 | vol. 4 | e52270 | p. 15https://ai.jmir.org/2025/1/e52270
(page number not for citation purposes)

Bae et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


conducted in controlled laboratory settings, which consistently
found an acute increase in resting HR following marijuana use
[12-14]. Our results suggest the potential for HR with behavioral
factors to detect marijuana intoxication “outside of laboratory
settings” using off-the-shelf devices in naturalistic environments.
While many factors can affect HR in daily life, this study yielded
significant HR features and insights from the elevated HR
patterns during self-reported acute marijuana intoxication. Future
research could explore associations between HR and other
physiological and behavioral indicators of marijuana use, such
as respiration, to better capture marijuana intoxication in natural
environments [42].

The use of XAI visualization could help increase transparency
and accountability when conducted as part of a substance use
detection system [43, 44]. It is promising to use XAI as it
enables researchers and clinicians to understand how algorithms
arrive at decisions and identify key behavioral and physiological
attributes, providing opportunities to improve detection accuracy
and enhance trust in the algorithm over time.

Real-Time Detection and Intervention Potential
Compared to an average 30-minute marijuana episode, the
5-minute window used in the best-performing model is small
enough to predict marijuana intoxication in near real-time.
Detecting marijuana intoxication in near real-time promotes
just-in-time intervention, which serves as a crucial first step
toward reducing possible marijuana-related harm in a timely
manner.

Our best detection model is unlikely to misclassify a “high”
state as not high, which demonstrates the potential for using
our detection algorithm with unseen data in real-world contexts.
On the unseen test set, we obtained 85% precision (92%
precision for 3 classes) in specifically identifying self-reported
moderate-intensive marijuana intoxication. Passive sensing
using smartphone-based sensors has been investigated in the
context of alcohol intoxication [25,26,43], and here we extend
this research to self-reported marijuana intoxication [11] beyond
smartphone-based sensors, which could ultimately be useful
for JIT interventions [41] to reduce marijuana-related harm.
The value to society and individuals of reducing
marijuana-related harm is clear. If individuals choose to use
such a personal detection system, they will need to keep their
phone charged and with them when using marijuana and wear
a device (eg, Fitbit) and keep it charged as well.

For real-time modeling using the XGBoost algorithm, deploying
the estimated model onto a computing device is an indispensable
phase. We envisage two primary deployment scenarios: first,
local assessments can be generated by deploying the model
directly onto users’devices, such as smartphones. This approach
ensures seamless functionality even without an internet
connection but requires adequate storage and computational
capacity. Second, cloud-based computation can be used. While
this approach relies on a stable internet connection, it effectively
offloads the computational burden from the user’s device.
Real-world applications introduce pragmatic considerations
such as battery longevity, which could be affected by the
model’s continuous operation, and user privacy during data
transmission and generation of model results.

Therefore, a comprehensive assessment of the model’s
feasibility in real-time operational settings is important. Our
proposed generalized model, designed to operate across a diverse
demographic spectrum rather than relying on individual-specific
(idiographic) models, offers advantages in terms of scalability
and practicality.

Privacy Considerations and User-Centric
Configuration Choices
To highlight the benefits of combining sensor features from
both smartphone and wearable devices while addressing
potential privacy concerns, particularly related to location data,
we aim to offer participants additional configuration choices
rather than study withdrawal. For example, participants can
deactivate GPS sensors if desired. This is demonstrated by our
testing of the best-performing model, XGBoost-MobiFit, where
we excluded location features. The analysis revealed a 15%
(XGBoost-MobiFit-GPS excluded) decrease in F1-score from
the best model. As proposed by Bae et al [43], collecting GPS
data and using rounded GPS data extraction (ie, less precise
location data) could be a viable approach. This avoids using
raw latitude and longitude, which may contain sensitive
information on specific locations. Researchers and clinicians
could consider providing alternative options instead of
completely disabling GPS, as GPS data contributes to the
model’s accuracy.

Moreover, to assess the efficacy of our top-performing model,
we conducted tests after excluding sleep-related features
(Multimedia Appendix 5). The analysis revealed a 24%
(XGBoost-MobiFit-Sleep excluded) decrease in the F1-score
compared to the best model’s performance. While participants
may benefit from the option to disable sensors when necessary,
it is important to note that this could potentially decrease the
model’s ability to detect marijuana intoxication.

By building a system that prioritizes privacy and user autonomy,
we can provide a valuable tool to reduce marijuana-related harm
to individuals and society. Ultimately, each person will have to
decide for themselves whether the benefits of a detection and
intervention system outweigh the tradeoffs in minimizing
possible marijuana-related harms to themselves and the broader
community.

Limitations and Future Work
The first limitation of this study is relying on self-reporting as
the ground truth, which may be subjective. This study extends
prior ESM work, which codes self-reported marijuana use as
yes or no [45], by asking participants to rate marijuana
intoxication from 0 to 10, which may be subject to recall or
other biases in reporting. The broad categorization might
overlook nuanced differences within three categories:
low-intoxication (1-3), moderate-intensive marijuana
intoxication (4-10), and not-high (0), which could affect the
accuracy of the classifiers. Future analyses examining the
performance of mobile and wearable sensors against different
thresholds for a subjective marijuana intoxication outcome could
be valuable.
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Another limitation was the size, diversity, and duration of the
participants in the study. Since the participants were all young
adults, the finding may not be generalizable to a broader age
group. In addition, the level of compliance (63%) in completing
the morning, afternoon, and evening surveys is relatively low.
Thus, it is unclear whether all episodes of marijuana use were
reported by participants, which could limit model performance.
However, since there is no real-time accessible biological testing
method at the time of publication, validating self-reported data
with the current method still represents the best alternative. The
current findings warrant future replication in a larger and more
diverse group of participants over a longer period to address
the limitations and validate the findings.

In addition, our model performed best when tested on the same
participants it was trained on (with no overlap between training
and testing data). While this has a valid use case, it assumes
that we can always collect labeled training data for participants
for whom we would like to apply the model. By applying more
testing data, using more sophisticated sensor features, and better
model tuning, future models could improve generalization over
unseen testing participants. The HR data only holds significance
when examined together with activity data. An acute increase
in HR by itself is nonspecific and may not be associated with
marijuana use or intoxication. False alarms triggered by the
algorithm could erode trust in an automated system, whereas
low sensitivity to actual marijuana use could result in
marijuana-related harm. Therefore, it is important to investigate
the interplay between human activities associated with marijuana
intoxication and physiological signals in a larger population,
and how these interactions can contribute to intervention
delivery in real-world contexts.

Finally, it is crucial to acknowledge that the potential impact
of polysubstance use on the interpretation of physiological
signals associated with self-reported cannabis intoxication was
not included. While ESM is used to collect information on the
use of other substances, our analysis did not account for the
effects of polysubstance use due to the limited scope of the
study. The presence of polysubstance use could potentially

confound the physiological signals attributed to marijuana. This
may lead to inaccuracies in our algorithm, particularly in
distinguishing between marijuana intoxication and the effects
of other substances. Thus, while our study provides valuable
insights into self-reported marijuana intoxication, it has
limitations in addressing the full spectrum of real-world
polysubstance use. Future research should include developing
algorithms that can differentiate between the physiological
signals associated with different substances, including
polysubstance use.

Conclusions
Our study demonstrates that integrating features from
smartphone-based sensors and wearable devices significantly
improves the detection of self-reported marijuana intoxication
in natural environments among young adults. The
XGBoost-MobiFit model, which combines data from both
smartphone sensors and wearable devices, achieved an F1-score
of 0.85 in detecting moderate to intensive self-reported
marijuana intoxication, outperforming models that relied solely
on smartphone sensors. The results suggest that incorporating
wearable device data enhances the XGBoost model’s
performance by 13%, justifying the additional complexity of
using wearable devices among young adults.

Key features contributing to the detection of self-reported “MI”
included an acute increase in HR (measured by Fitbit),
macromovement indicators (derived from GPS data), and
prolonged sleep patterns the night before self-reported marijuana
intoxication (measured by Fitbit).

Future research should focus on refining the algorithms that
integrate smartphone and Fitbit sensor data in larger, more
diverse samples. In addition, exploring how these algorithms,
informed by XAI, can support the development of just-in-time
interventions for clinicians is essential. Such interventions could
offer context-adaptive, personalized strategies to minimize
potential marijuana-related harms, such as intoxicated driving,
therefore reducing the frequency and severity of acute
marijuana-related incidents among young adults.
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