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Abstract

Background: Pain, a leading reason people seek medical care, has become a social issue. Automated pain assessment has seen
notable advancements over recent decades, addressing a critical need in both clinical and everyday settings.

Objective: The objective of this survey was to provide a comprehensive overview of pain and its mechanisms, to explore existing
research on automated pain recognition modalities, and to identify key challenges and future directions in this field.

Methods: A literature review was conducted, analyzing studies focused on various modalities for automated pain recognition.
The modalities reviewed include facial expressions, physiological signals, audio cues, and pupil dilation, with a focus on their
efficacy and application in pain assessment.

Results: The survey found that each modality offers unique contributions to automated pain recognition, with facial expressions
and physiological signals showing particular promise. However, the reliability and accuracy of these modalities vary, often
depending on factors such as individual variability and environmental conditions.

Conclusions: While automated pain recognition has progressed considerably, challenges remain in achieving consistent accuracy
across diverse populations and contexts. Future research directions are suggested to address these challenges, enhancing the
reliability and applicability of automated pain assessment in clinical practice.

(JMIR AI 2025;4:e53026) doi: 10.2196/53026
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Introduction

Pain is “an unpleasant sensory and emotional experience
associated with actual or potential tissue damage, or described
in terms of such damage,” according to the International
Association for the Study of Pain [1]. However, the discussion
on the most precise definition of pain is still ongoing, and the
advances in the understanding of pain instantiate the
biopsychosocial perspective on pain to capture evidence-based
understanding and the evolution of pain [2]. On the basis of the
pain origin, it is categorized as nociceptive (due to stimulation
of sensory nerve fibers), neuropathic (due to impaired

somatosensory nervous system), or psychogenic pain (caused,
increased, or prolonged by mental, emotional, or behavioral
factors). On the basis of the time duration of the pain, it may
be categorized as acute (short duration) or chronic (long
duration, may last >3 months).

Approximately 20% of adults have chronic pain in the United
States, and chronic pain is the most common reason adults seek
medical care. For society, chronic pain contributes to an
estimated US $560 million each year in medical expenses, lost
productivity, and disability caused by types of pain such as low
back pain, arthritis, and joint pain [3,4]. These negative impacts
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make chronic pain a persistent public health concern.
Inappropriate pain management can lead to very deleterious
physical, psychological, social, and financial consequences for
patients. Untreated pain can lead to chronic pain syndrome,
which is often accompanied by decreased mobility, impaired
immunity, decreased concentration, anorexia, and sleep
disturbances. More importantly, the use of prescription opioids
for the treatment of chronic noncancer pain is associated with
a substantial risk for abuse, dependence, and overdose [5].

As the first step of pain management, pain assessment holds an
essential role [6]. Unprecise pain assessment can lead to severe
consequences. Undertreatment of pain not only causes
psychological consequences but also physiological
consequences, for example, increased blood pressure and heart
rate. By contrast, overtreatment of pain may result in nausea,
vomiting, or constipation immediately and drug addiction in
the long term. Traditionally, pain assessment is conducted
through self-reports or observational scales. Self-report refers
to the conscious communication of pain-related information by
the person in pain, typically using spoken or written language
or gestures. Various pain rating scales have been developed to
capture patients’ self-report of pain intensity. Traditional
approaches used to play an important role in pain assessment,
including the Verbal Rating Scale [7], the Visual Analog Scale

[8], the Numerical Rating Scale [9], and the Wong-Baker
FACES Scale [10].

However, such scoring methods are not feasible for certain
patients, such as such as those who are unconscious. For this,
different observational pain scales, such as the Behavioral Pain
Scale [11], Pain Assessment in Advanced Dementia [12], or
Neonatal Infant Pain Scale [13], are used in clinical settings.
Most scales consider facial expressions, vocalizations, and body
language, while some include vital parameters. It is difficult to
assess and compare the validity of the various scales because
studies differ a lot in design, methodology, participants, and
conceptualization of the pain phenomenon. Pain assessment
through observation is very challenging and is affected by the
subjective biases and errors in beliefs of the observer [14].

To solve these challenges, it is necessary to develop an
objective, accurate, continuous pain assessment method, as
shown in Figure 1. In the last decades, multiple studies have
been conducted to evaluate the feasibility of automated pain
assessment using multimodality and machine learning (ML)
techniques. This paper surveys and reviews the recent advances
in the field in terms of datasets, modalities, and ML models.
Finally, we present the challenges remaining in the field and
propose future directions.

Figure 1. Typical pipeline of automated pain assessment. FN: false negative; FP: false positive; PR: precision-recall; RNN: recurrent neural network;
ROC: receiver operating characteristic; SVM: support vector machine.; TN: true negative; TP: true positive.
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Pain Mechanism

The pain mechanism is not completely understood because of
its complexity and diversity [15]. Pain, created by the brain, is
a psychological state rather than a physical one [16]. Unlike
pain, nociception refers to the response of the peripheral and
central nervous systems to internal or external stimuli, triggered

by the activation of nociceptors [17]. The noxious stimulus
damages the tissue or potentially activates the nociceptors in
the peripheral structure. Then, the information is transmitted to
the spinal cord dorsal horn or the nucleus caudalis. From there,
the information continues to the cerebral cortex via the brainstem
in the brain, and the perception of pain is generated. Thus, no
brain, no pain [18]. Figure 2 presents the mechanism of pain.

Figure 2. Pain mechanism.

Usually, pain is regarded as chronic or acute according to its
duration. Acute pain is a type of sudden pain. The mechanism
of momentary pain is well understood [19]. The nociceptors
generate the nociception, and the information is transmitted to
the brain, where the perception of pain is caused. There are 2
major types of nociceptors responding to different stimuli:
C-fibers, associated with unmyelinated axons, and A-delta
fibers, associated with thinly myelinated axons [20]. C-fibers
generate slow, diffuse pain, while A-delta fibers are related to
sharp, pricking pain. Silent nociceptors typically respond to
endogenous chemical mediators related to tissue injury [19].

Chronic pain, lasting >3 months, does not have a useful
biological function and is challenging to treat due to its varied
etiologies [21-23]. According to the International Classification
of Diseases, Eleventh Revision, chronic pain can be categorized
into musculoskeletal, neuropathic, visceral, and cancer pain
[21].

Psychological distress refers to a diffuse subjective experience
as an internal response to noxious stimuli. Many patients argue
that psychological pain is more severe than intense physical
pain [24]. Chronic pain can lead to psychological pain and
depression, while depression can exacerbate chronic pain
[25,26]. Psychogenic pain is physical pain caused or increased
by mental and emotional factors [27]. Treatments such as
transcutaneous electrical nerve stimulation or psychotherapy
are often more effective for reducing psychogenic pain
compared to traditional painkillers [28,29].

The body responds to pain via multiple physiological processes:
the sympathetic nervous system (SNS), neuroendocrine system,
immune system, as well as emotions [30]. The SNS, known for
the fight or flight response, increases heart rate and blood
pressure via hormones such as catecholamines, epinephrine,
and norepinephrine when activated [31]. The SNS also activates
sweat glands via acetylcholine, reflecting the active level of

SNS through the volume of secreted sweat within a time range
[32].

Pain Datasets

Data that are representative are crucial in the creation of a pain
recognition system and the demonstration of its efficacy.
Crucially, the system should perform optimally within the
intended medical context, a fact that must be validated through
clinical studies involving patients. In the early stages of
development, experimental pain research with healthy volunteers
could be useful. This approach allows for strictly controlled
conditions, larger participant pools, and the repeated application
of pain stimuli. These data are foundational to the development
of ML models for automated pain detection.

For studying pain in healthy adults, an external stimulus is
needed. Common methods include heat applied via contact (eg,
heated objects and electrical heaters) or radiant sources (eg,
infrared light). Table 1 summarizes the publicly available
datasets that were used for pain recognition research. The
UNBC-McMaster Shoulder Pain Expression Archive Database
[33] includes 200 video sequences that capture the facial
expressions of 25 participants experiencing shoulder pain. Each
video sequence includes individuals performing a series of
active and passive range-of-motion tests to provoke visible
responses to pain, providing a unique dataset rich in both the
variety and volume of pain expressions. The dataset includes
self-reported and observer assessments of pain intensity at the
video level, along with Facial Action Coding System (FACS)
coding at the frame level. The BioVid Heat Pain Database [34]
is a collection of physiological data and videos from 90 healthy
adults subjected to controlled heat stimuli. BioVid consists of
several sections: A, B, and C, which focus on pain stimulation,
along with sections D and E, which are dedicated to posed
expressions and emotion elicitation, respectively. The MIntPAIN
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database [35] collected color, depth, and thermal videos from
20 healthy adults who were subjected to approximately 1600
instances of electrical pain stimuli at 4 different intensity levels.
EmoPain [36], SenseEmotion [37], X-ITE Pain [38],
BP4D-Spontaneous [39], and BP4D+ [40] datasets are
substantially resources for pain and emotion studies. EmoPain
contains video, audio, motion, and a surface electromyogram
(sEMG) for lower back pain. SenseEmotion and X-ITE Pain

include audio and physiological data from healthy adults
subjected to experimental pain stimuli, while X-ITE provides
thermal videos, body movement data, and electromyography
measurements. BP4D-Spontaneous and BP4D+ offer facial
video recordings from individuals undergoing the cold presser
task, with BP4D+ further providing 3D and thermal videos,
along with physiological signals.

Table 1. Pain databases.

AnnotationModalitiesParticipantsDatabase

Database with adults

FACSb, VASc, and OPIdVideo of the face (RGBa)25 adults with shoulder painUNBC-McMaster [33]

Stimulus (calibrated per
person)

Video of face (RGB), EDAe, electrocardiogram, and electromyo-
graphy

87 healthy adultsBioVid [34]

Stimulus (calibrated per
person)

Video of face (RGB, depth, and thermal)20 healthy adultsMIntPAIN [35]

Self-report and naive OPIVideo, audio, electromyography, and motion capture22 adults with chronic back
pain

EmoPain [36]

Stimulus (calibrated per
person)

Video of face, audio, EDA, electrocardiogram, and electromyog-
raphy

45 healthy adultsSenseEmotion [37]

Stimulus (calibrated per
person)

Video of face, video of body, audio, EDA, electrocardiogram,
and electromyography

134 healthy adultsX-ITE [38]

Stimulus and FACSVideo of face (RGB and 3D)41 healthy adultsBP4D-spontaneous [39]

Stimulus and FACSVideo of face (RGB, 3D, and thermal), heart rate, respiration
rate, blood pressure, and EDA

140 healthy adultsBP4D+ [40]

Database with neonates

Category (pain, rest, cry,
air puff, and friction)

204 RGB photographs of face26 healthy neonatesiCOPE [41]

FLACCfVideo and audio142 infantsYouTube [42]

NFLAPSg, NIPSh, and

NFCSi

Video of face (RGB)112 healthy neonatesAPN-db [43]

NIPS and N-PASSVideo of face and body (RGB)36 healthy neonates and 9
neonates who underwent
surgery

NPAD-ID [44]

Category (pain and no
pain)

Video of face (grayscale)49 neonatesiCOPEvid [45]

NIPS and N-PASSkVideo of face (RGB), audio, heart rate, blood pressure, SpO2
j,

deoxyhemoglobin (HbH), oxyhemoglobin (HbO2)

36 neonatesUSF-MNPAD-I [46]

aRGB: Red, green, blue color model.
bFACS: Facial Action Coding System.
cVAS: Visual Analog Scale.
dOPI: Observed Pain Intensity.
eEDA: electrodermal activity.
fFLACC: Face, Legs, Activity, Cry, Consolability Scale.
gNFLAPS: Neonatal Face and Limb Acute Pain Scale
hNIPS: Neonatal Infant Pain Scale.
iNFCS: Neonatal Facial Coding System.
jSpO2: saturation of peripheral oxygen.
kN-PASS: Neonatal Pain, Agitation and Sedation Scale.
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In the field of infant pain research, the iCOPE [41], YouTube
[42], APN-db [43], iCOPEvid [45], and USF-MNPAD-I [46]
databases are the publicly available datasets. The iCOPE consists
of 204 static photographs that capture 26 neonates during various
procedures. The images provide valuable insights into the facial
expressions associated with infant pain experiences. The
YouTube dataset offers 142 videos accompanied by audio,
showcasing the reactions of different infants undergoing
immunizations. The APN-db is a dataset that includes >200
videos of infants undergoing various procedures, and it features
unique annotations, such as Neonatal Face and Limb Acute Pain
intensity. The USF-MNPAD-I dataset collects video, audio,
and physiological data from 58 neonates during their
hospitalization in the neonatal intensive care unit (ICU) and is
annotated using the Neonatal Infant Pain Scale and N-PASS
scales.

Postoperative Pain

Although automated pain assessment in controlled settings is
well studied, postoperative pain has not been extensively
researched due to the difficulty of data collection. Postoperative
pain results from tissue injury following surgery and is critical
to manage, as inadequate treatment can lead to serious
physiological and psychological outcomes. Postoperative pain
datasets often exhibit imbalanced distributions and may contain
missing labels due to variability in patient experiences and
clinical settings, further complicating accurate and
comprehensive pain assessment. The NPAD-IA database [44]
captures video, audio, and physiological data from 40 infants
undergoing procedural (heel lancing and immunization) and
postoperative (gastrostomy tube) pain. Notably, it includes
postoperative pain data, addressing the complexity and
variability of pain levels in real-world clinical settings, thereby
enhancing the ecological validity of the assessment. Salekin et
al [47] present a novel fully automated deep learning framework
to assess neonatal postoperative pain. It uses a bilinear
convolutional neural network (B-CNN) to extract facial features
and a recurrent neural network (RNN) to model the temporal
patterns of postoperative pain. The study uses a dataset of >600
minutes of visual, vocal, and physiological data from neonates,
demonstrating the feasibility and efficiency of combining
B-CNN and RNN for continuous and accurate assessment of
postoperative pain intensity in clinical settings. Salekin et al
[46] introduce an automated system for assessing neonatal
postoperative pain by integrating visual, vocal, and physiological
data. The study also uses a B-CNN for spatial feature extraction
but uses a long short-term memory (LSTM) network for
capturing temporal patterns, demonstrating that the multimodal
spatial-temporal approach significantly outperforms unimodal
methods, achieving an area under the curve (AUC) of 0.87 and
accuracy of 79%. Automated postoperative pain assessment is
still in its nascent stages, primarily hindered by a lack of
comprehensive datasets and consistent research efforts. The
current methods, often unimodal and focused on short-term
procedural pain, fail to capture the complex and prolonged

nature of postoperative pain. There is a pressing need for more
extensive and diverse datasets to improve the accuracy and
reliability of these systems. Despite these challenges, the
potential benefits of automated pain assessment are immense,
offering more consistent and objective pain management that
can significantly enhance patient outcomes and reduce the
burden on health care providers.

Automatic Pain Assessment

Overview
Automated tools for pain assessment have great promise.
Because pain results in different physiological and behavioral
responses, signals that capture these may be used to detect the
presence of pain. However, prior research work has been limited,
and automated approaches have not yet become widely used in
clinical practice. In this section, we briefly outline the different
approaches relevant to the development of automated pain
assessment methods described in the research literature.
Specifically, we review their system architecture (inputs and
outputs) and describe the data sources available for the research
and development of ML-based automated pain assessment tools,
together with an overview of system validation challenges. This
section summarizes the results of the survey of automatic pain
detection approaches.

The Use of Modalities
The selection of sensors is a critical aspect of automated pain
assessment, as different sensors can convey varying levels of
information and have different discriminative abilities.
Modalities commonly used in this field can be broadly classified
into 3 categories: video, audio, and physiological signals, as
shown in Table 2. Functional magnetic resonance imaging
(fMRI) was found to be the most prevalent sensor in pain
studies, with a prevalence score of 95.9. Electroencephalogram
and electrocardiogram were also frequently used, with
prevalence scores of 69.6 and 39.1, respectively. In contrast,
functional near-infrared spectroscopy (fNIRS) and
photoplethysmography had much lower prevalence scores of
<10. Moreover, Multimedia Appendix 1 also includes
information on modalities used in studies (including brain
activity, cardiovascular activity, electrodermal activity (EDA),
respiration activity, and pupil size). In terms of physiological
signals, brain activity can be measured using
electroencephalograms, fMRI, and fNIRS. Cardiovascular
activity can be measured using an electrocardiogram or
photoplethysmography, while EDA is often measured by skin
conductance level or sEMG. To gain insight into the prevalence
of each modality, we conducted a search for “Modality AND
Pain AND Machine learning” (eg, “EEG AND Pain AND
Machine learning”) on PubMed and Scopus, limiting the search
to the period from January 1, 2010, to August 1, 2023. We then
recorded the number of results and normalized them to the range
of (0-100) for each database. The prevalence scores were then
calculated as the average of the normalized results from PubMed
and Scopus.
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Table 2. Summary of the commonly used modalities.

ReferencesPrevalenceaDescriptionCategory and name

Video

[33,35]100Analyzes facial expressions and body movements to assess pain levels [48].Video analysis

Audio

[49]48.2Analyzes vocal characteristics and speech patterns to assess pain [49].Audio analysis

Pupil size

[51,52]12.7Measures changes in pupil diameter as an indicator of pain [50].Pupil size measurement

Brain activity

[54-56]69.6It is a test that detects tiny electrical charges that result from the activity of brain
cells [53].

Electroencephalogram

[58-60]95.9It uses magnetic resonance imaging to measure the changes in hemodynamics
caused by neuronal activity [57].

Functional magnetic resonance
imaging

[61,62]7.9It uses scattering arising from the main components of blood upon exposure to
near-infrared light (600 nm to 900 nm) to measure changes in oxyhemoglobin
and deoxyhemoglobin during brain activity [50].

Functional near-infrared

spectroscopy

Cardiovascular activity

[64-66]39.1It is a test that measures the electrical activity of the heartbeat [63].Electrocardiogram

[65,67]9.4It is an optical technique that can be used to detect blood volume changes in the
microvascular bed of tissue [58].

Photoplethysmograph

Electrodermal activity

[65,66,68]25.9It is the measurement of the electrical conductivity of the skin [60].Skin conductance level

[66,69,70]25.6It is a technique to measure muscle activity noninvasively using surface electrodes
placed on the skin overlying the muscle [61].

Surface electromyogram

Respiration

[69,71]17.5Respiration refers to a person’s breathing and the movement of air into and out
of the lungs [66].

Respiration

aPrevalence is measured by the weighted search results from Scopus and PubMed, covering the period from 2010 to 2023, using the keywords “Name”
AND “Pain” AND “Machine learning” as of August 1, 2023; the results are standardized on a scale of 0 to 100.

As shown in Table 2, video was found to be the most prevalent
sensor in pain studies, with a prevalence score of 100. fMRI,
electroencephalogram, and electrocardiogram were also
frequently used, with prevalence scores of 95.9, 69.6, and 39.1,
respectively. In contrast, fNIRS and photoplethysmography had
much lower prevalence scores of <10.

Convenience and feasibility should also be considered when
selecting sensors. For example, some sensors such as
electroencephalograms and fMRI are nonwearable and can be
invasive, which may limit their utility in certain settings.
Moreover, complex signals require more sophisticated
processing techniques and computing resources, which may not
be practical in some situations, such as those involving
microprocessors.

Facial Expression

Overview
Facial expression during the experience of pain is not unspecific
grimacing but conveys pain-specific information. Studies
investigating facial expressions of pain have most often used

FACS [48], the gold standard for facial expression research.
FACS is a fine-grained, objective, and anatomically based
coding system that differentiates between 44 facial movements
known as action units (AUs). Coders are trained to apply specific
operational criteria to determine the onset and offset as well as
the intensity of the AUs. Using FACS, it was shown that facial
expressions of pain are composed of a small subset of facial
activities, namely, lowering the brows (AU4), cheek raise or
lid tightening (AUs 6 and 7), nose wrinkling or raising the upper
lip (AUs 9 and 10), and eye closure for >0.5 seconds (AU 43).
Prkachin and Solomon [72] developed the Prkachin and
Solomon Pain Intensity metric based on this observation, which
is a 16-level scale based on the contribution of the individual
intensity of pain-related AUs and is defined as follows:

Pain=AU4+(AU6,AU7)+(AU9+AU10)+AU43

Figure 3 shows samples of different PSPI levels from
UNBC-McMaster pain dataset. The list of pain-related AUs has
been further expanded in more extensive research [73] to include
lip corner puller (AU12), lip stretch (AU20), lips part (AU25),
jaw drop (AU26), and mouth stretch (AU27).
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Figure 3. Image frame samples of the UNBC-McMaster shoulder pain database. PSPI: Prkachin and Solomon Pain Intensity.

Facial activities during experimental and clinical pain are largely
inborn but not uniform across individuals. People display
different parts or combinations of facial activities. Cluster
analyses identified four distinct facial activity patterns: (1)
narrowed eyes with raised upper lip or nose wrinkling and
furrowed brows, (2) narrowed eyes with furrowed brows, (3)
narrowed eyes with mouth opening, and (4) raised eyebrows,
which are less frequent and stable, often indicating novelty or
surprise in response to pain. Recognizing these patterns
improves pain detection more than focusing on a single
expression. Thus, acknowledging variability in facial
expressions can enhance pain communication.

Facial expression analysis uses spatial and spatiotemporal
features. Spatial features capture static details of the face, such
as the geometric and textural characteristics of the eyes,
eyebrows, nose, lips, and facial contours, using techniques such
as facial landmark detection, geometric feature extraction, Gabor
filters, local binary patterns (LBPs), and histogram of oriented
gradients (HOG). Spatiotemporal features capture dynamic
changes in expressions over time using techniques such as
optical flow or differences between consecutive frames.
Advanced methods may involve 3D facial modeling or LSTM
networks to identify temporal dependencies. Combining spatial
and spatiotemporal features provides a comprehensive analysis
of facial expressions.

Vision-Based Spatial Features
In the research conducted by Ashraf et al [74] and Lucey et al
[75], features derived from the Active Appearance Model were
input into support vector machine (SVM) classifiers for the
purpose of frame-level pain recognition. In addition, they
implemented pain detection at the sequence level by averaging
the frame-level predictions. Gholami et al [76] used a Bayesian
extension of SVM, known as the relevance vector machine, to

differentiate between instances of pain and no pain in neonates.
They also used this methodology to assess varying pain intensity
levels. Meanwhile, Hammal et al [77] identified 4 levels of pain
intensity through the use of log-normal filter-based features and
an SVM classifier. Kaltwang et al [78] conducted a comparative
study involving 3 separate methodologies. They used facial
landmarks, discrete cosine transform, and LBP features to train
3 distinct relevance vector regression (RVR) models for
estimating Prkachin and Solomon Pain Intensity. The best results
were achieved by training an additional RVR model that
consolidated the predictions from the 3 previously trained RVR
models. The system [79] used a pyramid HOG for shape
information and a pyramid LBP for appearance information,
offering a more automated and objective approach to pain
monitoring.

Pedersen [80] implementation used a 4-layer contractive
autoencoder, along with SVM, which resulted in an effective
pain detection system at the frame level. Egede et al [81]
extracted features using both deep learning models and
handcrafted methodologies. Facial landmarks, HOG, and deep
vectors drawn from pretrained VGG-16 [82] and ResNet-50
[83] models were used. Rudovic et al [84] introduced a
personalized federated deep learning technique for pain
estimation derived from facial images. This approach involved
using a compact convolutional neural network (CNN)
architecture across various clients without the need to share
their facial images. Contrary to the full sharing of model
parameters, the personalized federated deep learning technique
keeps the last layer localized. Hosseini et al [85] used a
pretrained ResNet-18 model on the large emotion recognition
dataset FER+ [86] and used transfer learning techniques to
improve accuracy and performance. Huang et al [87] proposed
a pain-awareness multistream CNN approach for feature
extraction, focusing on specific regions most relevant to pain
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expression instead of entire face images. Semwal and Londhe
[88] proposed an Ensemble of Compact CNNs using 3 compact
CNNs (variants of VGG, MobileNet, and GoogleNet) and
integrating their predictions using the average ensemble rule.
Kharghanian et al [89,90] developed a 4-layer convolutional
deep belief network, trained as convolutional restricted
Boltzmann machines to extract features. Semwal et al [91]
introduced a novel fusion method for pain severity assessment
in unconstrained environments using a decision-level fusion of
3 distinct features: data-driven red, green, blue color model
(RGB) features, entropy-based texture features, and
complementary features from both RGB and texture data. Using
3 CNNs (VGG-TL, ETNet, and DSCNN) with transfer learning,
entropy texture network, and dual stream CNN, the model and
various data augmentation techniques avoid overfitting and
improve performance. The system demonstrates a 94% F1-score
on a self-generated dataset from an unconstrained hospital
setting.

Alghamdi and Alaghband [92] presented a facial
expressions–based automatic pain assessment system using 2
concurrent subsystems that analyze both the full face and upper
half of the face through pretrained CNNs, such as VGG16,
InceptionV3, ResNet50, or ResNeXt50. Dai et al [93] developed
a real-time pain detection system by mixing pain and emotion
datasets for optimal real-time performance and conducting a
cross-corpus test. The study experiments with both AU-based
and non–AU-based methods, ultimately implementing the
method on a robot for frozen shoulder therapy, thus emphasizing
the need for balanced and ecologically valid pain datasets and
the importance of real-world application and testing. Karamitsos
et al [94] use the Haarcascade frontal face detector (OpenCV)
for face detection; then, faces undergo gray scaling, histogram
equalization, cropping, mean filtering, and normalization. The
CNN is built upon a modified VGG16 architecture, achieving
an impressive 92.5% accuracy. Barua et al [95] used a shutter
blinds–based model inspired by spontaneous facial expressions
and patch-based learning to achieve >95% accuracy in pain
detection from facial images, leveraging transfer learning for
efficient deep feature extraction. The model uniquely uses
horizontal dynamic-sized patches, or “shutter blinds,” to mine
hidden facial signatures. Semwal et al [91] assess pain severity
in unconstrained hospital environments using a decision-level
fusion of 3 distinct types of features: data-driven RGB,
entropy-based texture, and complementary features. They used
3 CNNs (VGG-CNN with transfer learning, entropy texture
network, dual stream CNN) and various data augmentation
techniques to avoid overfitting. The system demonstrates a
94.0% F1-score on a self-generated dataset from an
unconstrained hospital setting.

Li et al [53] introduced a video-based infant monitoring system
to analyze infant pain using 3 databases: Train-Data,
Data-Clinic, and Data-YouTube. Using Fast Region-Based
Convolutional Neural Network with object tracking and a hidden
Markov model, the system precisely detects infant expressions
and states. With a significant dataset from varied sources,
including >16,000 images and real-world clinical videos, the
approach offers enhanced accuracy and reliability in infant pain
detection. Zamzmi et al [96] introduced a neonatal CNN that

uses a cascaded architecture with 3 convolutional branches.
This design merges image-specific and general information for
pain detection. The neonatal CNN demonstrated 91% accuracy
and 0.93 AUC on the Neonatal Pain Assessment Dataset and
84.5% accuracy on the Infant Classification of Pain Expression
dataset. Witherow et al [97] developed Facial Expressions
Fusing Betamix Selected Landmark Features (FACE-BE-SELF),
a novel deep adaptive method for adult-child facial expression
classification. It fuses facial landmark data with deep feature
representations, achieving domain-invariant classification. Using
a unique mixture of beta distributions, facial features are selected
based on expression, domain, and identity correlations. The
FACE-BE-SELF method stands out by concurrently adapting
adult-child domains, providing a unified expression
representation for both groups. Compared to standard
approaches, it surpasses in aligning latent representations of
expressions across age groups.

Vision-Based Spatiotemporal Features
Bargshady et al [98] present an ensemble deep learning model
that combines a 3-stream hybrid neural network with CNNs to
extract facial features and classify pain levels. The VGG-Face,
integrated with principal component analysis (PCA), is used
for early feature extraction, while a 3-layer hybrid of CNN and
bidirectional LSTM is developed for late fusion classification.
This approach, tested on multiple pain databases, surpasses
competing models with an accuracy of >89%. Sparse
Autoencoders for Facial Expressions-Based Pain Assessment
[57] reconstructs the upper part of the face from input images
and then feeds both the original and reconstructed images into
2 concurrent and coupled InceptionV3 using Sparse
Autoencoders. This dual-input approach emphasizes the upper
facial features, essential for pain detection. By eliminating the
need for conventional preprocessing steps such as face detection
and adeptly handling varying head poses, Sparse Autoencoders
for Facial Expressions-Based Pain Assessment offers enhanced
performance and accuracy across multiple datasets, even in
challenging profile views. Karamitsos et al [94] modified
temporal convolutional network algorithm and processed facial
features extracted from fine-tuned VGG-Face and PCA
combined with hue, saturation, and value color spaces. The
temporal convolutional network–based approach showcases
faster performance and higher efficiency, achieving an accuracy
of 92.44% and an AUC of 85%. Bargshady et al [99] propose
an enhanced joint hybrid CNN-Bidirectional LSTM network
model by leveraging a fine-tuned VGG-Face for feature
extraction and apply PCA to focus on the most significant
features, improving computational efficiency. These features
are then classified by a CNN-Bidirectional LSTM network
hybrid network into 4 levels of pain intensity.

The 3D CNNs have gained attention in several studies.
Tavakolian and Hadid [100,101] created a 3D CNN that captures
dynamic facial representations from videos and emphasizes the
typical use of a fixed temporal kernel depth in research, which
often misses capturing different time ranges. In the study by
Huang et al [102], a hybrid network by combining 3D, 2D, and
1D CNNs has been introduced to extract spatiotemporal, spatial,
and geometric features from image sequences. Wang et al [103]
used the convolutional 3D network for pain expression
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recognition, which primarily uses a 3×3×3 convolutional layer.
However, this method often fails to capture the full spectrum
of facial expression variations. To address this, they combined
3 distinct features: 3D CNN, HOG, and geometric features using
support vector regression for pain estimation. They integrated
the convolutional 3D network for spatiotemporal facial feature
extraction and used the HOG in 2D images for geometric
information to discern pain levels in facial expressions. De et
al [104] present a deep learning architecture, the Decomposed
Multiscale Spatiotemporal Network (DMSN). It uses 3
innovative blocks, DMSN-A, DMSN-B, and DMSN-C, to
efficiently capture varied facial dynamics across conditions
such as depression and pain. DMSN-A block focuses on pain,
which might vary rapidly. It uses a sequence of 3×1×1 temporal
convolutions, capturing short to long temporal ranges. The
studies by Granger and Cardinal [105] and Praveen et al [106]
implemented weak-supervised domain adaptation, focusing on
a shift from general affective expressions to specific pain
expressions. Their framework used an inflated 3D CNN [107]
with 3 convolutional layers and 3 inception modules, extracting
both spatial and temporal data from videos.

Physiological Signals

Overview
While facial expressions are commonly used to identify pain,
physiological signals are also a valuable modality for automatic
pain detection. As detailed in the Pain Mechanism section, pain
triggers changes in physiological signals, such as increased
heart rate and skin conductivity, due to the activation of the
SNS and peripheral nervous system [108]. Conversely, changes
in physiological signals can indicate the presence of pain.
However, extracting discriminative information from
physiological signals is challenging. By contrast, they are
objective indicators of pain because they cannot be artificially
controlled [109], while exterior signals, such as facial
expressions and gestures, may be unreliable, as individuals can
deliberately disguise their behaviors. It makes physiological
signals more reliable than exterior signals. In addition,
physiological signals can be measured during daily life, while
video and hand gestures can only be measured in laboratory
settings. Thus, researchers have invested significant effort in
exploring the feasibility of using physiological signals for pain
assessment. Recent advances in sensor technology, signal
processing, feature extraction, and ML algorithms are essential
to the success of physiological signal–based automatic pain
assessment.

This section provides a comprehensive review of the latest
developments in pain detection approaches based on
physiological signals. Four key components are exploited: (1)
the use of modalities, (2) measurement devices, (3) feature
extraction methods, and (4) ML models. The use of modalities
refers to the type of physiological signals used for pain detection,
including electroencephalogram, fMRI, electrocardiogram, and
EDA. Measurement devices include both wearable and
nonwearable devices, encompassing cardiac monitors, skin
conductivity sensors, temperature sensors, accelerometers, and
more. Feature extraction methods are techniques used to extract
informative features from physiological signals, such as

time-domain features, frequency-domain features, and
time-frequency features. Finally, ML models, such as SVM,
artificial neural networks, and random forest (RF), are used to
classify pain based on the extracted features.

Electroencephalogram as a Pain Indicator
Electroencephalography is a noninvasive technique widely used
in the automatic detection of pain. The electrodes detect
electrical activity and amplify it, producing a graphical
representation of the brain activity over time.
Electroencephalogram recordings typically show a series of
waveforms or oscillations that are grouped into different
frequency bands, such as delta, theta, alpha, beta, and gamma.
These frequency bands have been associated with different
mental states and cognitive functions. Various studies have
shown the potential of electroencephalogram-based pain
detection, and different approaches have been proposed to
extract discriminative features from electroencephalogram
signals for pain classification. For instance, Panavaranan et al
[110] extracted the power spectral density of an
electroencephalogram using fast Fourier transform and used
SVM to classify thermal pain. Hadjileontiadis et al [54]
proposed a novel approach that analyzes wavelet higher-order
spectral features of an electroencephalogram to predict tonic
cold pain. Vijayakumar et al [111] extracted time-frequency
wavelet representations of independent components from
electroencephalogram data and trained a RF model to classify
pain levels, achieving an intrasubject accuracy of 93.26%.

The use of electroencephalogram techniques for pain detection
has great potential to provide objective measures of pain, as
these methods directly measure brain activity related to pain
perception. However, these techniques also have limitations,
including high cost, limited availability, and the need for
specialized expertise for data analysis.

fMRI as a Pain Indicator
fMRI is a powerful neuroimaging tool that measures changes
in blood flow within the brain as a proxy for neural activity. By
measuring changes in the blood oxygen level–dependent signal,
fMRI can indirectly map changes in neural activity in response
to a specific stimulus, such as a painful stimulus.

The fMRI technique has been widely used in pain research,
revealing a network of brain regions that are activated by painful
stimuli. These regions include the primary and secondary
somatosensory cortex, thalamus, insular cortex, and anterior
cingulate cortex, among others. The activation of these regions
is believed to be involved in the sensory and affective
components of pain processing.

Activation of these regions is thought to be involved in the
sensory discrimination aspects of pain processing. Thus,
neuroimaging techniques allow us to visualize and quantify
brain activities and then quantify pain. It is frequently used in
the research of automatic pain assessment. Wager et al [112]
used the least absolute shrinkage and selection operator ML
regression algorithm to recognize induced heat pain by assessing
the fMRI activity patterns. Shen et al [60] derived primary,
dorsal, and ventral visual networks from blood oxygen
level–dependent fMRI scans by using independent component
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analysis and used a ML algorithm SVM to distinguish between
patients with chronic low back pain and healthy volunteers and
achieved an accuracy of 79.3%. Tu et al [59] proposed a novel
sliced inverse regression–based fMRI decoding method to
reduce the fMRI data dimension and showed overperformance
compared to traditional regularization-based decoding analyses
(principal component analysis and discriminant analysis, partial
least squares-discriminant analysis, and least absolute shrinkage
and selection operator). Robinson et al [58] scanned fMRI and
applied ML algorithms to classify patients with fibromyalgia
and healthy volunteers.

Electrocardiogram as a Pain Indicator
An electrocardiogram is a widely used technique to measure
the electrical activity of the heart and its changes during each
cardiac cycle. The electrocardiogram waveform consists of
several characteristic waves and intervals that correspond to the
different phases of the cardiac cycle, including the P wave, QRS
complex, and T-wave. By analyzing the size, shape, and timing
of these waves and intervals, a wide range of cardiac conditions,
such as arrhythmias, heart attacks, and heart failure, can be
diagnosed. The use of electrocardiograms in pain detection
assumes that pain can cause a physiological stress response,
leading to cardiovascular changes that are related to the pain
stimuli. The autonomic nervous system responds to pain by
increasing sympathetic tension and decreasing parasympathetic
tension, leading to an increase in heart rate and blood pressure.
By analyzing the electrocardiogram signal, features that reflect
the autonomic nervous system status, such as heart rate
variability (HRV), can be extracted and used to detect pain.

Several studies have shown the potential of electrocardiograms
for pain detection. Walter et al [34] collected electrocardiogram
data from 90 subjects using heat as pain stimuli and created the
BioVid dataset, which also included skin conductance level,
sEMG, and video data. Adjei et al [56] performed spectral
analysis on electrocardiogram data and extracted HRV features,
such as the low-frequency (LF) component and high-frequency
(HF) component, which were significantly correlated with pain
level. Jiang et al [64] extracted time-domain and
frequency-domain HRV features from electrocardiogram data
to classify pain level and obtained an AUC of 0.82 in the
receiver operating characteristic curve.

However, there are also studies that suggest a lack of correlation
between HRV and pain level. Meeuse et al [113] found no
significant correlation between HRV features and heat pain
level in their study. It is important to note that an
electrocardiogram alone may not be sufficient to accurately
detect pain, and other physiological signals, such as skin

conductance and electromyography, may need to be considered
as well. Furthermore, individual differences in pain perception
and the variability of pain stimuli may affect the reliability of
pain detection using an electrocardiogram.

EDA as a Pain Indicator
EDA, also referred to as galvanic skin response, is a
physiological gauge of the skin’s electrical conductance. This
conductance changes according to the functioning of sweat
glands within the skin [114]. The measurement of EDA is a
noninvasive process involving the placement of 2 electrodes,
often on the fingers or palms. Activation of the SNS, triggered
by situations such as stress or pain, leads to increased sweat
gland activity, causing a rise in the skin’s electrical conductance.

Within the context of automated pain recognition, EDA serves
as a valuable indicator due to its reflection of SNS activity [115],
which is closely linked to the body’s response to pain. Numerous
research studies have highlighted EDA’s potential in pain
detection. For instance, in the BioVid dataset developed by
Walter et al [34], EDA was used as one of the methods,
revealing a correlation between EDA features and the intensity
of pain.

sEMG is another important tool for measuring EDA in automatic
pain detection. sEMG can measure the electrical activity of
muscles and has been used to measure facial expression [116]
or muscle movement of specific body parts, such as the back
muscles [117]. These measures can provide additional
information about the pain experience and may be used in
combination with other modalities for better pain detection
accuracy [118].

Devices
Data collection is indeed crucial in research, especially in
statistical and ML-based studies. It is essential to ensure that
the data collected are accurate, informative, and clean. However,
selecting the right measurement devices is crucial for obtaining
high-quality data.

Table 3 is a summary of previously used measurement devices
in pain assessment studies. Figure 4 [115-117] presents 3 typical
types of devices used in physiological signal–based pain
assessment: wristband, headset, and chest band. The importance
of wearable devices in this context cannot be overstated; they
enable ubiquitous, real-time data collection [119,120], especially
with the rise of body sensor networks. This technological
advancement allows for extensive data gathering in wearable
and remote settings, making continuous monitoring both feasible
and affordable.
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Table 3. Physiological signal measurement devices used in pain assessment studies.

ReferenceFDAa-clearedTypeConnectivityPhysiological signalsDevice

[64,69]YesChest bandBluetoothElectrocardiogramBioharness 3

[68]YesWristbandBluetoothEDAbAffectiva Q sensor

[121]YesMeasurement hubWiredEDA and heart rateProcomp+

[54]NoHeadsetBluetoothElectroencephalogramEmotive EPOC 14-channel elec-
troencephalogram wireless record-
ing headset

[71]NoChest bandBluetoothRespiration rateRespiBan

[71]YesWired sensorWiredEDA, BVPc, and respiration rateEmpatica E4

[65,67]YesSensorhubWiredBVP, electrocardiogram, and EDAInfiniti 3000A platform with Flex
and Pro sensors

[122]NoWatchWiredHRVdPolar RS800CX

aFDA: Food and Drug Administration.
bEDA: electrodermal activity.
cBVP: blood volume pulse.
dHRV: heart rate variability.

Figure 4. Devices used in physiological signal–based pain assessment: WeBe band.
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There are several studies that have evaluated the usability and
reliability of different measurement devices. Researchers can
refer to these studies when choosing measurement devices for
their own research. Ajayi et al [123] evaluated the Empatica E4
by comparing the results with nurse-recorded data and pooling
questionnaires from participants. Nazari et al [124] tested the
reliability of Bioharness and Fitbit measures of heart rate and
activity at rest status. Rawstorn et al [125] evaluated the
BioHarness by testing it on volunteers with both sinus rhythm
and atrial fibrillation during simulated daily activities as well
as low-, moderate-, and high-intensity exercises. Loberg et al
[126] evaluated 4 different respiratory effort sensors and
compared them with a respiratory sensor from NOX Medical
as the golden reference device.

Feature Extraction

Overview

In the field of ML, pattern recognition, and image processing,
feature extraction is a crucial step that involves transforming
raw data into informative and nonredundant features to facilitate
subsequent learning and generalization. Physiological signals
typically carry implicit information that needs to be revealed
through appropriate feature extraction techniques. While deep
learning methods often generate features automatically,
traditional ML methods require manual feature extraction.

For physiological signals, time window segmentation is
commonly used to extract features. This involves segmenting
the signals into chunks of equal time intervals and generating
a row vector for each segment with 1 feature value for each

feature, for example, the mean value of the segmentation.
Physiological signal features can be classified into 4 categories:
time-domain, frequency-domain, time-frequency-domain, and
space-domain features.

Time-domain features describe the statistical and morphological
properties of physiological signals, such as maximum value,
SD, entropy, and mean R-R interval in electrocardiogram
signals. Frequency-domain features characterize the spectral
properties of signals, such as LF band power and low-high
frequency ratio. Time-frequency-domain features consider both
time-domain and frequency-domain properties simultaneously
to account for the short duration and changing nature of
physiological signals. Space-domain features, such as
multispectral imaging and topography, are used to represent
topographic characteristics of brain activity features, including
electroencephalograms, fMRI, and fNIRS.

The complexity of physiological signals can guide feature
selection. Signals with high stochastic stationarity and low
signal-to-noise ratio, such as photoplethysmography and EDA,
are considered low in complexity and can be represented by 1
or 2 feature domains. Signals with low stochastic stationarity
and high signal-to-noise ratio, such as electrocardiogram,
electroencephalogram, and fMRI, are high in complexity and
require 3 to 4 feature domains to capture all relevant
information. Nowadays, numerous Python libraries are available
that facilitate the rapid extraction of features in physiological
signals [127,128], electroencephalograms [129], video [130],
and audio [131] domains. A summary of the commonly used
features is presented in Table 4.
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Table 4. Summary of the commonly used physiological signal features in pain assessment studies.

ReferenceCategory, feature, and description

[132]HRV a time-domain measures

SD of NNb intervals

SD of RRc intervals

STDd of the average NN intervals for each 5 min segment of a 24-hour HRV recording

Mean of the STD of all the NN intervals for 5-min segment of a 24-hour HRV recording

Percentage of successive RR intervals that differ by >50 ms

Average difference between the highest and lowest heart rates during each respiratory cycle

Root mean square of successive RR interval differences

Integral of the density of the RR interval histogram divided by its height

Baseline width of the RR interval histogram

[132]HRV frequency-domain measures

Absolute power of the ultra LFe band (≤0.003 Hz)

Absolute power of the very-LF band (0.0033-0.04 Hz)

Peak frequency of the LF band (0.04-0.15 Hz)

Absolute power of the LF band (0.04-0.15 Hz)

Relative power of the LF band (0.04-0.15 Hz) in normal units

Relative power of the LF band (0.04-0.15 Hz)

Peak frequency of the HFf band (0.15-0.4 Hz)

Absolute power of the HF band (0.15-0.4 Hz)

Relative power of the HF band (0.15-0.4 Hz) in normal units

Relative power of the HF band (0.15-0.4 Hz)

Ratio of LF to HF power

[132]HRV nonlinear measures

Area of the ellipse that represents the total HRV

Poincare plot SD perpendicular to the line of identity

Poincare plot SD along the line of identity

Ratio of SD1 to SD2

Detrended fluctuation analysis, which describes short-term fluctuations

Detrended fluctuation analysis, which describes long-term fluctuations

Correlation dimension, which estimates the minimum number of variables required to construct a model of system dynamics

Amplitude

[133]Peak amplitude

[133]Peak to peak amplitude

[134]Root mean square

[134]Mean absolute value

[135]Mean relative time of the peaks

[135]Mean relative time of the valleys

Variability

[135]IQR

[133]Range

[133]SD
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ReferenceCategory, feature, and description

[134]Variance

[132]Mean resting rate

[132]Slope resting rate

Stationarity

[136]Integral degree of stationarity

[136]Modified integral degree of stationarity

[136]Modified mean degree of stationarity

[133]Median

[133]SD of SD vector

Entropy

[137]Approximate entropy

[138]Fuzzy entropy

[139]Sample entropy

[140]Shannon entropy

[141]Spectral entropy

[133]Linearity

[136]Lag dependence function

[136]Population lag dependence function

Similarity

[142]Correlation coefficient

[143]Median coherence

[143]Mean coherence

[143]Modified mean coherence

[143]Modified integral of coherence

[144]Mutual information

Frequency

[133]Bandwidth

[133]Center frequency

[134]Median frequency

[134]Mean frequency

[133]Mode frequency

[134]Zero crossings

aHRV: heart rate variability.
bNN: neural network.
cRR: 2 consecutive R waves.
dSTD: SD.
eLF: low-frequency.
fHF: high-frequency.

Brain Activity Features

Physiological signals, including electroencephalograms, fMRI,
and fNIRS, have unique characteristics that require specific
feature extraction techniques. Electroencephalogram signals,
for example, have high topological complexity as multiple
channels are measuring simultaneously. They can be divided

into different frequency bands, such as delta, theta, alpha 1,
alpha 2, beta 1, beta 2, gamma 1, and gamma 2. To assess pain,
Panavaranan et al [110] used power spectral density features
calculated using fast Fourier transform. Hadjileontiadis et al
[54] combined continuous wavelet transform with higher-order
statistics and spectra to create a new feature space for
electroencephalograms. Rissacher et al [55] found temporal
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parietal alpha of electroencephalograms to be a useful feature
for pain assessment.

In fMRI, Tu et al [59] proposed a novel dimension reduction
method by incorporating singular value decomposition into
sliced inverse regression to overcome the limitations of sliced
inverse regression when dealing with high-dimensional data.
This method was used to assess pain, achieving 77.61% binary
classification accuracy.

There are various feature extraction approaches for
electroencephalogram signals, as summarized by Behzadfar et
al [145]. For brain activity signals in general, van der Miesen
et al [146] outlined the state and progress in pain detection using
these signals.

Electrocardiogram Features

Unlike general statistical feature extraction methods,
electrocardiogram feature extraction involves more human
experience on electrocardiograms and is more interpretable.
Shaffer et al [132] provided an overview of HRV features,
covering time-domain, frequency-domain, and non-linear
measures. Time-domain and frequency-domain features are
widely used in pain assessment studies. On the BioVid dataset,
Werner et al [147] derived mean resting rate, root mean square
of successive differences, and slope resting rate from the
electrocardiogram signal. Gruss et al [148], Campbell et al [149],
and Kachele et al [150] used the same 3 features in their studies.
Kachele et al [150] also applied 4-level wavelet decomposition
on detected R peaks to extract the mean alpha 1 coefficients.
Jiang et al [64] extracted time-domain features, such as average
interval between normal heart beats, SD of normal heart beat
intervals, root mean square of successive differences, and
percentage of successive RR intervals that differ by more than
20 ms, and frequency-domain features, such as LF, HF, and LF
or HF, from an electrocardiogram and attained an AUC of 0.82
for induced electrical pain and an AUC of 0.75 for induced
thermal pain.

Apart from HRV, other features have been used for various
purposes. For instance, some studies have used morphological
features, such as QRS complex duration and amplitude, T-wave

amplitude, and ST-segment changes, for diagnosing cardiac
abnormalities [150].

EDA and Electromyography Features

EDA and electromyography are critical tools in pain detection
because they measure physiological responses that are directly
linked to the autonomic nervous system’s reactions, which vary
significantly with pain perception [114,151]. Walter et al [133]
systematically gathered and summarized feature extraction
methods for EDA or electromyography signals from previous
research and categorized them into mathematical groups of (1)
amplitude, (2) frequency [152], (3) stationarity [136], (4) entropy
[153], (5) linearity [144], and (6) variability. In total, 33 different
features were listed, and their efficiency in pain assessment on
the BioVid dataset was proved. Then, Gruss et al [148] deployed
the feature table and derived it to 39 features. Campbell et al
[149] also developed a feature list based on the study by Walter
et al [133]. They also proposed a ML-based feature selection
approach that deploys univariate feature selection and sequential
forward selection for 100 epochs, with cross-validation as the
metric to explore the optimal feature set. From their results, a
relationship table between features and pain was displayed,
illustrating the discriminative strength of features. In addition,
amplitude, power, and unique functional features of
electromyography signals are noted as useful in all different
feature sets. Table 4 summarized the features used in previous
studies.

Models

Overview

In the field of ML, the “no free lunch” theorem has been referred
to often when talking about model selection [154]. This theorem
illustrates that “any two optimization algorithms are equivalent
when their performance is averaged across all possible
problems,” which implies that no single algorithm always has
the best performance for all ML tasks. Thus, appropriate model
selection is necessary for the success of ML-based pain
assessment. In this section, we compare different ML algorithms
by illustrating their advantages and disadvantages and their
applicable scenarios. Table 5 provides a summary of the
prevalent ML algorithms used in pain assessment.

Table 5. Summary of the prevalent machine learning algorithms used in pain assessment studies.

ReferenceDisadvantagesAdvantagesModel

[64,71]Support vector machine •• Low performance in multiclass tasksSuitable for small datasets
• Takes advantage of kernel functions

[155]Decision tree •• High risk of overfittingEasily interpretable
• •Computation friendly Discards correlations between features

[156,157]Random forest •• Low performance on low-dimensional datasetsApplicable on large datasets
• •Fixes the overfitting problem of decision tree Time consuming
• Easy to parallelize

[158,159]Neural networks •• UninterpretableHigh performance with large amounts of data
• •Flexible with layer configurations Computation consuming
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SVM for Pain Classification

The first commonly used ML model in physiological
signal–based automatic pain detection is SVM [64,71]. SVM
is a type of generalized linear classifier that classifies data in a
supervised learning way [160]. Its decision boundary is the
maximum margin hyperplane for learning samples. SVM also
includes kernel tricks, which makes it a substantially nonlinear
classifier. The final decision of SVM only depends on the
support vectors, which makes it suitable for small sample
learning. On the contrary, SVM lacks the ability to provide
restoration of variables to the formation of derived predictors
[161], which is important in some areas such as financial
prediction and health applications. In addition, SVM requires
delicate preprocessing and tuning to acquire the best
performance. Panavaranan et al [110] applied polynomial kernel
SVM on electroencephalogram data and obtained an accuracy
of 96.97%. Gruss et al [148] used SVM on the BioVid dataset
and gained 90.94% accuracy on pain tolerance classification.
In addition, Jiang et al [64] obtained an AUC of 0.82 with the
use of SVM. More recently, Badura et al [71] achieved 94%
accuracy using Gaussian kernel SVM.

Decision Tree for Pain Classification

Unlike SVM, decision tree is known for its interpretable
characteristic. The decision tree algorithm is a method of
approximating the value of a discrete function [162,163]. It is
a typical classification method that uses an induction algorithm
to generate readable rules and decision trees and then uses
decision-making to analyze the new data. Essentially, a decision
tree is a process of classifying data through a series of rules.
Because of their inherent interpretability, tree-based algorithms
help ML processes move beyond the “black box” model [164].
By contrast, due to the simple structure of tree-based models,
overfitting easily happened on tree-based models [165]. Besides,
they lack the ability to deal with missing data due to the
continuity of tree structure.

RF for Pain Classification

RF is an algorithm that integrates multiple trees through the
idea of ensemble learning. Its basic unit is a decision tree, and
essentially, it belongs to a large branch of the ML “ensemble
learning” method. Intuitively, each decision tree acts as a
classifier, so for a given input sample, N decision trees will
produce N classification results. RF integrates all classification
voting results and designates the category with the most votes
as the final output, which is a “bagging” idea. With the tree base
and bagging theory RF holds, it has advantages such as
preventing overfitting, easy to parallelize, and friendly with
high-dimensional data [166]. In contrast, RFs require more time
for training and prediction compared to decision trees.
Vijayakumar et al [111] applied RF on 25 subjects’
electroencephalogram data and obtained 89.45% accuracy.
Naeini et al [167] used RF on the BioVid dataset and achieved
an accuracy of 79%. Werner et al [168] used RF on their new
“X- ITE” dataset and achieved 94.3% accuracy for phasic
electrical pain classification.

Neural Networks for Pain Classification

NN have also been used by scholars for automatic pain detection
[158,159]. NN abstracts the human brain neuron network from

the perspective of information processing, establishes a certain
simple model, and composes different networks according to
different connection structures. Thanks to the development of
the digital society, the amount of data available for ML has
grown substantially. NN, which can go deep in its layer
structure, can reveal implicit information from data. Therefore,
as the amount of data grows, the performance of NN keeps
increasing, while traditional algorithms, such as SVM and RF,
are limited. Nevertheless, NN has the defect of “black box”
characteristic. Such uninterpretability keeps NN from blooming
in certain fields, such as text and code analysis [169], judicial
decision, and artificial intelligence medicine, because such fields
require a clear, understandable, and interpretable
decision-making process. Martinez et al [170] used NN on the
BioVid dataset and obtained 82.75% accuracy on multitask
classification. Jiang et al [69] applied an artificial neural network
on 30 subjects and gained an average accuracy of 83.3%. The
deviation of neural networks is widely used in automated pain
assessment, such as CNN [156], RNN [171], and LSTM neural
network [172].

Audio Analysis
Infant crying is a common sign of discomfort, hunger, or pain.
It conveys information that helps caregivers assess the infant’s
emotional state and react appropriately. Crying analysis can be
divided into two main stages: (1) the signal processing stage,
which includes preprocessing the signal and extracting
representative features; and (2) the classification stage. We
classified the existing methods of signal processing stage into
(1) time-domain methods; (2) frequency-domain methods; and
(3) cepstral-domain methods.

Time-domain analysis is the analysis of a signal with respect
to time (ie, the variation of a signal’s amplitude over time).
Linear prediction coding is one of the most common
time-domain methods for analyzing sounds. The main concept
behind linear prediction coding is the use of a linear combination
of the past time-domain samples to predict the current
time-domain sample. Other time-domain features that are
commonly used for infants’ sound analysis are energy,
amplitude, and pause duration. Vempada et al [49] presented a
time-domain method to detect discomfort-relevant cries. The
proposed method was evaluated on a dataset consisting of 120
cry corpuses collected during pain (30 corpuses), hunger (60
corpuses), and wet diaper (30 corpuses). We want to note that
the paper does not provide information about the stimulus that
triggered the pain state or the data collection procedure. The
infants’ age ranges from 12 to 40 weeks. All corpses were
recorded using a Sony digital recorder with a sampling rate of
44.1 kHz. In the feature extraction stage, two features were
calculated: (1) short-time energy, which is the average of the
square of the sample values in a suitable window; and (2) pause
duration within the crying segment. Part of these features were
used to build SVM, and the remaining features were used to
evaluate its performance. The recognition performance of pain
cry, hunger cry, and wet diaper cry were 83.33%, 27.78%, and
61.11%, respectively. The average recognition rate was 57.41%.
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Pupil Size
The measurement of changes in pupil size has been shown to
be a promising physiological indicator of pain intensity. Pupil
size can be used to monitor the effects of painful stimuli in the
brain. The pupil dilates in response to pain due to the activation
of the sympathetic branch, which releases norepinephrine, and
the inhibition of the parasympathetic branch, which is
responsible for constriction of the pupil. This section discusses
the mechanism of using pupil dilation as a pain indicator and
literature reviews of using pupil dilation for automated pain
assessment.

The pupil dilation is a complex physiological response regulated
automatically by 2 muscles in the eye, the sphincter pupillae
and the dilator pupillae. The sphincter pupillae is controlled by
the parasympathetic system to contract the pupil, while the
dilator pupillae is dominated by the sympathetic system to dilate
the pupil [50].

Höfle et al [51] investigated the influence of different luminance
conditions on pupillometry for pain detection and found that
the baseline pupil size values significantly differed under
different luminance conditions, while the peak dilation remained
the same. Bertrand et al [173] explored the influence of gender
and anxiety on pupil dilation for pain detection and concluded
that pupil dilation changes similarly in both men and women
and are exacerbated in the presence of anxiety. Connelly et al

[52] conducted an experiment on 30 children undergoing
elective surgical correction of pectus excavatum and found that
maximum pupil size, percent change in pupil size, and maximum
constriction velocity were the most related features to pain
intensity. Chapman et al [174] reported a delay of 1.25 seconds
in 20 adult volunteers under noxious stimulation, while
Eisenacha et al [175] reported a peak in pupil size with a lag of
4.25 seconds after the onset of heat pain on 28 adult volunteers.
Wang et al [176] found that the pupillary response together with
ML algorithms could be a promising method of objective pain
level assessment by measuring pupillary response during
induced cold pain on 32 subjects.

Multimodal Pain Detection
Including more modalities can possibly increase information
density, which leads to increased accuracy. Thus, researchers
have been increasingly turning to multimodal approaches to
enhance the accuracy and reliability of automated pain
assessment systems. These approaches combine information
from multiple modalities, such as biomedical signals and facial
expressions, to provide a more comprehensive understanding
of the patient’s pain experience. Furthermore, a multimodal
approach can capture a more nuanced and diverse range of pain
responses, which is particularly important given the wide
variation in pain perception among individuals with different
characteristics and cultural backgrounds. Figure 5 presents a
typical flow of multimodal pain assessment.

Figure 5. Multimodal pain assessment.
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Fusion strategies commonly used in multimodal pain assessment
can be categorized into early fusion and late fusion. Early fusion
involves the combination of features from different modalities
before the training of a classifier, while late or decision fusion
combines the predictions of individual classifiers after training.
Common methods of combining predictions include fixed

methods such as taking the mean or product and trainable
methods such as using a pseudoinverse. Figure 6 illustrates the
early and late fusion strategies. Some research has explored
combining early and decision fusion by merging specific
features at the feature level and then fusing those with other
features at the decision level [46].

Figure 6. Fusion strategies.

The first study to combine video and physiological signals for
automated pain detection was conducted by Werner et al [147],
who used an early fusion strategy to concatenate features from
both modalities. The optimal fusion set is found to be the
combination of all video and physiological signals, achieving

accuracies of 80.6% and 77.8% for person-specific and generic
classifiers, respectively, in detecting baseline and highest
tolerable pain using a RF ensemble–based classifier. Kachele
et al [177] applied both early and late fusion strategies using
SVM with linear kernel and RF for recognizing baseline and
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highest tolerable pain, achieving accuracies of 68.2% and 76.6%
for early and late fusion, respectively.

Continuing the BioVid dataset, Kachele et al [178] applies early
and late fusion techniques with new features included, achieving
slightly better results with late fusion (83.1%) than early fusion
(82.7%). Thiam et al [179] proposed a hierarchical fusion
architecture that divides multimodal data into 3 subsets. These
subsets are used for the first layer of RF training, followed by
pseudo-inverse mapping, multilayer perceptron mapping, and
a final layer that combines both pseudo-inverse and multilayer
perceptron fusion mapping. Kessler et al [180] took advantage
of the fusion strategy proposed by Thiam et al [179] and applied
it to remote photoplethysmography.

Other studies focus on incorporating additional modalities, such
as audio. Velana et al [37] published the SenseEmotion database,
which captures video, physiological signals, and audio for the
first time. Thiam et al [181] merged features from video,
physiological signal, and audio data on the SenseEmotion
dataset, exploring different data fusion strategies, including
early fusion, group late fusion, and individual late fusion.
Results show that individual late fusion outperforms other
strategies slightly on leave-subject-out experiment, while group
late fusion slightly outperforms on user-specific task. There is
also a dataset for neonatal pain assessment that includes video,
audio, and physiological signals [46,171].

Recent studies have explored new fusion approaches. Bellmann
et al [182] proposed a dominant channel fusion approach that
identifies the most relevant input channel and combines it with
the remaining channels to create an ensemble of classifiers.
Bellman et al [183] proposed a novel late fusion approach that
combines a mixture of experts and stacked generalization
approaches and is assessed on different datasets involving the
biophysiological modalities electromyography,
electrocardiogram, and EDA. Thiam et al [159] proposed an
information theoretic approach that uses a deep denoising
convolutional autoencoder to learn and aggregate latent
representations based on each input channel.

However, it is evident that late fusion, using multiple models
as part of an ensemble learning approach, requires significantly
more computational power and storage space compared to early
fusion methods. As pain assessment is an emerging field, the
current focus is predominantly on enhancing predictive accuracy
rather than on resource use, and discussions on model
complexity are relatively scarce. However, with the advent of
Tiny ML and the rise of edge computing [184], running large
models on microprocessors becomes challenging. Consequently,
early fusion might gain popularity on edge devices, where the
ability to run simpler, more compact models efficiently is
crucial. This shift could make early and lightweight fusion
approaches more viable and preferred in scenarios where
computational resources are limited. In addition, with the
increasing inclusion of multimodal data, we can envisage future
fusion methods potentially incorporating recently developed
self-attention algorithms [185].

Discussion

The pain assessment field is faced with several challenges and
opportunities for future development. This section will focus
on 3 areas of concern—data, ML techniques, and ethical
considerations—and then propose future research directions.

Data
Automatic pain assessment is challenged by the limited
availability of clinical pain data, as most studies have focused
on experimental or induced pain. Widely used datasets such as
BioVid, BP4D+, and X-ITE are collected from healthy
volunteers and use external thermal or electrical pain. These
studies are conducted under consistent experimental conditions
that differ from real-world scenarios. Furthermore, induced pain
has different mechanisms than disease pain, which encompasses
different types of pain, such as nociceptive and central pain.
Therefore, it is important to test models trained on experimental
data using clinical pain data. In addition, more clinical pain data
should be collected to facilitate the development of automatic
pain assessment models and enable their use in clinical trials.

Pupil dilation has been identified as a promising indicator of
brain activity and pain levels. However, in previous studies,
pain was often used as the stimuli for measuring brain activity,
rather than the focus of the study. Consequently, only a few
studies have directly correlated pupil dilation with pain levels.
A potential research direction is to include pupil dilation in the
automatic pain assessment modality family. Pupil dilation has
been shown to be effective in affective computing, with datasets
such as the MAHNOB-HCI and SEED containing eye-tracking
data that demonstrate the contribution of pupil data to arousal
detection. As pain can also be regarded as physiological arousal,
transferring pupil dilation to automatic pain assessment studies
is a worthwhile area of research.

Personalization of Pain Responses
In the following subsection, we explore personalized pain
detection, focusing on the considerable differences in pain
experiences among individuals. Pain perception varies widely
due to a mix of biological factors and social-psychological
influences. These differences are shaped by demographics such
as gender, age, and ethnicity, which are linked to varying rates
of chronic pain. In addition, factors such as genetic
predispositions and psychological processes also significantly
impact pain responses, whether in clinical settings or
experimental scenarios. Importantly, these elements interact in
complex ways, crafting the unique pain experiences of everyone.
Research has highlighted that genetic markers associated with
pain can differ across genders and ethnicities and interact with
psychological aspects such as stress, affecting pain perception.
These myriads of interacting factors culminates in a distinctive
set of influences for each person’s experience of pain [186].

Jiang et al [187] introduced a method that enhances pain
assessment by incorporating personalized features. They used
ML to analyze individual pain data, enabling the model to tailor
its predictions to each patient’s unique physiological and
psychological characteristics. This approach improves the
accuracy of pain management by adapting to personal pain
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profiles. Casti et al [188] developed a platform to improve pain
diagnosis by leveraging personalized data. Using a combination
of visual, speech, and physiological indicators, they used ML
techniques to tailor assessments to individual patient profiles,
enhancing the precision and effectiveness of pain management
strategies. Martinez et al [189] proposed a method to refine pain
estimation by integrating personalized features. They used ML
to analyze individual facial expressions, allowing the model to
adjust its predictions based on each person’s unique facial
expressiveness score. This approach enhances the accuracy of
Visual Analog Scale estimations by adapting to individual pain
profiles [189].

Most papers on personalized pain assessment claim
personalization at the model level, focusing on enhancing ML
models to suit individualized approaches or using ML techniques
to delve deeper into databases for extracting personalized
information to improve predictions. The predominant reliance
on public databases for research is evident, as most researchers
use these readily available datasets. This reliance restricts
personalization efforts to the data provided by these databases,
making highly tailored training challenging. In addition, most
pain-related datasets globally are derived from experiments
involving artificially induced pain, which must pass rigorous
ethical or clinical trial reviews, further limiting the quantity of
available data. Looking to the future, personalization will
undoubtedly be a crucial focus. It is foreseeable that researchers
will collect more personalized data during experiments,
including variables such as personality traits and ethnicity. This
will likely lead to the generation of more nuanced datasets that
include varied physiological responses to different pain stimuli,
enhancing the granularity and effectiveness of personalized pain
management solutions.

Real-Time Pain Detection
Building on our earlier discussion about the personalization of
pain responses, it is essential to delve into another critically
relevant clinical application: real-time monitoring [190]. The
goal of such monitoring is not just to detect pain but to enable
timely and effective interventions that can significantly enhance
patient outcomes. Real-time monitoring of pain becomes
particularly crucial in postoperative care, where accurately
gauging a patient’s pain levels is vital for adjusting analgesic
dosages. This not only helps in managing the pain effectively
but also minimizes the risk of both undermedication and
overmedication, which can lead to complications such as opioid
dependency or inadequate pain relief. In ICUs, the stakes are
even higher. Many patients in ICUs are unable to communicate
due to their conditions or sedation, making verbal reports of
pain unreliable. Here, real-time monitoring systems can play a
transformative role by continuously tracking pain indicators
through physiological signals such as heart rate, blood pressure,
and facial expressions. These data can then be analyzed to
provide a dynamic, real-time assessment of pain, informing
caregivers when an intervention is necessary. Moreover,
real-time monitoring integrates seamlessly with the concept of
personalized pain management. By continuously collecting and
analyzing data specific to each patient, health care providers
can tailor their interventions more precisely to the individual’s
pain profile and response to treatment. This approach not only

improves the quality of care but also enhances patient comfort
and satisfaction. As technology advances, the potential for
real-time pain monitoring grows. Innovations in wearable
technology, ML algorithms, and data integration are paving the
way for even more accurate and responsive pain management
systems. These systems promise to transform how pain is
managed in health care settings, making care more proactive,
patient centered, and effective.

In the academic sphere, the development of real-time pain
monitoring is primarily concentrated on 2 aspects: improving
model efficiency to enable fast judgments suitable for real-time
applications and developing practical tools such as wearable
devices and mobile apps to facilitate widespread
implementation. Enhancing the processing speed of models
involves not only maintaining accuracy but also integrating
advanced ML technologies, such as deep learning. Meanwhile,
the development of tools such as wearables and mobile apps
allows for the noninvasive collection of physiological data and
real-time analysis, helping patients and health care providers
to promptly assess pain levels and treatment effectiveness. This
combination of improved models and practical tools is driving
pain management toward more precise, personalized, and
proactive solutions. Kong et al [191] introduced a smartphone
app that enhances real-time pain detection using EDA signals
collected from a wrist-worn device. They tested the app with
thermal grill and electrical pulse data, demonstrating high
accuracy in pain detection with a RF model. This approach
offers a practical solution for objective, near–real-time pain
assessment in everyday settings. Dai et al [93] address automatic
pain detection using a mix of pain and emotion datasets to
enhance model robustness, achieving 88.4% accuracy. They
criticize CNNs for overfitting on biased data and validate their
method through experiments on a humanoid robot in
physiotherapy, emphasizing the importance of real-time,
real-world testing and assessing the system’s practical utility
and accuracy.

In summary, the advancement of real-time pain monitoring
represents a significant enhancement in health care, enabling
precise and timely interventions that are tailored to the unique
needs of each patient. This technology not only improves the
accuracy of pain assessments but also enriches the quality of
care by integrating cutting-edge ML models and wearable
technologies. As this field continues to evolve, it holds the
promise of transforming pain management into a more
responsive, personalized, and patient-centered practice.

ML Techniques
Although deep learning has revolutionized computer vision and
physiological signal analysis, traditional ML algorithms still
dominate the field of physiological signal–based automatic pain
assessment. One possible reason for this is that deep learning
requires extensive data, which is time consuming and resource
intensive to collect. Therefore, studies often include only a small
number of participants, typically in the tens, making it difficult
to gather comprehensive datasets.

In this context, transfer learning, a prominent topic in artificial
intelligence, offers a promising alternative solution. Transfer
learning involves applying knowledge gained from a source
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domain to a new target domain, which can be particularly useful
in scenarios where data collection is challenging. Differing data
distributions between the source and target domains can lead
to performance degradation if models are applied directly.
Transfer learning helps bridge this gap, ensuring better model
performance across different settings [192].

Kächele et al [193] proposed an adaptive confidence learning
method for personalizing pain intensity estimation systems,
demonstrating the efficacy of transfer learning in this field.
Feature extraction involved specific preprocessing steps for
each signal type, such as bandpass filtering and artifact
correction for electromyography. A multistage ensemble
classifier was applied to learn the confidence of a regression
system. This method involved selecting confident samples from
unlabeled data of the test participants to iteratively adapt the
model. Their experiments showed that the adaptive learning
approach significantly improved the performance of pain
intensity estimation.

Chen et al [194] implemented “TrAdaboost,” a transfer learning
algorithm, to improve facial expression recognition, including
pain expressions. They used the PAINFUL database, which
contains video sequences of 25 patients with shoulder injuries,
encompassing 48,398 frames of spontaneous pain expressions.
The primary challenge addressed was the variability in pain
expressions across different individuals. They proposed an
inductive transfer learning algorithm to develop person-specific
models. This algorithm first trains a set of weak classifiers on
source data from multiple subjects and then selects the most
relevant classifiers for the target subject. Experimental results
showed that inductive transfer learning significantly improved
pain detection accuracy. For example, the AUC for pain
detection increased from 0.769 to 0.782 with just 10 target
samples and reached 0.891 with 100 samples. Furthermore, this
approach drastically reduced training time compared to
traditional methods, making it feasible for rapid retraining in
clinical settings.

While traditional ML remains prevalent in automatic pain
assessment due to data constraints, transfer learning presents a
viable alternative. It addresses the challenges associated with
varying data distributions and limited dataset sizes, enhancing
model robustness and performance. Future research should
explore the potential of transfer learning algorithms further,
integrating them into clinical practice to improve pain
management outcomes.

Ethical Considerations
Automatic pain assessment raises several ethical concerns that
need to be addressed. One primary concern is the privacy and
security of patients’ health data. The use of physiological
signals, such as facial expressions, speech patterns, and pupil
dilation, to assess pain levels can lead to the collection of
sensitive health data. Therefore, it is essential to ensure that the
data collected are secure and protected from unauthorized
access.

Another ethical consideration is the potential for bias in
automatic pain assessment models. ML models are only as good
as the data they are trained on, and if the training data are biased,

the model will be biased too. Bias can result in inaccurate pain
assessment, leading to inadequate pain management and, in
some cases, even harm to patients. Therefore, it is crucial to
ensure that the data used to train the models are representative
and unbiased.

Future Directions
Automated pain assessment has made significant strides in
recent years, leveraging technological advancements and
data-driven approaches to enhance the accuracy and efficiency
of pain detection. However, several promising directions for
future research remain unexplored. Addressing these areas could
lead to the development of more sophisticated and reliable
automated pain assessment systems.

First, integrating data from various sources, such as pupil
dilation, voice analysis, and body movement, could offer a more
comprehensive understanding of pain. This requires a more
comprehensive, clinical, and clean database to be released.
Second, exploring novel deep learning architectures, including
transformer-based models and generative adversarial networks,
may yield improved performance in pain assessment tasks.
These architectures could capture intricate patterns and
dependencies within pain-related data, leading to enhanced
predictive capabilities. Third, collaboration with health care
professionals is crucial to validate the effectiveness and
reliability of automated pain assessment systems in real-world
clinical settings. Integrating these systems into clinical
workflows could provide valuable insights and assist health
care providers in making informed decisions. Finally, using
transfer learning can provide new insights. In scenarios where
large, annotated datasets are scarce, exploring transfer learning
techniques and methods to adapt models to smaller datasets
could prove beneficial. These approaches could enable the
development of accurate pain assessment models even with
limited training data.

Conclusions
This survey reviewed the current advancements in automated
pain assessment using ML techniques. Traditional pain
assessment methods, reliant on self-reports and observational
scales, face significant limitations, particularly for patients who
are noncommunicative. We explored various modalities for
automated pain detection, including facial expressions,
physiological signals, audio, and pupil dilation. While each
modality has its strengths, combining multiple modalities can
enhance accuracy but also introduces challenges in data fusion
and model complexity. Despite progress, challenges remain,
such as the scarcity of diverse clinical pain datasets and ethical
concerns regarding patient privacy. Personalized pain assessment
models are also necessary due to variability in pain perception
across populations. Future research should focus on developing
more robust algorithms and leveraging deep learning and
transfer learning. Collaborative efforts to create comprehensive
pain datasets are crucial, as is integrating real-time pain
monitoring into clinical practice. In summary, automated pain
assessment has the potential to transform pain management.
Continued interdisciplinary research and collaboration are key
to overcoming current challenges and fully realizing these
technologies’ benefits.
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