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Abstract

Digital health interventions often use machine learning (ML) models to make predictions of repeated adverse health events. For
example, models may be used to analyze patient data to identify patterns that can anticipate the likelihood of disease exacerbations,
enabling timely interventions and personalized treatment plans. However, many digital health applications require the prediction
of highly heterogeneous and nuanced health events. The cross-subject variability of these events makes traditional ML approaches,
where a single generalized model is trained to classify a particular condition, unlikely to generalize to patients outside of the
training set. A natural solution is to train a separate model for each individual or subgroup, essentially overfitting the model to
the unique characteristics of the individual without negatively overfitting in terms of the desired prediction task. Such an approach
has traditionally required extensive data labels from each individual, a reality that has rendered personalized ML infeasible for
precision health care. The recent popularization of self-supervised learning, however, provides a solution to this issue: by pretraining
deep learning models on the vast array of unlabeled data streams arising from patient-generated health data, personalized models
can be fine-tuned to predict the health outcome of interest with fewer labels than purely supervised approaches, making
personalization of deep learning models much more achievable from a practical perspective. This perspective describes the current
state-of-the-art in both self-supervised learning and ML personalization for health care as well as growing efforts to combine
these two ideas by conducting self-supervised pretraining on an individual’s data. However, there are practical challenges that
must be addressed in order to fully realize this potential, such as human-computer interaction innovations to ensure consistent
labeling practices within a single participant.
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Introduction

In recent years, the intersection of consumer digital health and
machine learning (ML) has emerged to enable ML-powered
digital therapeutics, which have been developed in areas such
as interventions for substance use [1-4]; technologies for
managing mental health conditions such as anxiety, stress, and
depression [5-8]; and autism therapeutics using Google Glass
[9,10]. The models powering these digital therapies typically
analyze large streams of an individual patient’s data in order to

anticipate adverse health events or actionable patient-reported
outcomes. However, a significant computational challenge arises
when dealing with the prediction of nuanced and subjective
health events that are typically self-reported by participants in
the form of patient-reported outcomes, such as mental health
states like stress and anxiety. For such prediction targets, the
cross-subject variability poses an obstacle for traditional ML
approaches, as one participant’s label of “moderately stressed”
might be another participant’s “lightly stressed”.
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Conventional ML methodologies typically involve training a
single generalized model to classify a specific condition [11],
such as for diagnostic or screening purposes. However,
attempting to apply a universal model often leads to poor
generalization to individuals and health systems that were not
represented in the training data. An alternative solution involves
training separate models for each individual or subgroup,
tailoring the model to the unique characteristics of the patient.
However, this approach would traditionally demand extensive
labeled data from each participant, a requirement that has
historically hindered the feasibility of personalized ML
applications in precision health care.

The relatively recent advent of self-supervised learning (SSL),
made popular in the context of pretraining large language models
like ChatGPT (OpenAI), has enabled a transformative solution
to address the challenges associated with personalized ML in
health care [12-14]. SSL is a machine learning paradigm in
which a model is trained to understand and represent the
underlying structure of its input data without relying on
externally provided labels. By pretraining deep learning models
on vast amounts of unlabeled data streams derived from
patient-generated health data to understand the baseline temporal
dynamics of the data stream without a single label, SSL provides
a means to fine-tune personalized models with significantly
fewer labeled data points than when using traditionally
supervised learning. This relatively new paradigm opens new
avenues for making ML personalization in health care more
practical, thereby overcoming one of the major hurdles that has
historically impeded progress in this area.

This perspective explores the integration of SSL and
personalization in scenarios where there are large unlabeled
data streams generated per patient, focusing in particular on the
potential of personalized SSL to improve the performance of
digital therapeutics that provide some sort of digital therapy or
digital intervention when a prediction about the participant in
question is made by an ML model.

Personalized Models in Health Care

Traditional ML methodologies, which often rely on a
one-size-fits-all model, face substantial challenges when
confronted with the diverse and nuanced nature of health
outcomes. The need for personalized models that cater to

individual characteristics has led to a paradigm where a single
ML model is trained on data streams coming from a single user
and evaluated on future data coming from that same user (Figure
1).

Several examples of personalized ML models for health care
have been published in the past decade. Zhang et al [15]
developed Patient2Vec, a representation learning approach for
longitudinal electronic health record data used to predict clinical
events into the future. Luu et al [16] trained a generalized model
that was then fine-tuned to predict step count in a personalized
manner, achieving 98%-99% accuracy in the personalized case
and 96%-99% accuracy with the generalized models. Li et al
[17] compared a personalized model for stress prediction against
2 baselines, subject-inclusive and subject-exclusive generalized
models, finding that the personalized models significantly
outperformed both sets of generalized models. This finding
indicates that personalization using only an individual’s data
outperforms personalization when combining the personal data
with data from other users, at least for highly heterogeneous
outcomes such as affective computing.

Federated learning, where distributed local models are trained
and sent to a central global server for weight aggregation, is
naturally connected to the idea of personalized ML. Each “local”
model is, by definition, a personalized model. Federated learning
has been successfully applied to certain health care settings. For
example, Rudovic et al [18] developed a personalized federated
learning approach for pain estimation from face images where
clients train models using local data, aggregate the model
weights in a central server, and then send the global model back
to the clients for fine-tuning. This federated learning approach
enables the classification of a traditionally difficult classification
task due to its inherent subjectivity and heterogeneity between
individuals, namely, pain estimation using computer vision.

Traditional applications of personalized ML apply to scenarios
where there are vast amounts of data labels per patient.
Unfortunately, this situation is often unattainable. In contexts
where the data labels pertain to patient-generated health data,
it is especially infeasible to collect many labels. To address this
practical issue with traditional personalized ML, this perspective
explores the idea of performing SSL on an individual’s
unlabeled data streams to create a personalized foundation
model.

Figure 1. In many biomedical domains, there exist massive unlabeled data streams with sparse annotations of the health event of interest. In personalized
self-supervised learning, we can pretrain on data coming earlier from the participant and then fine-tune on an ideally small number of patient-provided
labels. Evaluation then occurs later temporally. HR: heart rate; SpO2: oxygen saturation.
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Personalized Foundation Models:
Combining Personalization With
Self-Supervised Learning

SSL holds great promise to improve the performance of ML
models in health care [19], broadly speaking. SSL involves
leveraging the inherent information within the data itself to
create supervisory signals for training. SSL has been
traditionally applied to large datasets containing data from a
broad array of patients. In passive data generation contexts,
however, such as when patients wear a monitor that continuously
collects biosignals, it can be productive to run SSL separately
for each patient, as each patient has a large amount of data
sampled several times a second. These separate pretraining
procedures per patient can result in a “personal foundation
model.” Because foundation models can learn using much less
data than would have been required if no SSL took place, the
personal foundation models can enable learning of complex
health outcomes where the supervisory signal drastically varies
across patients.

SSL for personalization of longitudinal time series data for
health care can be achieved through a variety of adaptations of
popular SSL pretraining strategies (Figure 2). An inherently
multimodal approach is to predict the missing portion of a signal
given the values of signals from separate data modalities (Figure
2A) [20], treating the prediction as a multiple-output regression
task [21]. Another approach is to perform contrastive learning
algorithms such as SimCLR [22] on the signals to maximize
representational similarity between augmented versions of the
same time period while minimizing similarity between 2 distinct
time windows (Figure 2B) [23,24]. More sophisticated
generative approaches, such as masked autoencoders [25] and
latent masking [26], can also be used to predict masked portions
of input signals (Figure 2C), including in a multimodal manner
[27].

Personalized modeling combined with SSL has recently enabled
the successful prediction of traditionally heterogeneous and
subjective health outcomes. For example, Li and Sano [28] used
unsupervised representation learning to predict outcomes related
to wellbeing, such as mood and stress. Li et al [29] computed
personalized brain function networks from functional magnetic
resonance imaging using SSL. Spathis et al [30] used SSL to
learn user-specific representations of wearable data streams and
demonstrated that these personalized representations can be
fine-tuned to a variety of downstream tasks.

One important consideration is that increases in model
performance might be due to either the personalization aspect
or the SSL aspect. SSL without personalization has been
repeatedly documented to improve ML model performance
[31-34]. Thus, it is important to systematically isolate both
conditions in isolation as baselines to determine the true
contribution of each component.

Another caveat to personalized SSL is that within-subject
consistency in labeling is crucial, and initial studies have found
that improvement gains observed using personalized SSL require
consistency in data labeling within a user. For example, Islam
and Washington [35,36] applied personalized multimodal SSL
to the Wearable Stress and Affect Detection dataset [37],
observing significant improvements in model performance when
compared to a baseline model using identical data without
self-supervised pretraining. By contrast, Eom et al [38] evaluated
a multimodal dataset collected by Hosseini et al [39] consisting
of wearable biosensors measured from nurses working during
the COVID-19 outbreak. Eom et al [38] did not observe
increased performance on average when using personalized
models pretrained on each individual’s data compared to
baseline models, likely due to particularly noisy and irregular
data collection procedures arising from nurses providing data
during a stressful event. This highlights the importance of using
datasets that have consistent labeling within a participant in
order to make personalized SSL actually work.

Figure 2. Examples of self-supervised learning approaches for longitudinal time series data. (A) An inherently multimodal approach is to predict the
missing portion of a signal given the values of signals from separate data modalities. (B) Another approach is to perform contrastive learning on the
signals by training a network to maximize similarity between a data point and an augmented version of that data point while minimizing similarity
between that data point and a separate data point. (C) A third possible strategy is to predict the missing portion of a signal using a masked autoencoder
or similar model.
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Future Opportunities

Applications of personalized SSL to recurrent health predictions
have been successful thus far under clean data scenarios. By
harnessing the power of SSL, these applications have
demonstrated the ability to glean intricate patterns and
dependencies within longitudinal health data. As advancements
continue in this burgeoning field, the promise of enhanced
precision, early intervention, and improved overall health
outcomes appear increasingly attainable for health domains and
datasets that are traditionally “challenging” due to their inherent
subjectivity, heterogeneity, and complexity.

Despite the initial successes described here, there are likely
myriad digital health applications that have yet to be realized
because they were not previously feasible prior to the advent
of SSL. For example, recent advances in personalized SSL for
emotion recognition [40] have the potential to improve the
efficiency of the personalization of artificial
intelligence–powered digital therapeutics for children with
autism [41,42]. While the state-of-the-art of emotion recognition
models hovers around 70% accuracy [43], previous emotion
personalization efforts without self-supervision were able to
achieve strong performances [44]. It is likely that further
improvements with fewer labels will be possible with
personalized SSL. This approach has yet to be applied to digital
therapeutics more broadly, and this gap suggests the possibility
of more precise digital therapeutics in the coming years.

Ongoing Challenges

Personalized SSL studies can often be framed as several
independent N=1 studies, where each study and corresponding
model consists of training, validation, and testing data that all
come from a single user. Such studies must be careful about
overfitting across 2 dimensions: within subjects and between
subjects. While between-subject overfitting, or overfitting to
some patients while failing to generalize to other patients, is
often discussed, discussions and evaluations of overfitting within
a subject appear relatively sparse in the literature. Future work
should explore overfitting in this temporal dimension more
thoroughly.

Another ill-studied area is the intersection of performance
discrepancies and personalization. Personalization of models
should, in theory, lead to a reduction in ML performance
discrepancies across groups. The capability of model
personalization to reduce these discrepancies has yet to be
thoroughly studied. However, it is plausible that personalized
models could still propagate existing performance gaps across

groups if the underlying data remains skewed or if the
personalization process disproportionately benefits certain
groups [45]. A thorough understanding of this will require
rigorous evaluation across a wide range of populations.

Another key challenge of personalized foundation models is
that individuals change over time. As an extreme example to
illustrate the point, a personalized model that was trained on an
individual during their youth may be irrelevant during their 30s.
The paradigm of continual (or online) learning, or the continual
retraining of models as new data become available, can offer a
solution. By allowing models to adapt incrementally, continuous
learning can ensure that they evolve alongside the user,
capturing shifts in behavior, preferences, and needs over time.
Possible approaches can include incremental fine-tuning [46-48],
where the model is periodically retrained on newly available
data while retaining previously learned weights; experience
replay [49,50], where a subset of past data is stored and
combined with new data during model updates; and
meta-learning [51,52], where the model learns how to quickly
adapt to new data by leveraging prior knowledge, making it
efficient in learning new tasks from fewer examples.

A final critical challenge is addressing human factors that
influence the quality, consistency, and usability of
patient-generated data in personalized SSL pipelines. As Slade
et al [53,54] highlight, participants often encounter both
technical and behavioral barriers during data collection,
including device discomfort, app usability issues, and low
perceived relevance of labeling tasks. These factors can lead to
sporadic participant engagement, mislabeled or missing data,
and dropout, ultimately undermining the effectiveness of models
that rely on temporal consistency and high-volume personal
data streams. Designing for human factors through mechanisms
such as clearer feedback loops, improved incentives, and
user-centered data collection interfaces will be essential to
support robust protocol adherence leading to successful
personalization.

Conclusion

The training of personalized foundation models by learning
from the vast unlabeled time series data that are often generated
from patients can lead to ML applications in health care that
expand beyond the traditional realm of diagnostics, such as
adaptive and customized digital therapeutics. This area of
research is relatively understudied in comparison to other aspects
of ML-powered digital health, though it is likely that the advent
and increasingly widespread application of SSL will lead to a
proliferation of such applications.
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