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Abstract

Background: Electronic health records (EHRs) and routine documentation practices play a vital role in patients’ daily care,
providing a holistic record of health, diagnoses, and treatment. However, complex and verbose EHR narratives can overwhelm
health care providers, increasing the risk of diagnostic inaccuracies. While large language models (LLMs) have showcased their
potential in diverse language tasks, their application in health care must prioritize the minimization of diagnostic errors and the
prevention of patient harm. Integrating knowledge graphs (KGs) into LLMs offers a promising approach because structured
knowledge from KGs could enhance LLMs’ diagnostic reasoning by providing contextually relevant medical information.

Objective: This study introduces DR.KNOWS (Diagnostic Reasoning Knowledge Graph System), a model that integrates
Unified Medical Language System–based KGs with LLMs to improve diagnostic predictions from EHR data by retrieving
contextually relevant paths aligned with patient-specific information.

Methods: DR.KNOWS combines a stack graph isomorphism network for node embedding with an attention-based path ranker
to identify and rank knowledge paths relevant to a patient’s clinical context. We evaluated DR.KNOWS on 2 real-world EHR
datasets from different geographic locations, comparing its performance to baseline models, including QuickUMLS and standard
LLMs (Text-to-Text Transfer Transformer and ChatGPT). To assess diagnostic reasoning quality, we designed and implemented
a human evaluation framework grounded in clinical safety metrics.

Results: DR.KNOWS demonstrated notable improvements over baseline models, showing higher accuracy in extracting
diagnostic concepts and enhanced diagnostic prediction metrics. Prompt-based fine-tuning of Text-to-Text Transfer Transformer
with DR.KNOWS knowledge paths achieved the highest ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation–Longest
Common Subsequence) and concept unique identifier F1-scores, highlighting the benefits of KG integration. Human evaluators
found the diagnostic rationales of DR.KNOWS to be aligned strongly with correct clinical reasoning, indicating improved
abstraction and reasoning. Recognized limitations include potential biases within the KG data, which we addressed by emphasizing
case-specific path selection and proposing future bias-mitigation strategies.

Conclusions: DR.KNOWS offers a robust approach for enhancing diagnostic accuracy and reasoning by integrating structured
KG knowledge into LLM-based clinical workflows. Although further work is required to address KG biases and extend
generalizability, DR.KNOWS represents progress toward trustworthy artificial intelligence–driven clinical decision support, with
a human evaluation framework focused on diagnostic safety and alignment with clinical standards.
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Introduction

Background
The ubiquitous use of electronic health records (EHRs) and the
standard documentation practice of daily care notes are integral
to the continuity of patient care because these records provide
a comprehensive account of the patient’s health trajectory,
inclusive of condition status, diagnoses, and treatment plans
[1]. Nevertheless, the growing complexity and verbosity of EHR
clinical narratives, which are often filled with redundant
information, can overwhelm health care providers and increase
the risk of diagnostic errors [2-5]. Physicians often skip sections
of lengthy and repetitive notes and rely on decisional shortcuts
(ie, decisional heuristics) that can contribute to diagnostic errors
[6].

Current efforts at automating diagnosis generation from daily
progress notes leverage large language models (LLMs). Gao et
al [7] introduced a summarization task that takes progress notes
as input and generates a summary of active diagnoses. The
authors annotated a set of progress notes from the publicly
available EHR dataset Medical Information Mart for Intensive
Care III (MIMIC-III) [8]. The BioNLP 2023 shared task, known
as ProbSum, built upon this work by providing additional
annotated notes and attracting multiple efforts focused on
developing solutions [9-11]. Demonstrating a growing interest
in applying LLMs to serve as solutions, these prior studies use
language models such as Text-to-Text Transfer Transformer
(T5) [12], developed by Google Research; and Open AI’s
Generative Pretrained Transformer (GPT) [13]. Unlike the
conventional language tasks where LLMs have shown promising
abilities, automated diagnosis generation is a critical task that
requires high accuracy and reliability to ensure patient safety
and improve health care outcomes. Concerns regarding the
potential misleading and hallucinated information that could

result in life-threatening events prevent LLMs from being used
for diagnostic prediction [14].

The Unified Medical Language System (UMLS) [15], a
comprehensive resource developed by the National Library of
Medicine in the United States, has been extensively used in
natural language processing (NLP) research. The UMLS serves
as a medical knowledge repository, facilitating the integration,
retrieval, and sharing of biomedical information. It offers
concept vocabulary and semantic relationships, enabling the
construction of medical knowledge graphs (KGs). Prior studies
have leveraged UMLS KGs for tasks such as information
extraction [16-19] and question answering [17]. Mining relevant
knowledge for diagnosis is particularly challenging for 2
reasons: the highly specific factors related to the patient’s
complaints, histories, and symptoms documented in the EHR;
and the vast search space within a KG containing 4.5 million
concepts and 15 million relations for diagnosis determination.

In this study, we explore the use of KGs as external resources
to enhance LLMs for diagnosis generation. Our work is
motivated not only by the potential in the NLP field of
augmenting LLMs with KGs [20] but also by the theoretical
exploration in medical education and psychology research,
shedding light on the diagnostic decision-making process used
by clinicians. Forming a diagnostic decision requires the
examination of patient data, retrieving encapsulated medical
knowledge, and the formulation and testing of the diagnostic
hypothesis, which is also known as clinical diagnostic reasoning
[21,22]. We propose a novel graph model, DR.KNOWS
(Diagnostic Reasoning Knowledge Graph System), designed
to retrieve the top N case-specific knowledge paths related to
disease pathology and feed them into foundational LLMs to
improve the accuracy of diagnostic predictions (as shown in
Figure 1). Two distinct foundational models are the subject of
this study: T5, known for being fine-tunable; and a sandboxed
version of ChatGPT, a powerful LLM where we explore
zero-shot prompting.
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Figure 1. Study overview: we focused on generating diagnoses (text given in red in the “Plan” section) using the SOAP (subjective, objective, assessment,
and plan) format progress note with the aid of large language models (LLMs). The input consists of “Subjective,” “Objective,” and “Assessment”
sections (the dotted line box below the heading “Patient Progress Note”), and the diagnoses in the “Plan” section are the ground truth. We introduced
an innovative knowledge graph (KG) model, namely DR.KNOWS (Diagnostic Reasoning Knowledge Graph System), that identifies and extracts the
most relevant knowledge trajectories from the Unified Medical Language System (UMLS) KG. The nodes of the UMLS KG represent concept unique
identifiers (CUIs), and the edges denote the semantic relations among the CUIs. We experimented with prompting ChatGPT for diagnosis generation,
with and without the knowledge paths predicted by DR.KNOWS. Furthermore, we investigated how this knowledge grounding influences the diagnostic
output of LLMs using human evaluation. The underlined text shows the UMLS concepts identified through a concept extractor. EtOH: ethanol; GI:
gastrointestinal; REDCap: Research Electronic Data Capture; T5: Text-to-Text Transfer Transformer; UGIB: upper gastrointestinal bleeding.

Objectives
Our work and contribution are structured into two primary
components: (1) designing and evaluating DR.KNOWS, a
graph-based model that selects the top N probable diagnoses
with explainable paths; and (2) demonstrating the usefulness
of DR.KNOWS as an additional module to augment pretrained
language models in generating relevant diagnoses. Along with
the technical contributions, we propose the first human
evaluation framework for LLM-generated diagnoses that adapts
a survey instrument designed to evaluate diagnostic safety. Our
research poses a new exciting problem that has not been
addressed in the realm of NLP for diagnosis generation, that is,
harnessing the power of KGs for the controllability and
explainability of foundational models. By examining the effects
of KG path–based prompts on foundational models on a
real-world hospital dataset, we strive to contribute to an
explainable artificial intelligence (AI) diagnostic pathway.

Several studies have focused on the application of clinical note
summarization to discharge summaries [23], hospital course
narratives [24], real-time patient visit summaries [25], and
problem and diagnosis lists [7,26,27]. Our work follows the
line of research on problem and diagnosis summarization. The
integration of KGs with LLMs has been gaining traction as an
emerging trend due to the potential enhancement of factual
knowledge [20], especially on domain-specific
question-answering tasks [28-30]. Our work stands out by
integrating KGs into LLMs for diagnosis prediction, using a
novel graph model for path-based prompts.

Methods

Problem Formulation

Daily Progress Notes for Diagnosis Prediction
Daily progress notes are formatted using the SOAP (subjective,
objective, assessment, and plan) format [30]. The subjective
section of a SOAP daily progress note comprises the patient’s
self-reported symptoms, concerns, and medical history. The
objective section consists of structural data collected by health
care providers during observation or examination, such as vital
signs (eg, blood pressure and heart rate), laboratory results, or
physical examination findings. The assessment section
summarizes the patient’s overall condition, with a focus on the
most active problems and diagnoses for that day. Finally, the
plan section contains multiple subsections, each outlining a
diagnosis or problem and its treatment plan. Our task is to
predict the list of problems and diagnoses that are part of the
plan section. Our research used the ProbSum dataset, an
annotated resource created for the BioNLP 2023 shared task
with gold standard diagnoses derived from progress notes [27].

Using UMLS KGs to Find Potential Diagnoses, Given
Medical Narratives
The UMLS concepts vocabulary comprises >180 sources. For
our study, we focused on the Systematized Nomenclature of
Medicine–Clinical Terms (SNOMED CT). The UMLS
vocabulary is a comprehensive, multilingual health terminology
and the US national standard for EHRs and health information
exchange. Each UMLS medical concept is assigned a SNOMED
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CT concept unique identifier (CUI) from the clinical
terminology system. We used semantic types, networks, and
semantic relations from UMLS knowledge sources to categorize
concepts based on shared attributes, enabling efficient
exploration and supporting semantic understanding and
knowledge discovery across various medical vocabularies.

Given a medical KG where the nodes represent concepts and
the edges denote semantic relations along with an input text
describing a patient’s problems, we could perform multihop
reasoning across the KG and infer the final diagnoses. Figure

2 demonstrates how UMLS semantic relations and concepts
can be used to identify potential diagnoses from the evidence
provided in a daily care note. The example patient presents with
medical conditions of fever, cough and sepsis, which are the
concepts recognized by medical concept extractors (Clinical
Text Analysis and Knowledge Extraction System [31] and
QuickUMLS [32]) and the starting concepts for multihop
reasoning. Initially, we extracted the direct neighbors for these
concepts. Relevant concepts that aligned with the patient’s
descriptions were preferred. For precise diagnoses, we chose
the top N most relevant nodes at each hop.

Figure 2. Problem formulation: inferring possible diagnoses within 2 hops from a Unified Medical Language System (UMLS) knowledge graph given
a patient’s medical description. The UMLS medical concepts are highlighted in the colored boxes (“female,” “sepsis,” etc). Each concept has its own
subgraph, where concepts are the vertices, and semantic relations are the edges (owing to space constraints, we have omitted the subgraph for “female”
in this graph presentation). On the first hop, we could identify the most relevant neighboring concepts to the input description. The darker the color of
the vertices, the more relevant they are to the input description. A second hop could be further performed based on the most relevant nodes, leading to
the final diagnoses “Pneumonia and influenza” and “Respiratory distress syndrome.” Of note, we use the preferred text of concept unique identifiers
for presentation purposes. The actual UMLS knowledge graph is built on concept unique identifiers rather than preferred text.

The UMLS’s vast repository consists of 270 semantic relations,
but not all are crucial for diagnostic reasoning. Adding the
nonrelevant relations into a KG introduced substantially
complexities in both computation and retrieval processes. A
board-certified physician (MA) refined these to identify the 107
most relevant relations for diagnostics, which were then used
to build the UMLS KG. This selection, including relations such
as “causative agent of” and excluding ones such as “inverse
isa,” is vital to maintaining computational efficiency and
retrieval accuracy within the KG.

Data Overview
We used 2 sets of progress notes from different clinical settings
in this study: MIMIC-III and in-house EHR datasets. MIMIC-III
is one of the largest publicly available databases containing
deidentified health data from patients admitted to intensive care
units. It was developed by the Massachusetts Institute of
Technology and Beth Israel Deaconess Medical Center.

MIMIC-III includes data from >38,000 patients admitted to
intensive care units at the Beth Israel Deaconess Medical Center
between 2001 and 2012. The second set, namely the in-house
EHR data, was a subset of EHRs that included adult patients
(aged 18 years) admitted to the University of Wisconsin health
system between 2008 and 2021. In contrast to the MIMIC-III
subset, the in-house set covered progress notes from all hospital
settings, including the emergency department, general medicine
wards, and subspecialty wards. While the 2 datasets originated
from separate hospitals and departmental settings and might
reflect distinct note-taking practices, both followed the SOAP
documentation format for progress notes.

Gao et al [7,9] introduced a subset of 1005 progress notes from
MIMIC-III with active diagnoses annotated from the “plan”
sections, namely, the ProbSum dataset. Therefore, we applied
this dataset for training and evaluation for both graph model
intrinsic evaluation and diagnosis summarization. The in-house
dataset did not contain human annotation. Even so, by parsing

JMIR AI 2025 | vol. 4 | e58670 | p. 4https://ai.jmir.org/2025/1/e58670
(page number not for citation purposes)

Gao et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the text with a medical concept extractor that was based on
UMLS SNOMED CT vocabulary, we were able to pull out
concepts that belonged to the semantic type of “T047 Disease
and Syndromes.” We deployed this set of concepts as the ground
truth data to train and evaluate the graph model. The final
in-house dataset contained 4815 progress notes. We present the

descriptive statistics in Table 1. When contrasted with
MIMIC-III, the in-house dataset exhibited a greater number of
CUIs in its input, leading to an extended CUI output. In addition,
MIMIC-III encompassed a wider range of abstractive concepts
compared to the in-house progress notes.

Table 1. Average number of concept unique identifiers (CUIs) in the input and output across the 2 electronic health record datasets: Medical Information
Mart for Intensive Care III (MIMIC-III) and in-house. Abstractive concepts are those not found in the input but present in the gold standard diagnoses.

Abstractive CUIs (%)Output CUIs (n), mean (SD)Input CUIs (n), mean (SD)DepartmentsDatasets

48.923.5115.95ICUaMIMIC-III

<15.8141.43AllIn-house

aICU: intensive care unit.

Graph Model Development

Overview
This section introduces the architecture design for DR.KNOWS.
The DR.KNOWS model is designed to enhance automated
diagnostic reasoning by integrating structured clinical
knowledge from the UMLS into patient-specific diagnostic
predictions. By leveraging a graph-based approach, DR.KNOWS
retrieves and ranks relevant knowledge paths from the UMLS,
ensuring that only clinically pertinent information is considered.
Using a graph neural network, DR.KNOWS incorporates
topological information from the UMLS KG into concept
representations to better determine each node’s relevance to the
patient’s specific conditions.

Architecture Overview
As shown in Figure 3, all identified UMLS concepts with an
assigned CUI from the input patient text were used to retrieve
1-hop subgraphs from the constructed large UMLS KG. Each
node in this graph represents a CUI; therefore, we use “node”
and “concept (CUI)” interchangeably throughout. These 1-hop
subgraphs are encoded by a stack graph isomorphism network
(SGIN) [33], which generates node embeddings that capture
both neighboring concept information and pretrained concept
embeddings. We chose the SGIN for node embedding because
it matches the expressive power of the Weisfeiler-Lehman graph
isomorphism test, maximizing the graph neural network’s ability
to capture meaningful representations. The resulting node
embeddings serve as the basis for path embeddings, which the
path encoder further processes.

Figure 3. DR.KNOWS (Diagnostic Reasoning Knowledge Graph System) model architecture. The input concepts (“female,” “fever,” etc) are represented
by concept unique identifiers (CUIs) represented as a combination of letters and numbers (eg, “C0243026” and “C0015967”). SapBERT: Self-alignment
Pretrained Bidirectional Encoder Representations from Transformers.

The path encoder module then evaluates these 1-hop paths by
examining their semantic and logical alignment with the input
text and concept representations, assigning a relevance score to
each path. The top N scores across these paths, aggregated
across each node’s neighboring paths, guide the selection of
nodes for the next hop. If no suitable diagnosis node is found,
the path exploration terminates by assigning a self-loop to the
current node.

While the dominant technique for retrieval-augmented
generation systems relies heavily on vector representations and
cosine similarity for retrieving and ranking candidate text, our
work goes beyond this by adding 2 extra layers of design. First,

we leverage the expressive power of the graph structure to
enhance the retrieval process. Second, we select paths not simply
based on their embeddings but through an attention network
that encodes the path-concept relationships, ensuring a more
accurate and contextually relevant selection process. In the
following paragraphs, we present details regarding each
component in the architecture of DR.KNOWS.

Contextualized Node Representation
We define the deterministic UMLS KG G = VE based on
SNOMED CT CUIs and semantic relations, where V is a set of
CUIs, and E is a set of semantic relations. Given an input text
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x containing a set of source CUIs Vsrc ⊆ V and their 1-hop
relations Esrc ⊆ E, we can construct relation paths for each
source node vsrc ⊆ Vsrc as P = {p1, p2,...pj} such that pj = {v1,
e1, v2,...ej−1, vj}, j ⊆ J, where J is the maximum length that a
source node vsrc could reach and is nondeterministic. Relations
e are encoded as one-hot embeddings. We concatenate all
concept names for vi with special tokens such as [SEP] (for
“separator”), such that li = [name 1 [SEP] name 2 [SEP]...] and
encode li using Self-alignment Pretrained Bidirectional Encoder
Representations from Transformers (SapBERT) [34] to obtain
hi as concept representation. This allows the CUI representation
to serve as the contextualized representation of its corresponding
concept names. We chose SapBERT for its contrastive
learning-based training, which discriminates similar concepts
and their synonyms. It is evaluated on entity linking tasks and
has shown state-of-the-art performance. The hi is further updated
through topological representation using the SGIN to become
node representation:

N (vi) represents the set of neighboring nodes of node vi, is

the representation of node vi at layer k,  (k) is a learnable

parameter at layer k, and MLP(k) is a multilayer perceptron at
layer k. GIN iteratively aggregates neighborhood information
using graph convolution followed by nonlinearity, modeling

interactions among nodes within the set .
Furthermore, the stacking mechanism is introduced to combine
multiple GIN layers. The final node representation vi at layer
K (last layer) is computed by stacking the GIN layers, where
[...;...] denotes matrix concatenation.

We empirically observed that some types of CUIs are less likely
to lead to useful paths for diseases, for example, the concept
“recent” (CUI: C0332185) is a temporal concept, and the
neighbors associated with it are less useful to predict diagnoses.
We designed a weighting scheme based on term
frequency–inverse document frequency to assign higher weights
to more relevant CUIs and semantic types:

WCUI are then multiplied by the corresponding hi to assign
weighted representations to the concept representation.

Path Reasoning and Ranking

For each node representation hi, we use its n-hop of the set

neighborhood for for hi and the associated relation edge 
to generate the corresponding path embeddings, with t being
the index of the node and its associated neighborhood and
relations:

hi, if n=1

pi = {

, otherwise

where “FFN” is the feedforward network, and n is the number
of hops in the subgraph Gsrc. The path embedding pi is the node
embedding itself for the first hop and is recursively aggregated
with new nodes and edges as the path extends to the next hop.

To determine each path’s relevance to the patient’s specific
symptoms, we used 2 attention mechanisms—multihead
attention (MultiAttn) and trilinear attention (TriAttn)—to
compute scores S for each path. Both mechanisms use the
patient’s input text representation hx and input list of CUIs hv,
encoded by SapBERT, to capture explicit and intricate
relationships in the input data. MultiAttn was used to explicitly
capture relationships between the input text, the list of concepts,
and the current path, while TriAttn was used to automatically
learn these complex relationships through the inner products of
the 3 matrices. As demonstrated in Figure 2, for each hop the
path tries to achieve based on the input patient description, the
candidate concept can add relevant information, provide no new
information and remain neutral, or contradict the information
already present in the context.

Using MultiAttn, we define the context relevancy matrix Hi and
the concept relevancy matrix Zi as follows:

Hi = [hx; pi; hx – pi; hx ⊙ pi]

Zi = [hv; pi; hv – pi; hv ⊙ pi]

αi = MultiAttn(Hi ⊙ Zi),

SMulti = ϕ (Relu(σ(αi)))

These relevancy matrices are inspired by a prior work on natural
language inference [35], representing logical relations such as
neutrality, contradiction, and entailment via matrix
concatenation, difference, and product, respectively.
Alternatively, TriAttn learns the intricate relations by 3 attention
maps:

αi = (hx, hv, pi) = Σabc (hx)a (hv)b (pi)c Wabc

STri = ϕ (Relu(σ(αi)))

hx, hv, and pi have the same dimensionality D, and ϕ is an MLP
player. Finally, we aggregate the MultiAttn or TriAttn scores
on all candidate nodes and select the top N nodes (concepts) VN

for the next iteration based on the aggregate attention scores:

VN = argmaxN(β)

By comparing attention scores across candidate paths, the path
ranker selects the top N nodes most relevant to each patient’s
symptoms, maximizing contextual relevance.

JMIR AI 2025 | vol. 4 | e58670 | p. 6https://ai.jmir.org/2025/1/e58670
(page number not for citation purposes)

Gao et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Loss Function
Our loss function consists of 2 parts: a CUI prediction loss Lpred

and a contrastive learning loss LCL:

L = Lpred + LCL

For CUI prediction loss, we use binary cross entropy loss to
calculate whether the predicted node VN is in the gold standard
label Y:

Where M is the number of sets of gold labels. For contrastive
learning loss LCL, we encourage the model to learn meaningful
and discriminative representations through comparison with
positive and negative samples:

where Ai is the anchor embedding, defined as hx ⊙ hv,
representing the input text and concept representation. Σi

indicates a summation over a set of indices i, typically
representing different training samples or pairs. Inspired by the
study by Hu et al [29], we construct cos (Ai, fi) and cos (Ai, fi–)
to calculate cosine similarity between Ai and positive feature
fi+ or negative feature fi–, respectively. A positive feature
represents the paths correctly leading to the ground truth
concept, while a negative feature embodies the paths that,
although starting from the source, culminate in an incorrect
concept. This equation measures the loss when the similarity
between an anchor and its positive feature is not significantly
greater than the similarity between the same anchor and a
negative feature, considering a margin for desired separation.

We designed a training algorithm to iteratively select and rank
the most relevant paths to extend. This algorithm helped to
reduce the computational requirement because it does not rank
all n-hop paths within 1 pass. This algorithm is presented in
Multimedia Appendix 1.

Selection of Foundational Models and Experiment
Setup
Our study centers around the following question: To what extent
does the incorporation of DR.KNOWS as a knowledge
path–based prompt provider influence the performance of
language models in diagnosis summarization?

We present results derived from 2 distinct foundational models,
varying significantly in their parameter scales, namely T5-Large,
which comprises 770 million parameters [12]; and
GPT-3.5-Turbo, which features 154 billion parameters [13].
Specifically, we were granted access to a restricted version of
the GPT-3.5-Turbo model, which served as the underlying
framework for the highly capable language model, ChatGPT.

These 2 models represent the prevailing direction in the
evolution of language models: smaller models such as T5 that
offer easier control and larger models such as GPT that generate

text with substantial scale and power. Our investigation focused
on evaluating the performance of T5 in fine-tuning scenarios
and GPT models in zero-shot settings. Our primary objective
was not solely to demonstrate cutting-edge results but also to
critically examine the potential influence of incorporating
predicted paths, generated by graph models, as auxiliary
knowledge contributors.

We selected 3 distinct T5-Large variants for fine-tuning using
the ProbSum summarization dataset. The chosen T5 models
encompass the vanilla T5 [12], a foundational model that has
been extensively used in varied NLP tasks; Flan-T5 [36], which
has been fine-tuned using an instructional approach; and
Clinical-T5 [37], which has been specifically trained on the
MIMIC dataset.

Given that our work encompasses a public EHR dataset
(MIMIC-III) and a private EHR dataset with protected health
information (in-house), we conducted training using 3 distinct
computing environments. Specifically, most of the experiments
on MIMIC-III were conducted on Google’s cloud computing
platform, using 1 to 2 NVIDIA A100 40 GB graphics processing
units (GPUs) and a conventional server equipped with 1 RTX
3090 Ti 24 GB GPU. The in-house EHR dataset is stored on a
workstation located within a hospital research laboratory. The
workstation operates within a Health Insurance Portability and
Accountability Act–compliant network, ensuring the
confidentiality, integrity, and availability of electronic protected
health information, and it is equipped with a single NVIDIA
V100 32 GB GPU. To use ChatGPT, we used an in-house
ChatGPT-3.5-Turbo version hosted on our local cloud
infrastructure. No data were sent to Microsoft or OpenAI. This
setup ensured that no data were transmitted to OpenAI or
external websites, and we were in strict compliance with the
MIMIC data use agreement.

While GPT can handle 4096 tokens, T5 is limited to 512 tokens.
To ensure a fair comparison, we focused on the subjective and
assessment sections of progress notes as input. These sections
provide physicians’ evaluations of patients’ conditions and fall
within T5’s 512-token limit. This differs from the objective
sections, which mainly contain numerical values. Detailed
information on data preprocessing, T5 model fine-tuning, and
GPT zero-shot setting is presented in Multimedia Appendix 1.

Prompting Foundational Models to Integrate Graph
Knowledge
To incorporate graph model–predicted paths into a prompt, we
applied a prompt engineering strategy using domain-independent
prompt patterns, as delineated in the study by White et al [38].
Our prompt was constructed with 3 primary components: the
output customization that specifies the persona; the output
format and template; and the context-control patterns, which
are directly linked to the input note and the output of
DR.KNOWS. In our test set, for the few input EHRs where no
paths could be found (<20 instances), we directly fed the input
into the LLMs (T5 and ChatGPT) to generate diagnoses.

Given that our core objective was to assess the extent to which
the prompt can bolster the model’s performance, it became
imperative to test an array of prompts. Gonen et al [39]
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presented a technique, BETTERPROMPT, which relied on
“selecting prompts by estimating language model likelihood.”
Essentially, we initiated the process with a set of manual
task-specific prompts, subsequently expanding the prompt set
via automatic paraphrasing facilitated by ChatGPT and
backtranslation. We then ranked these prompts by their
perplexity score (averaged over a representative sample of task
inputs), ultimately selecting those prompts that exhibited the
lowest perplexity. Guided by this framework, we manually
crafted 5 sets of prompts to integrate the path input, which are
visually represented in Table S1 in Multimedia Appendix 1.
Specifically, the first 3 prompts were designed by a non–medical
domain expert (computer scientist), whereas the final 2 sets of
prompts were developed by a medical domain expert (a critical
care physician and a medical informaticist). We designated the
last 2 prompts (with the medical persona) as “subject matter
prompts” and the first 3 prompts as “non–subject matter
prompts.”

The chosen final prompt came from a template with minimal
perplexity, incorporating predicted knowledge paths from the
DR.KNOWS model as part of the input. We explored 2 path
representation methods: “structural,” which uses “→” to link
source concepts, edges (relation names), and target concepts;
and “clause,” which converts paths into clause-style text by
directly joining the source and target concepts with their
relations. Preliminary experiments showed superior performance
with the “structural” representation, leading to its exclusive use
in our reported results. The final prompt selected for the
foundational models is a paraphrased prompt from the subject
matter expert–crafted prompt: “Imagine you are a medical
professional equipped with a knowledge graph, and generate
the top three direct and indirect diagnoses from the input note.
<Input note>…These are knowledge paths: <path 1>; <path
2>…Separate the diagnoses using semicolons, and explain your
reasoning starting with <Reasoning>.” For the setup where the
input did not contain paths, we simply used the prompt with the
medical persona and task description as follows: “Imagine you
are a medical professional, and generate the top three direct and
indirect diagnoses from the input note. <Input note>...” The
manually crafted prompts, their paraphrased versions, and their
perplexity scores are presented in Table S1 in Multimedia
Appendix 1.

Evaluation Metrics

Automated Evaluation Metrics for Quantitative Analysis
We conducted 2 evaluations for the DR.KNOWS models: the
first was an intrinsic evaluation to determine how many gold
standard concepts the graph model can retrieve. The second
evaluation examined whether the retrieved knowledge paths
could enhance the LLM’s diagnosis prediction task. Regarding
the first evaluation, our primary objective was to evaluate the
effectiveness of DR.KNOWS in predicting diagnoses using
CUIs. We used a concept extractor to analyze text within the
plan section, specifically extracting CUIs classified under the
semantic type T047 DISEASE AND SYNDROMES. We only
included CUIs that were guaranteed to connect with at least 1
path, having a maximum length of 2 hops between the target
and input CUIs. These chosen CUIs constituted the “gold

standard” CUI set, used for both training and assessing the
model’s performance. As DR.KNOWS predicts the top N CUIs,
we measured the Recall@N and Precision@N as follows:

The F-score, the harmonic mean between recall and precision,
will also be reported.

To evaluate foundational model performance on EHR diagnosis
prediction, we applied the aforementioned evaluation metric as
well as Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) [40]. Specifically, ROUGE is a widely used set of
metrics designed for evaluating the quality of machine-generated
text by comparing it to reference texts. We used the
ROUGE–Longest Common Subsequence (ROUGE-L) variant,
which is based on the longest common substring; and the
ROUGE-2 variant, which focuses on bigram matching. Both
ROUGE metrics were used in the ProbSum shared task.

For reporting results from automated metrics, we provided the
mean scores across all samples in the test set, along with 95%
CIs on 1000 bootstrapped samples.

Human Evaluation for Qualitative Analysis
Existing evaluation frameworks for AI, such as those used in
radiology report generation, do not address diagnosis prediction
with LLMs, leaving a significant gap. To address this, our prior
work introduced a new human evaluation framework based on
the Safer DX Instrument [41], aiming to provide a structured
approach for assessing LLMs in diagnosis tasks. In this study,
we used this framework to assess the impact of knowledge paths
on LLM diagnostic predictions, specifically through a qualitative
analysis of the “reasoning” output by LLMs, aiming to gauge
the depth and accuracy of the models’ diagnostic reasoning
processes.

Specifically, we evaluated the model-generated “reasoning”
section on the following aspects: (1) reading comprehension,
(2) rationale, (3) recall of knowledge, (4) omission of diagnostic
reasoning, and (5) abstraction and effective abstraction. Reading
comprehension was intended to capture whether a model
understood the information in a progress note. Rationale was
intended to capture the inclusion of incorrect reasoning steps.
Recall of knowledge was intended to capture the hallucination
of incorrect facts as well as the inclusion of irrelevant facts in
the output. Omission of a diagnosis served the same purpose as
noted previously by capturing instances when the model failed
to support conclusions or provide evidence for a diagnostic
choice. Abstraction and effective abstraction were intended to
evaluate the amount of abstraction present in each part of the
output. This was to ascertain how the knowledge paths
influenced the type of output produced and whether the model
was able to use abstraction. Omission as well as abstraction
and effective abstraction were formatted as yes or no questions.
Reading comprehension, rationale, and recall of knowledge
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were assessed on a Likert scale ranging from 1 to 5, with 1
indicating strong agreement with poor quality and 5 indicating
strong disagreement (representing high quality).

We recruited 2 medical professionals to evaluate LLM outputs
using human evaluation guidelines developed by us. Full details
of the guidelines, evaluation training, and interannotator
agreement are reported in a separate publication (currently under
review). The evaluation framework used the REDCap (Research
Electronic Data Capture; Vanderbilt University) web application
to present the evaluators with input notes, gold standard
diagnoses, and model-predicted diagnoses. The evaluators,
treated as separate arms in a longitudinal framework, assessed
models with KG paths and those without across 2 defined events.
Detailed step-by-step guidelines were provided for completing
the evaluations in REDCap.

Two senior board-certified clinical informatics physicians served
as advisors, pilot testers, and trainers for the 2 medical
professionals who completed the human evaluations. The 2
physicians used 5 samples cases to iteratively refine the
guidelines provided to the evaluators; these sample evaluations
also served as examples for the evaluators to reference during
training. The evaluation guidelines consisted of clear
descriptions of the meaning of evaluative scores for each aspect
of the human evaluation framework as well as a completed
example workflow.

Results

Intrinsic Evaluation of DR.KNOWS on Predicting
Diagnostic Concepts
We compared DR.KNOWS with QuickUMLS, which is a
concept extractor baseline that identifies medical concepts from

raw text. We took input text, parsed it with QuickUMLS, and
outputted a list of concepts. Table 2 presents results from the 2
EHR datasets, MIMIC and in-house. The selection of different
top N values was determined by the disparity in text length
between the 2 datasets. DR.KNOWS demonstrated superior
precision and F-scores compared to QuickUMLS across both
datasets compared to the baseline, with precision scores of 19.10
(95% CI 17.82-20.37) versus 13.59 (95% CI 12.32-14.88) on
the MIMIC dataset and 22.88 (95% CI 20.92-24.85) versus
12.38 (95% CI 11.09-13.66) on the in-house dataset. In addition,
its F-scores of 25.20 (95% CI 23.93-26.48) on the MIMIC
dataset and 25.70 (95% CI 24.06-27.37) on the in-house dataset
exceeded the comparison scores of 21.13 (95% CI 19.85-22.41)
and 20.09 (95% CI 18.81-21.37), respectively, underscoring
the effectiveness of DR.KNOWS in accurately predicting
diagnostic CUIs. The TriAttn variant of DR.KNOWS
consistently outperformed the MultiAttn variant on both
datasets, with F-scores of 25.20 (95% CI 23.93-26.48) versus
23.10 (95% CI 21.83-24.39) on the MIMIC dataset and 25.70
(95% CI 24.06-27.37) versus 17.69 (95% CI 16.40-18.96) on
the in-house dataset. The concept extractor baseline achieved
the highest recall scores—56.91 on the MIMIC dataset and
90.11 on the in-house dataset—because it identified all input
concepts that overlapped with the reference CUIs, in particular
on the in-house dataset, which was largely an extractive dataset.
Training the DR.KNOWS model took an average of 2 of 3 (SD
1.22) hours per epoch on 5000 samples, using 8000 MB of GPU
memory.

Table 2. Performance comparison between concept extraction and 2 variants of DR.KNOWS on target concept unique identifier prediction using the
Medical Information Mart for Intensive Care (MIMIC-III) and in-house datasets.

In-houseMIMIC-IIIModel

F-score (95%
CI)

Precision
score (95%
CI)

Recall score
(95% CI)

Top N knowl-
edge paths

F-score (95%
CI)

Precision
score (95%
CI)

Recall score
(95% CI)

Top N knowl-
edge paths

20.09 (18.81-
21.37)

12.38 (11.09-
13.66)

90.11b (88.84-
91.37)

—21.13 (19.85-
22.41)

13.59 (12.32-
14.88)

56.91 (55.62-
58.18)

—aConcept extrac-
tor

17.69 (16.40-
18.96)

15.82 (14.55-
17.10)

24.68 (23.35-
25.91)

623.10 (21.83-
24.39)

22.79 (21.51-
24.06)

26.91 (25.64-
28.19

4MultiAttnc

17.33 (16.06-
18.60)

15.82 (14.55-
17.11)

28.69 (27.43-
29.98)

819.94 (18.66-
21.22)

16.73 (15.46-
18.00)

29.14 (27.85-
30.41)

6MultiAttn

23.39 (21.71-
25.06)

22.88 (20.92-
24.85)

34.00 (31.04-
36.97)

620.93 (19.67-
22.21)

17.61 (16.33-
18.89)

29.85 (26.23-
33.45)

4TriAttnd

25.70 (24.06-
27.37)

22.43 (20.62-
24.23)

44.58 (41.38-
47.78)

825.20 (23.93-
26.48)

19.10 (17.82-
20.37)

37.06 (35.80-
38.33)

6TriAttn

aNot applicable.
bBest performance values are italicized.
cMultiAttn: multihead attention.
dTriAttn: trilinear attention.
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Assessing the Impact of DR.KNOWS on Diagnosis
Prediction
The best systems for each foundational model on the ProbSum
test set are presented in Table 3, including those with predicted
paths provided by DR.KNOWS and those without. Overall, the
prompt-based fine-tuning of T5 surpassed ChatGPT’s
prompt-based zero-shot approach on all metrics, and ChatGPT’s
prompt-based few-shot approach showed comparable

performance to T5. Notably, models that incorporated paths,
particularly for the CUI F-score, showed significant
improvements. The vanilla T5 model with a path prompt
excelled, achieving the highest ROUGE-L score (30.72, 95%
CI 30.40-32.44) and CUI F-score (27.78, 95% CI 27.09-29.80).
This ROUGE-L score could have ranked third on the ProbSum
leaderboard [27], which is noteworthy considering that the top
2 systems used ensemble methods [10,11].

Table 3. Best performance on the Medical Information Mart for Intensive Care III (MIMIC III) test set (with annotated active diagnoses) from 3
Text-to-Text Transfer Transformer (T5) variants and ChatGPT across all prompt styles with DR.KNOWS (Diagnostic Reasoning Knowledge Graph
System) path prompting and without. To illustrate the performance differences better, we report Recall-Oriented Understudy for Gisting Evaluation-2
(ROUGE-2); ROUGE–Longest Common Subsequence (ROUGE-L); and concept unique identifier (CUI) recall, precision, and F-scores.

CUI F-score (95%
CI)

CUI precision score
(95% CI)

CUI recall score
(95% CI)

Rouge-L score (95%
CI)

Rouge-2 score (95%
CI)

Model

Prompt-based fine-tuning setting

26.19 (25.31-26.78)22.89 (21.02-23.62)39.17 (37.53-41.56)29.08 (27.52-29.99)12.66 (11.24-13.54)Vanilla T5

27.78 (27.08-29.80c)24.28 (23.49-26.03)40.73 (39.46-42.18)30.72b (30.40-

32.44c)

13.13 (12.64-13.88)Vanilla T5+patha

25.32 (24.10-26.34)22.32 (21.81-23.00)38.28 (36.70-39.45)27.02 (25.64-27.80)11.83 (10.51-12.40)Flan-T5

27.38 (26.98-28.68c)24.74 (23.35-26.12c)38.96 (37.48-40.01)30.00 (29.20-32.70c)13.30 (12.19-14.44)Flan-T5+path

19.61 (16.44-20.03)17.91 (15.46-19.79)30.37 (28.94-30.99)25.84 (23.74-26.15)11.68 (11.06-12.49)Clinical-T5

23.17 (21.39-23.96c)22.78 (21.35-23.59c)29.45 (27.65-30.19)25.97 (24.71-26.33)12.06 (10.89-12.48)Clinical-T5+path

Prompt-based zero-shot setting

16.04 (15.53-16.55)15.52 (15.00-16.02)23.68 (23.18-24.19)19.77 (19.26-20.28)7.05 (6.54-7.56)ChatGPT

18.21 (17.46-18.98c)17.05 (16.29-17.81c)25.33 (24.82-25.84c)15.49 (14.98-15.99)5.70 (5.19-6.21)ChatGPT+path

Prompt-based few-shot setting

21.02 (20.26-21.79)19.57 (17.23-19.78)22.71 (20.99-23.96)21.84 (19.99-22.09)9.63 (8.32-10.06)ChatGPT 3-shot

20.96 (20.19-21.73)19.67 (17.66-20.33)22.45 (20.93-23.80)21.23 (19.58-21.72)9.73 (8.52-10.18)ChatGPT 5-shot

25.30 (24.52-26.06c)24.22 (21.44-24.21c)26.48 (25.33-28.36c)24.32 (22.44-24.25c)10.66 (9.17-10.72)ChatGPT 3-shot+path

26.02 (25.25-26.78c)24.56 (22.47-25.12c)27.76 (26.56-29.39c)25.43 (23.53-25.35c)11.73 (10.51-12.25c)ChatGPT 5-shot+path

aPrompt styles with DR.KNOWS path prompting.
bBest performance values are italicized.
c95% CIs with a distinct CI for the DR.KNOWS-prompted path compared to no-path scenarios.

The comparison between ChatGPT with DR.KNOWS and
ChatGPT without in the predicted paths scenario provided
additional insights. In the few-shot setting, the incorporation of
paths led to marked improvements; for instance, in the 3-shot
setting, the with-path scenario outperformed the no-path scenario
on all metrics, with ROUGE-L score of 24.32 (95% CI
22.44-24.25) compared to ChatGPT 3-shot no-path ROUGE-L
score of 21.84 (95% CI 19.44-22.09) and CUI F-score of 25.30
(95% CI 24.52-26.06) versus 21.02 (95% CI 20.26-21.79). In
the 5-shot setting, ChatGPT with paths achieved a ROUGE-L
score of 25.43 (95% CI 25.53-25.35) compared to 21.23 (95%
CI 19.58-21.72) for ChatGPT without paths and CUI F-score
of 26.02 (95% CI 25.25-26.78) versus 20.96 (95% CI
20.19-21.73).

Human Evaluation Results
After the annotation procedure, the 2 medical professionals
completed a supervised set of evaluations and were considered
validated once they achieved a κ coefficient of 0.7 with the
physician trainers and each other.

Although the T5 and ChatGPT models displayed similar
performance on automated metrics, their outputs diverged
significantly. The T5 models, lacking instruction tuning, failed
to respond adequately to prompts requesting the generation of
a <Reasoning> section. Consequently, our human evaluation
focused exclusively on the outputs produced by ChatGPT. We
conducted human evaluation of the top-performing ChatGPT
output (5-shot approach), comparing scenarios with the
DR.KNOWS knowledge paths with KG and without KG. The
final evaluation set consisted of 92 input notes and 2 sets of
ChatGPT-predicted text.
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The results are reported in Figure 4. First, there was no
significant increase in omission of diagnoses, with 16% (15/92)
observed with KG as opposed to 10% (9/92) without KG
(P=.16). Regarding rationale (correct reasoning), ChatGPT
with KG exhibited stronger agreement with the human
evaluators (51/92, 55%) than ChatGPT without KG (46/92,
50%; P<.001). In the abstraction category (assessing the

presence of abstraction in the model output), there was a notable
drop from 88% (81/92; without KG ) to 78% (71/92; with KG
) in the affirmative responses (P=.03), indicating that less
abstraction was required when KG paths were included.
Differences were also noted in effective abstraction in favor of
the KG paths (P=.002).

Figure 4. Human evaluation of ChatGPT outputs comparing scenarios with (“KG” [knowledge graph]) the DR.KNOWS (Diagnostic Reasoning
Knowledge Graph System) knowledge paths and without (“No KG”).

Error Analysis
We discovered 2 primary types of errors in the DR.KNOWS
outputs that could result in missed opportunities for improving
knowledge grounding. Figure 5 presents an example where
ChatGPT did not find the provided knowledge paths useful. In
this case, the majority of the provided knowledge paths were

highly extractive (“leukocytosis,” “reticular dysgenesis,” and
“paraplegia” are the target concepts to which the knowledge
paths led, and all are associated with a “self-loop” relationship).
On the abstraction paths, the retrieved target concepts “abdomen
hernia scrotal” and “chronic neutrophilia” were not relevant to
the input patient condition.

Figure 5. An example of an error in the knowledge paths retrieved by DR.KNOWS (Diagnostic Reasoning Knowledge Graph System). DR.KNOWS
retrieved 2 paths leading to irrelevant and misleading diagnoses (marked in red). The counterclockwise gapped circular arrow symbol represents a
self-loop.
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Another error observed occurred when DR.KNOWS selected
the source CUIs that were less likely to generate pertinent paths
for clinical diagnoses, resulting in ineffective knowledge paths.
Figure 6 shows a retrieved path from “consulting with
(procedure)” to “consultation-action (qualifier value).” Although
some procedure-related concepts such as endoscopy or blood
testing were valuable for clinical diagnosis, this specific path
of consulting did not contribute meaningfully to the input case.

Similarly, another erroneous pathway began with “drug allergy”
and led to “allergy to dimetindene (finding),” which is
contradictory, given that the input note explicitly states “no
known drug allergies.” While the consulting path’s issue was
its lack of utility, the “drug allergy” path could introduce the
risk of hallucination (misleading or fabricated content) within
ChatGPT.

Figure 6. An example illustrating ChatGPT’s performance with the knowledge paths extracted by DR.KNOWS (Diagnostic Reasoning Knowledge
Graph System). Two paths had source concept unique identifiers (“Consulting with [procedure]” and “Drug allergy”) that were less likely to generate
pertinent paths for clinical diagnoses. Of note, the path of “Drug allergy” led to a path contradicting the “No Known Drug Allergies” description in the
input. The path of “cirrhosis of liver” represents a correct diagnosis, but ChatGPT failed to include it. The counterclockwise gapped circular arrow
symbol represents a self-loop. ESRD: end-stage renal disease.

In addition to the errors in the DR.KNOWS outputs, there were
instances where ChatGPT failed to leverage the accurate
knowledge paths presented. Figure 6 includes a knowledge path
regarding “cirrhosis of liver,” which was the correct diagnosis.
However, ChatGPT response did not include this diagnosis.

Discussion

Principal Findings
DR.KNOWS showed significant advantages over the
QuickUMLS concept extractor baseline in extracting correct
concepts for diagnoses. On the ProbSum dataset, where the goal
was to generate a list of diagnoses given the progress notes,
prompt-based fine-tuning of T5 outperformed ChatGPT’s
zero-shot approach and showed comparable results to its
few-shot approaches, with the inclusion of predicted paths by
DR.KNOWS significantly enhancing performance across all
metrics. The vanilla T5 with path prompts notably achieved top
ROUGE-L and CUI F-scores, demonstrating the effectiveness
of incorporating paths into the model. Human evaluation of
ChatGPT’s reasoning section showed strong agreement with
human evaluators in terms of correct rationale and enhanced
effective abstraction, indicating nuanced improvement in
reasoning and abstraction quality with KG integration.

While DR.KNOWS leverages KG paths to enhance diagnosis
prediction, it is important to acknowledge the potential biases
and limitations inherent in KG data. KGs such as UMLS are
comprehensive, but they may reflect biases based on the clinical

domains and patient populations from which they were
constructed, which could impact the relevance or
appropriateness of the retrieved paths. To mitigate this,
DR.KNOWS focuses on case-specific path selection, aiming
to retrieve only the paths most directly relevant to the patient
context. Nonetheless, future iterations could benefit from
evaluating path relevance using additional contextual
information, such as demographic details, to better align with
patient-specific needs and reduce bias.

Error analysis showed that DR.KNOWS occasionally struggled
with identifying knowledge paths unrelated to the patient
representation; in addition, the analysis emphasized the
importance of selecting accurate starting medical concepts.
Currently, DR.KNOWS relies solely on semantic-based ranking
on the candidate paths, that is, the cosine similarity between
candidate path embeddings and input text, with the embedding
quality being crucial for ranking performance. Improving the
representation and embedding methods, as well as exploring
probabilistic modeling techniques [42,43], could enhance path
relevance. Furthermore, incorporating a graph reasoning
mechanism that enables symbolic chain-of-thought reasoning
might compensate for the weaknesses of contextualized
embeddings and cosine-similarity metrics [44], presenting a
valuable future direction. This integration could improve the
diagnostic potential of DR.KNOWS, allowing for more nuanced
and bias-aware reasoning.
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The error analysis also presented instances where ChatGPT
neglected to incorporate certain beneficial knowledge paths. It
is important to acknowledge that ChatGPT operates as a black
box application programming interface model, with its internal
weights and training processes being inaccessible. To enhance
the efficacy of the graph-based retrieve-and-augment framework,
it would be advantageous to explore the potential of graph
prompting and instruction tuning on open-source language
models. These methods could refine the model’s ability to use
relevant information effectively. Other relevant research also
uses advanced prompting techniques, such as
self-retrieval–augmented generation [45] and step-back
prompting [46]. The Google Research team recently presented
a study investigating multiple ways of encoding graphs into
LLM inputs [47], which might inform a future direction for this
work beyond the typical structural or clause-based path
prompting.

In conclusion, LLMs such as ChatGPT hold promise for
generating diagnoses for clinical decision support; however,
methods such as graph prompting are needed to guide the model
down the correct reasoning paths to avoid hallucinations and
provide comprehensive diagnoses. While we show some
progress in a graph prompting approach with DR.KNOWS,
more work is needed to improve methods that leverage the
UMLS knowledge source for grounding to achieve more
accurate outputs. Nonetheless, DR.KNOWS represents a step
toward trustworthy AI in medicine, providing knowledge
grounding to LLMs and potentially reducing factual errors in
diagnostic outputs [48]. Furthermore, our proposed human
evaluation framework, derived from diagnostic safety
evaluations used in clinical settings, enables the assessment of
LLMs from the perspective of diagnostic safety. It carries strong
face validity and reliability to evaluate a model’s strengths and

weaknesses as a diagnostic decision support system. This
ensures that the models not only perform well on technical
metrics but also align with clinical standards of safety and
reliability.

Limitations
Our work on leveraging KGs for LLM diagnosis generation has
shown promising results; however, there are notable limitations
that must be acknowledged. First, while the UMLS concept
extractors (Clinical Text Analysis and Knowledge Extraction
System and QuickUMLS) are powerful tools, they are not
without flaws. One significant limitation is their inability to
accurately identify all relevant concepts, particularly indirect
or nuanced medical concepts. These indirect concepts can be
crucial for accurate diagnosis generation; yet, the current concept
extractors may fail to recognize them, leading to incomplete or
less accurate knowledge representation.

Second, our path selection methodology relies heavily on cosine
similarity, a common approach within the retrieval-augmented
generation framework. Despite its prevalence, this method has
inherent limitations due to its heavy reliance on the quality of
embedding representations. If the embeddings do not adequately
capture the semantic nuances of medical concepts, the similarity
measure may lead to the retrieval of less relevant or noisy
knowledge paths. This can ultimately impact the quality and
reliability of the diagnostic suggestions generated by the LLM.

These limitations highlight the need for the continued refinement
of both the concept extraction and path selection processes.
Future work should explore more sophisticated techniques to
enhance concept identification and improve the robustness of
embedding representations, thereby reducing the reliance on
cosine similarity and increasing the overall accuracy and utility
of the KG-based approach.
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