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Abstract

Background: The application of machine learning methods to data generated by ubiquitous devices like smartphones presents
an opportunity to enhance the quality of health care and diagnostics. Smartphones are ideal for gathering data easily, providing
quick feedback on diagnoses, and proposing interventions for health improvement.

Objective: We reviewed the existing literature to gather studies that have used machine learning models with smartphone-derived
data for the prediction and diagnosis of health anomalies. We divided the studies into those that used machine learning models
by conducting experiments to retrieve data and predict diseases, and those that used machine learning models on publicly available
databases. The details of databases, experiments, and machine learning models are intended to help researchers working in the
fields of machine learning and artificial intelligence in the health care domain. Researchers can use the information to design
their experiments or determine the databases they could analyze.

Methods: A comprehensive search of the PubMed and IEEE Xplore databases was conducted, and an in-house keyword screening
method was used to filter the articles based on the content of their titles and abstracts. Subsequently, studies related to the 3 areas
of voice, skin, and eye were selected and analyzed based on how data for machine learning models were extracted (ie, the use of
publicly available databases or through experiments). The machine learning methods used in each study were also noted.

Results: A total of 49 studies were identified as being relevant to the topic of interest, and among these studies, there were 31
different databases and 24 different machine learning methods.

Conclusions: The results provide a better understanding of how smartphone data are collected for predicting different diseases
and what kinds of machine learning methods are used on these data. Similarly, publicly available databases having smartphone-based
data that can be used for the diagnosis of various diseases have been presented. Our screening method could be used or improved
in future studies, and our findings could be used as a reference to conduct similar studies, experiments, or statistical analyses.
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Introduction

The use of machine learning for medical diagnosis is steadily
growing. This can be attributed primarily to the availability of
numerous health data as well as improvements in the
classification and recognition systems used in disease diagnosis.
The health care industry produces an abundance of health-related
data [1], which can be used to create machine learning models.
These models can be used for diagnosing and predicting a
variety of diseases, including breast cancer, heart diseases, and
diabetes [2,3]. The prediction of these diseases is dependent on
many factors according to the focus on different features
(biomarkers) [4]. The application of machine learning methods
helps classify and diagnose diseases in an easier way [1], and
these diagnoses can help medical experts in the early detection
of fatal diseases and therefore increase the quality of health care
and the survival rate of patients significantly [1,2,4,5].

Machine learning methods and their applications are not limited
to particular types of data and thus have been used in a variety
of areas, such as detecting spontaneous abortion [6], identifying
complex patterns in brain data [7], and improving diagnostic
accuracy and identifying faults in axial pumps [8]. To diagnose
and predict different diseases, machine learning methods have
also been applied to data obtained from experiments by using
publicly available datasets, such as the UCI machine learning
library [2], National Health and Nutrition Examination Survey
(NHANES) [3,6], traumatic brain injury (TBI) [4], and SUITA
datasets [9]. Similarly, numerous smartphone-based health care
apps have been developed to help both health care officials and
the general population with regard to their health-related
concerns. The apps developed can be broadly divided into 3
specific user groups: health care professionals, medical/nursing
students, and patients [10]. The purpose of such apps covers a
wide range of areas, such as disease diagnosis, drug reference,
medical education, clinical communication, and fall detection.
However, all iOS- or Android-based apps developed for health
care purposes have not been discussed in the literature [10].

A literature review is a systematic way of collecting studies
relevant to a research topic, assessing the methodologies and
results of the studies, and making recommendations for
improvements if necessary [11]. In the health care domain, the
implementation of literature reviews has been considered
important for conducting further research and developing
guidelines for clinical practice [12]. Literature studies, such as
umbrella reviews, have been conducted to study the management
of the information of patients, such as those with cancer, and
how their records are handled [13]. Similarly, literature-based
studies have investigated the evidence of leadership in nursing
[14]. Uddin et al [15] found a total of 48 literature studies that
dealt with disease prediction using various supervised machine
learning algorithms and attributed the rise in the use of machine
learning for health prediction to the wide adoption of
computer-based technologies in the health sector and to the
availability of large health-related databases. 

The ubiquity of smartphones makes them a convenient tool to
gather various health-related data, particularly as smartphones
are equipped with various sensors that are able to track and

gather different health-related information [16]. However, there
is a lack of research on studies involving the adoption of
smartphones for disease prediction using machine learning
methods and identifying the types of experiments conducted,
databases utilized, and machine learning methods used. With
that in mind, in this paper, we aim to conduct a scoping review
by assessing research papers from repositories, such as PubMed
and IEEE Xplore, which have used machine learning methods
with smartphone-derived data to predict diseases related to the
eyes, skin, and voice, and from databases available for public
use. We aim to answer the following important research
questions:

1. What are the databases available for eye-, skin-, and
voice-related diseases?

2. What are the machine learning models used in such studies?
3. How the data are collected using smartphones?

The rest of the paper is organized as follows: we explain how
we gathered, screened, and analyzed the literature in the methods
section; present the results of our study in the results section;
and finally discuss the results and clarify how the results
correspond to our research questions in the discussion section.

Methods

Overview
We describe in detail the procedures undertaken for conducting
the scoping review, with inspiration taken from the guidelines
provided by Mak and Thomas [17]. After deciding on the topic
of research, we identified the steps to be taken for the literature
review as follows:

1. Search criteria
2. Literature assembly
3. Study selection
4. Research questions
5. Inclusion and exclusion criteria
6. Full-text paper assessment

Search Criteria
Numerous studies have conducted literature reviews to assess
the use of machine learning for disease prediction. We
formulated the following search string using a combination of
different words related to topics, such as smartphone,
smartwatch, machine learning, health, and medicine, to search
different electronic databases: ((ML OR machine learning) AND
(health* OR medic* OR disease) AND (smartphone OR smart
phone OR smartwatch OR smart watch OR smart devices)).

Before finalizing the search string, we experimented with many
combinations, including different variations of specific keywords
and symbols, such as “*,” to cover a wider area and maximize
the results. 

Literature Assembly
We applied the search string to different databases and narrowed
the databases to PubMed [18] and IEEE Xplore [19]. The search
results from other databases produced a very high number of
results that included unnecessary papers from disciplines
unrelated to our topic of interest. When we applied the same
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search string, ACM Digital Library had about 24,000 results,
ProQuest had about 125,000 results, and Google Scholar had
more than 1 million results. Furthermore, in Science Direct, our
search string did not produce any results owing to the use of
Boolean connectors. We concluded that the search of PubMed
and IEEE Xplore was enough to obtain papers related to research
in technology, engineering, and biomedical sciences.

The results from each of the databases were then exported to
an external file. To convert the results from the 2 databases into
a single file, including the titles and abstracts, we used Mendeley
[20] and Zotero [21]. The file, which contained a total of 2390
papers, was then screened in the Jupyter Notebook environment
using Python (version 3.7.17) [22].

Study Selection
For refining the collected papers, we used a title screening
method [23] to filter out papers that might not be of direct
relation to our research topic. We created a list of keywords that
match the research topic, screened the titles of all papers, and

filtered out all papers that did not contain any of the following
keywords: machine, artificial, smartphone, disease, mobile,
health, healthcare, wearable, model, features, and training.

The identified papers at this point covered a wide variety of
diseases and health areas. Using the keyword identification
method, we tried to find the distribution of different diseases
in the papers based on the 5 senses [24]. We first determined
the frequency of keywords related to the 5 senses in the titles
of the collected papers by using the following keywords: eye,
eyesight, vision, audio, voice, vocal, nasal, nose, hearing, ear,
touch, feel, face, skin and dermatology.

The result for the frequency of the keywords in the titles can be
seen in Table 1. We then merged the keywords with their
respective senses and assembled the papers into the following
6 categories: ear, eye, nose, touch, skin, and audio. We
determined the total distribution of the papers, as shown in Table
2. We replicated the procedure to determine the frequency of
health categories (Table 3) and their distribution (Table 4) in
the abstracts of the collected papers.

Table 1. Health categories in titles.

Number of matchesHealth care area

12Eye

0Eyesight

13Vision

15Audio

16Voice

5Vocal

0Nasal

2Nose

5Hearing

2Ear

6Touch

0Feel

13Face

19Skin

2Dermatology

Table 2. Distribution of health categories in titles.

Distribution, %Category

32.7Voice

1.8Nose

6.4Ear

22.7Eye

5.5Touch

30.9Skin
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Table 3. Health categories in abstracts.

Number of matchesHealth care area

108Eye

1Eyesight

142Vision

106Audio

141Voice

24Vocal

4Nasal

18Nose

28Hearing

30Ear

32Touch

5Feel

130Face

162Skin

20Dermatology

Table 4. Distribution of health categories in abstracts.

Distribution, %Category

28.5Voice

2.3Nose

6.1Ear

26.4Eye

3.9Touch

32.8Skin

Research Questions
Based on the results from Tables 1-4, we identified the following
3 categories with the highest distribution of papers: eye, skin,
and voice, and formulated the following research questions:

1. What are the databases available for eye, skin, and voice
analysis?

2. What are the machine learning models used for eye, skin,
and voice analysis?

3. How are the data collected from smartphones?

The keyword screening method [23] was applied to the titles
of 2390 papers, which resulted in the successful screening of
2352 papers. In the next step, we screened the abstracts of the
papers to distinguish papers related to each of the 3 topics (eye,
skin, and voice) by using relevant keywords.

Inclusion and Exclusion Criteria
The primary inclusion criterion was that the study should
perform an experiment or use a database involving data obtained
by using smartphones. Some studies conduct experiments
themselves to gather data from participants, while others use
publicly available datasets. We divided the studies based on
this distinction (experiments and databases). This information

can help researchers determine if they want to conduct similar
experiments or simply use publicly available databases.

Since the search terms specified the use of both smartphones
and machine learning methods, it reduced the probability of
obtaining literature results related to topics other than disease
prediction among humans. The other criteria for the articles
were that they should be in the English language and should be
available for full-text viewing. Studies that involved data
collection with external devices other than smartphones and
those that used only smartwatches and not smartphones were
excluded. Furthermore, studies that were literature reviews were
not included in the final analysis.

Full-Text Assessment
The inclusion and exclusion criteria were applied to 217 papers
available after title and abstract screening. After assessment of
these papers, there were 8, 14, and 38 studies related to the skin,
eyes, and voice, respectively. We performed full-text analysis
of these papers to extract the desired information.
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Results

Overview

We explain the analysis of papers that were extracted and report
about the databases used, experiments conducted, and machine
learning methods used. The steps and results of our review
process can be seen in Figure 1.

Figure 1. Flow diagram for identifying relevant literature.

Research on Voice
Owing to the recent global pandemic, research on the analysis
of speech for either cough or COVID-19 has grown [25]. Apart
from that, the analysis of audio has a wide range of applications
from the prediction of emotional stress [26] and the detection
of diseases, such as Parkinson disease [27], to the detection of
tourist emotions for spot recommendation [28].

Studies Conducted Using Databases
A cough-based COVID-19 detection model was created using
more than 25,000 cough recordings from the CoughVid dataset
[25]. The dataset was created through recordings via a web
interface that could be accessed by a personal computer or a
smartphone, and the prediction was made using a stack ensemble
classifier consisting of machine learning methods, such as
decision tree (DT), random forest (RF), k-nearest neighbor
(KNN), and extreme gradient boosting (XGBoost).

Since datasets containing the voices of COVID-19–affected
patients were not in abundance, datasets with recordings of
cough sounds along with sneezing, speech, and nonvocal audio
were used to pretrain the classifier [29]. Brooklyn and
Wallacedene datasets used for the training were created using
an external microphone, while datasets, such as TASK, were

created using an external microphone along with a smartphone.
It is very likely that smartphones were used to create datasets,
such as the Google audio dataset and Freesound, which consist
of audio from more than 1.8 million YouTube videos. Similarly,
the Librispeech dataset consists of audio from 56 speakers who
may or may not have used smartphones. For the classification
and testing of the model, 3 datasets, namely Coswara, ComparE,
and Sarcos, were used by applying machine learning methods,
such as convolutional neural network (CNN), long short-term
memory (LSTM), and RestNet50. All 3 datasets were created
with the recordings of the cough of participants. ComparE and
Coswara consist of additional speech sounds, with the Coswara
dataset also including breathing sounds. The data acquisition
method was web-based, and thus, smartphones could have been
used for recording such audio data.

The Coswara dataset, with recordings of over 1600 participants,
was created by collecting breathing, coughing, and voice sounds,
using the microphones of smartphones via an interactive website
application. With a combination of hand-crafted features and
deep-activated features learned through model training, a deep
learning framework was proposed and studied by using the
recordings of 240 participants from the Coswara dataset (120
participants were identified as positive for COVID-19) [30].
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The dataset created in the mPower study [31], which was
conducted for the detection of Parkinson disease using audio
data, has been used in various other studies [27,28]. The dataset
was divided into training and test sets, and 2 classifiers, namely
support vector machine (SVM) and RF, were applied to compare
6 cross-validation techniques [32]. Similarly, a desktop
application, PD Predict, that records audio and makes
predictions was created using the mPower dataset [33]. Two
machine learning classifiers were used: gradient boosting
classifier (GBC) pipeline with Lasso (gbcpl) and GBC pipeline
with ElasticNet (gbcpen).

Moreover, using a dataset containing 18,210 recordings from
the mPower study [31], a Parkinson disease prediction model
was created through 4 classifiers: SVM, KNN, RF, and XGBoost
[32]. Another Parkinson disease prediction model was created
with 2 databases: PC-GITA and Vishwanathan [34] by using
SVM. For creating the PC-GITA dataset, a smartphone was
used to record 100 Columbian-Spanish speakers, among whom
50% had Parkinson disease. Similarly, 46 participants, among
whom 24 were diagnosed with Parkinson disease, were used to
create the Vishwanathan dataset, which consists of recordings
of utterances of the alphabets “a,” “u,” and “m.”

Five machine learning models, namely logistic regression (LR),
RF, XGBoost, CatBoost, and Multilayer, were used to predict
the emotional state of participants [35]. The dataset Extrasensory
was used for training the model. The dataset was created using
data from smartphones and smartwatches. Contextual data, such
as location, phone state, accelerometer data, and light and
temperature data, and emotional state information (disclosure
of emotion at different intervals using a smartphone app) were
collected.

Studies Conducted Through Experiments
A total of 1513 subjects above 50 years of age, including healthy
subjects and subjects who were diagnosed with Parkinson
disease, used a smartphone app to complete daily surveys and
4 activities intended to test the presence or effect of Parkinson
disease [31]. The activities included tapping (tap 2 buttons
alternatively), walking (walk in a straight line for 20 steps and
back in the same route), voice (10-second utterance of the “aaah”
sound), and memory (recall the order of illumination of flowers
shown in the app). The data related to the accelerometer,
gyroscope, touchscreen, and microphone were then collected
to test the results of these activities. LR, RF, deep neural
network (DNN), and CNN were used separately and as
multi-layer classifiers for model creation and verification.

An Android-based smartphone app was developed to record 5
activities (voice, finger tapping, gait, balance, and reaction time)
in 129 participants, including subjects who were healthy and
those who were diagnosed with Parkinson disease, in order to
study the effects of the disease [26]. Disease severity score
learning (DSSL), a rank-based machine learning algorithm
scaled from 0 to 100 (higher numbers reflect increasing severity
of the disease), was used to show the results. In another study,
2 vocal tasks of patients diagnosed with Parkinson disease were
recorded in a soundproof booth: one in which the participants
spoke the vowel “a” for 5 seconds, and another in which the
participants spoke a sentence in their native Lithuanian language

[36]. The recordings were conducted using both an external
microphone and a smartphone, and the model was created using
RF.

In another study, 237 participants diagnosed with Parkinson
disease performed 7 smartphone-based tests, such as
pronouncing “aaah” on the smartphone for as long as possible,
pressing a button on the screen if it appears, pressing 2 alternate
buttons on the screen, and holding the phone with their hand at
rest or outstretched. Their balance and gait were also analyzed
from the position of the smartphone [37]. The data obtained
from the smartphone were used to train the machine learning
algorithm using RF. The dataset was divided into training and
test sets, and the prediction accuracy was tested using 10-fold
cross-validation and leave-one-out cross-validation.

In addition to voice, facial features can be used for the detection
of Parkinson disease [38]. Using both facial and audio data from
371 participants, among whom 186 were diagnosed with
Parkinson disease, it was observed that early-stage detection of
Parkinson disease is possible by combining both data.
Participants were asked to read an article containing 500 words,
and an iPhone was used to record both audio and video. DT,
KNN, SVM, LR, naive Bayes, RF, LR, gradient boosting
(GBoost), adaptive boosting (AdaBoost), and light gradient
boosting (LGBoost) were compared to assess their performance
in terms of accuracy, precision, recall, F1-score, and area under
the receiver operating characteristic curve for binary
classification.

Analysis of voice samples can also help in the prediction of
depression or anxiety. A study was conducted with 2 sets of
participants: one set of participants who had a diagnosis of
depression or anxiety and another set of participants who did
not have such a diagnosis [39]. Using an app developed for the
study called Ellipsis Health, 5-minute voice samples and
responses to survey questions were collected from a total of
263 participants (all current patients of a health care clinic) over
a period of 6 weeks. Using a model developed with LSTM, the
study tested the feasibility of assessing the presence of clinical
depression and anxiety by using data from the smartphone app.
With a similar approach, another study collected answers to
questions in several self-reported psychiatric scales and
questionnaires via audio recordings from 124 participants using
an Android app developed specifically for the study [40]. Six
different algorithms (LR, RF, SVM, XGBoost, KNN, and DNN)
were used to study the features generated from audio and to
evaluate the results.

In another study, behavioral and physiological data were
collected from 212 participants through wearable sensors
(including a wristband and a biometric tracking garment) and
various surveys to create a dataset of human behaviors. The
dataset was then studied to predict the emotional state of the
participants [41]. A phone, Unihertz Jelly Pro, was also provided
to participants to capture their speech data. An app, TILES, was
created to track activities as well as receive responses to surveys.
Furthermore, data from other smartphone apps, such as the Fitbit
app (to receive updates from the Fitbit wristband), OMsignal
app (to record data from the OMsignal smart garment), and
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RealizD app (to record screen-on time and phone pickups), were
also used.

Using only speech data, an automatic depression detection model
was developed using deep convolutional neural network
(DCNN) [27]. A total of 318 participants (153 diagnosed with
major depressive disorder) were asked to record their voices
through a smartphone while reading a predefined text. RF, SVM,
KNN, and linear discriminate analysis classifiers were used,
with RF providing the best accuracy. A similar study was
conducted with 163 participants (88 diagnosed with depression),
in which speech data were collected using VoiceSense, a
voice-collection app installed on each participant’s phone,
through vocal responses to 9 general questions [42]. A repeated
random subsampling cross-validation method, with random
split of the dataset into training and test subsamples and multiple
iterative repeats of the process, was used to obtain a predictive
equation. Behavioral states of infants can also be predicted by
analyzing the audio of their cries. About 1000 cries gathered
from 691 infants using the smartphone app ChatterBaby were
analyzed and classified into 3 states: fussy, hungry, and pain,
using RF [43]. The study also aimed to verify that colic cries
may indicate pain and are more similar to pain cries compared
with either fussy or hungry cries.

Along with emotional states, it is also possible to create models
to predict complex psychiatric conditions, such as schizophrenia,
by using data from smartphones. Numerous data were collected
from 61 participants, including app usage, reception of calls
and SMS text messages, smartphone acceleration data, screen
on/off duration, location, speech and conversation, sleep, and
ambient environment, and an ecological momentary assessment
was performed every 2 to 3 days [44]. Multiple-output support
vector regression (m-SVR) and multi-task learning (MTL) with
leave-one-out cross-validation were used to train data for each
patient and to predict the scores for all possible symptoms.

Audio data can also be used to predict health-related anomalies,
such as fatigue level and blood pressure. Using 1772 voice
recordings from 296 participants, a model was created to predict
fatigue in people affected with COVID-19 [45]. Two types of
audio data were collected: recording of participants reading a
predefined text and another recording of them pronouncing the
vowel “a” for as long as they could. The data were trained and
tested using LR, KNN, SVM, and soft voting classifier
algorithms. In another study, a stethoscope attached to a
smartphone was used to collect heart sound signals from 32
healthy subjects, with the participants laying on a mattress and
the stethoscope being placed on their chest [46]. SVM was used
for training and testing the estimation model, and 10-fold
cross-validation was used to test the accuracy of the model.

Other uses of audio analysis include the inspection of bowel
sounds for tracking or predicting digestive diseases [47]. A total
of 100 participants were asked to put the smartphone over the
lower right and left areas of their abdomen to collect audio via
a bowel sound recording app. CNN- and LSTM-based
recognition models were developed. For cross-validation,
multiple training-test splits were conducted, and 9-fold
cross-validation was performed. Furthermore, it is also possible
to determine the quality of sleep by analyzing the audio during

sleep. Using an app that records audio with the built-in
microphones of smartphones and a smart alarm, sleep events,
such as snoring and coughing, were identified [48].
SleepDetCNN, a CNN-based model, was created to classify the
sleep audio into 3 types: snoring, coughing, and others. Snoring
was further studied in 16 patients with habitual snoring
tendencies using a smartphone-based gaming app as a treatment
for snoring [49]. A section of participants had 15 minutes of
daily gameplay (3 voice-controlled games; 5 minutes each),
and the majority of participants were provided with microphones
to record their sleep for the entire night at least twice per week
during the experiment period of 12 weeks. To train the
classification models using SVM, 1000 sleep sounds were
randomly selected and labeled as “snore” or “not snore” by 2
blinded members of the research team.

In addition to the prediction of diseases, data from smartphone
microphones, combined with other data, such as accelerometer,
gyroscope, light proximity, and Wi-Fi scan data, have been
utilized for emotion prediction [39] as well as the recognition
of day-to-day activities [50]. The ADL Recorder app, created
for tracking and monitoring the activities of elderly people,
recorded both behavioral and contextual data. Various kinds of
machine learning classifiers, such as Bayesian network, hidden
Markov model, Gaussian mixture model, RF, and KNN, were
used throughout for analyzing data from different sensors, and
J48 DT was used for the final recognition of activities.

Studies Conducted With Both Databases and
Experiments
Due to recent global events, numerous experimental studies
have been conducted for COVID-19 detection and prediction.
Audio data from 497 participants, including those with and
without COVID-19, were tested on a model created for
analyzing respiratory behavior and compared with a clinical
diagnosis [51]. The model, which used LR, was created to train
data collected in a study of over 3000 patients diagnosed with
asthma and other respiratory diseases. The participants used a
smartphone app to send a continuous “aaah” sound spoken for
a 6-second duration, along with responses to a questionnaire
about any possible symptoms.

In another study, accelerometer and voice recorder data were
collected from participants with and without Parkinson disease,
and a detection model was created using naive Bayes, KNN,
and SVM methods [52]. The same model was used to detect
Parkinson disease by using a new dataset obtained from patients
newly suspected of having Parkinson disease. They were
requested to pronounce the vowel “a” for 10 seconds, and a
smartphone was kept at a certain distance (8 cm) from the
patients to record the audio.

The dataset from the mPower study [31] was further used to
test a voice condition analysis system for Parkinson disease,
which was also verified using an experimental dataset (UEX)
[53]. Six different machine learning classifiers (LR, RF, GBoost,
passive aggressive, perceptron, and SVM) were applied to
compare the performance with the 2 different speech databases.
For creating the UEX dataset, 60 participants aged between 51
and 87 years were recruited. Of these 60 participants, 30 had
Parkinson disease. A smartphone was used to record 3 different
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samples of the participants pronouncing the “a” vowel
continuously without being interrupted.

Voice data from the smartphones of patients with bipolar
disorder were studied to determine if it is possible to
differentiate people who have bipolar disorder and those who
are either unaffected or have any relatives with bipolar disorder
[54]. Data from 2 studies, namely the RADMIS trial [55] and
the Bipolar Illness Onset (BIO) study [56], were used. The
RADMIS trial was conducted with people diagnosed as having
bipolar disorder who used a smartphone-based monitoring
system installed on their phones, which collected voice data
(only of those with Android smartphones) and other
smartphone-related data, such as sleep duration and app usage.
In the BIO study, participants included those who had bipolar
disorder, those who had relatives with bipolar disorder, and
those who were not diagnosed with bipolar disorder. The RF
model developed from the data was verified using 5-fold
participant-based cross-validation.

In some cases, the datasets for training the machine learning
models were not obtained from previous studies. Various online
sources were used for extracting both the crying and noncrying
(eg, talking, breathing, hiccups, and yelling) sounds of infants
[57]. For the validation of the algorithm, an independent dataset
was created by using real-life recordings of 4 infants at home
and 11 infants in a pediatric ward, where the recordings were
created using smartphones. RF, LR, and naive Bayes were used
for the classification and identification of crying and noncrying
sounds.

Similarly, 41 YouTube videos and 5 cough sounds from the
SoundSnap website were used to train a cough recognition
model [58]. The study also included the development of a
smartphone app, HealthMode Cough, that recorded continuous
sounds, including sounds from streets, crowded markets, train
stations, etc. The recordings were used to test the model, which
used DCNN. Another model was created using CNN in a study
aimed at analyzing the breathing sounds of participants with
the smartphone app Breeze 2 [59]. The dataset for training the
model was created using 3 separate datasets: a subset of the
dataset from the study by Shih et al [60], which contained
breathing sounds; the dataset ESC-50 [61], which contained 50
classes of environmental sounds; and a dataset from 2
participants, which contained a 2-minute breathing training
session recorded using a smartphone. For the experiment, 30
participants without any respiratory diseases used the Breeze 2
app to perform 2 breathing sessions for 3 minutes: one with and
one without headphones.

A dataset, compiled from multiple sources, was used to train a
cough detection model for infants [57]. The cough sounds were
obtained from 91 publicly available videos on YouTube
consisting of coughing children aged between 0 and 16 years.
Noncoughing sounds, such as talking, breathing, cat sounds,
sirens, and dog sounds, were obtained via audio clips from
YouTube, GitHub, and the British Broadcasting Corporation
sound library. Furthermore, the audio data of 21 children, who
were admitted with conditions, such as bronchitis, pneumonia,
respiratory infection, and viral wheezing, were also collected
via an Android smartphone. Using the data of 7 children out of

the 21 and adding cough and noncough sounds from different
sources, a model was created, and the data from the remaining
14 children were used as a validation dataset. The classification
performance of the cough detection algorithm was compared
using 2 ensemble DT classifiers: RF and GBoost.

Research on the Skin
Studies on the use of smartphone features to assess skin-related
anomalies have mostly focused on the prediction or
identification of skin cancer traits [57,58], and some studies
have evaluated the detection of neonatal jaundice [62] and acne
[63].

Studies Conducted Using Databases
To create a model for predicting skin cancer, 2 sets of databases
were used in the study by Dascalu et al [64]: one with
dermoscopic images (HAM10000 [65] and Dascalu and David
[66]) and another with nondermoscopic images (Pacheco et al
[67]). The images were obtained by taking pictures from a digital
camera or a smartphone. Comparing the 2 datasets, sensitivity
(percentage of correctly diagnosed malignancies) and specificity
(percentage of negative diagnoses) were derived. The
CNN-based model was found to improve specificity, though it
was acknowledged that a significant amount of future work
would be needed for improving sensitivity. It was also concluded
that the dermoscopic images provided better accuracy compared
to those from smartphones.

Studies Conducted Through Experiments
Acne is a common skin anomaly, which is experienced by about
10% of the world population. To predict and analyze such
skin-related afflictions, many skin image analysis algorithms
have been created [63]. To make the analysis and prediction
accessible, it would be better to have such a system within a
smartphone app. A CNN-based model was developed for acne
detection, and an acne severity grading model was developed
using the LightGBM algorithm. To test the models, an
experiment was conducted, in which 1572 images of the faces
of participants were taken from 3 different angles by using iOS
or Android smartphones through a smartphone app called Skin
Detective, and the dataset was divided in a ratio of 70:30 for
training and testing. For ground truth, the images were labeled
by 4 dermatologists.

Similarly, for predicting skin cancer, a melanoma detection
model was created. A total of 514 patients from dermatology
or plastic surgery clinics who had at least one skin lesion were
selected, and pictures of their lesions were taken using 3
different cameras: 2 smartphone cameras and 1 digital camera
[68]. For the analysis of the experiment dataset, an artificial
intelligence algorithm, Deep Ensemble for Recognition of
Malignancy [69], developed for determining the probability of
skin cancer using dermoscopic images of skin lesions, was used.

Unlike for disease prediction using audio, data for skin-related
anomalies can be obtained from other gadgets, such as smart
wearables, through which information, such as heart rate, skin
temperature, and breathing rate, can be obtained. A combination
of data from smartphones (smartphone-based social interactions,
activity patterns, and number of apps used) and smartwatches
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(E4 Empatica; skin temperature) obtained via the in-house
smartphone app MovisensXS was used to predict emotional
changes and the severity of depression in people [70]. The study
was conducted over a period of 8 weeks and included 41 people
with depressive disorder. The participants had to complete daily
smartphone-delivered surveys, a clinician-rated symptom
assessment test, and a blood test to screen for potential medical
contributors of depressed mood.

Studies Conducted With Both Databases and
Experiments
Neonatal jaundice is a frequently occurring condition, which
can also be diagnosed using smartphone images [62]. A study
was conducted with 100 children, aged between 0 and 5 days,
in which a picture or video was taken of their full face, with a
calibration card, to capture their skin and eye sclera. Ground
truth was established by noting their transcutaneous bilirubin
(TCB) level, and the pictures were labeled “jaundiced” or
“healthy” by a pediatrician. A CNN-based model was trained
using the ImageNet dataset [71] and was used to test neonatal
jaundice tendencies using the experiment dataset and transfer
learning. Multilayer perceptron (MLP), SVM, DT, and RF were
also used for diagnosis, where it was determined that transfer
learning methods performed better for skin features, while
machine learning models performed better for eye features.

Research on the Eye
Diabetic retinopathy was the most commonly studied disease
[66,67,69] among the collected literature for eye-related
predictions, along with other varying topics, such as eye
tracking, vision monitoring, jaundice, and autism.

Studies Conducted Using Databases
An optimized hybrid machine learning classifier with the
combination of neural network (NN) and DCNN with a
single-stage object detection (SSD) algorithm was proposed to
be used with the retinal images taken from a smartphone-enabled
DIY camera [25] to predict diabetic retinopathy. Since there
was a scarcity of image data captured using DIY
smartphone-enabled devices, the model was validated with
analysis of 2 other databases that contained fundus images:
APTOS (2019 blindness dataset) and EyePACS, and the model
performed better in comparison to the individual results of the
NN, DCNN, and NN-DCNN methods.

CNN-based models usually tend to provide the best performance
in image recognition tasks. With that in mind, the APTOS (2019
blindness dataset) and EyePACS datasets were used to build a
CNN-based model for predicting diabetic retinopathy [72]. The
algorithm was then externally validated using the Messidor-2
dataset [73], which contained about 1058 images from 4 French
eye institutions. The algorithm was further tested on the EyeGo
dataset, which contained 103 fundus images from 2 previously
published studies obtained by using an EyeGo lens attachment
and an iPhone.

Studies Conducted Through Experiments
Almost 51% of eye diseases in the United States are related to
cataract [74]. It will be convenient to use images from
smartphones for the early detection of cataract, and the results

will be provided instantly. By taking pictures with a smartphone
camera, 100 samples were collected from participants (50% of
the participants had cataract) [74]. SVM was applied on the
dataset, and the accuracy was 96.6% for cataract detection.

In addition to images of the eye, videos of eye movement can
be used for different kinds of diagnoses, such as for autism,
since atypical eye gaze can be considered as an early symptom
for autism spectrum disorder (ASD) [75]. The behaviors of 1564
toddlers were recorded using the front camera of an iPhone or
an iPad when the toddlers, accompanied by their caregivers,
viewed engaging movies for less than 60 seconds on the device.
Using computer vision analysis on the data, it was found that
children with ASD have less coordinated gaze patterns while
viewing movement in movies or following conversation between
2 moving people.

In addition to the in-situ collection of data, smartphones can be
used for remote collection of data. To determine the attention
span of infants by tracking their gaze, an online webcam-linked
eye tracker called OWLET was developed, and experiments
were conducted with 127 infants remotely [76]. The infants
were in the presence of their caregivers, who used either a
smartphone or a computer to access the tracking task and
provided their responses of the infant behavior using a
questionnaire. For the experiment, a video (an 80-second Sesame
Street video) was played, and the eye movements of the infants
were recorded, tracked, and analyzed. No difference was found
in the image data between the smartphone and computer, which
was verified by a 2-sided independent samples t test and
chi-square test. LR was used to examine the efficiency of the
OWLET system.

Similarly, 417 adults with active or passive vision-related
problems took part in an experiment using a smartphone app
named Home Vision Monitor (HVM) to self-test their vision
[77]. The app required them to submit an eye vision test twice
per week, and their smartphone usage and app usage history
were recorded by the researchers. RF and LR were used for
statistical analysis.

The app EyeScreen was developed to support retinoblastoma
diagnosis for the presence of leukocoria [78]. About 4000 eye
images were obtained from about 1460 participants via the app,
and an ImageNet model, ResNet, was used for image processing
by dividing the dataset in an 80:20 ratio for training and testing.
The app had the feature to process the image within it and
provide the result.

Studies Conducted With Both Databases and
Experiments
A common anomaly, neonatal jaundice, was investigated [62],
for which a dataset of healthy and jaundiced individuals was
created in an experiment conducted over 35 to 42 weeks. In the
experiment, a full-face photo was clicked to capture the eye
sclera. To obtain ground truth data, the TCB level was measured
using a jaundice meter device, and the pictures were labeled
“jaundiced” or “healthy” by a pediatrician.

Tracking eye movements has been a topic of interest for a wide
variety of research ranging from autism [75] and tourism [28]
to driving and gaming [79]. A multi-layer feed-forward
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convolutional neural network (ConvNet) model was created
and trained on the GazeCapture dataset [80], which was created
from the data of 1474 participants using an iPhone or iPad. To
verify the model, an experiment was conducted using a
custom-made Android app, in which eye gaze videos were
captured using the front facing camera of the phone. The
participants were asked to follow a stimulus on the mobile
screen, which could be a dot or movement of a circular,
rectangular, or zig-zag pattern.

Two sets of experiments were carried out, with one using a
smartphone (iPhone 6) and another using smartphone-based
retinal imaging systems, such as iExaminer, D-Eye, Peek Retina,
and iNview [81], to create a model for the diagnosis of diabetic
retinopathy. The CNN-based AlexNet architecture was used for
transfer learning, which was first trained using 1234 images
from the EyePACS dataset. Then, the architecture was tested
with 138 retinal images from datasets, including those of the
EyePACS, iExaminer, D-Eye, Peek Retina, and iNview systems.

Exclusion of Papers
A total of 11 papers were excluded from the final selection after
reviewing the full text of all the papers using the selection
criteria. Among them, 5 were excluded because the studies did
not involve the use of smartphones for data collection. Similarly,

3 of the papers passed the initial screening test because of the
presence of words, such as smartphone, eye, and audio, in their
abstract. However, the studies were not relevant to the topic of
our review. Furthermore, 2 of the studies were excluded because
they only included the proposal of the method of disease
prediction using machine learning and smartphones. Finally, a
paper was excluded as it included a discussion about the topic
but did not contain any database analysis or experiment. Among
the papers that provided a proposal of a disease prediction
system, it is worth mentioning that the paper by Bilal et al [82]
was very detailed and well explained.

After the full-text screening of papers, there were 34, 5, and 10
relevant papers in the categories of voice, skin, and eye,
respectively. These studies were further analyzed by focusing
on the diseases dealt with in each study and the different health
topics. The results can be seen in Figure 2. Parkinson disease
was the most studied (n=12) disease among the collected studies,
followed by COVID-19 (n=4), depression (n=4), cough (n=3),
and diabetic retinopathy (n=3). It can be argued that cough and
COVID-19 could be included under the same category and
depression and emotion could be included under the same
category. However, based on the terminologies and methods
used in the papers, we have treated them separately.

Figure 2. Diseases studied in the collected papers.

Discussion

Overview
The use of technology in the medical field has seen massive
growth in recent years. A lot of improvements have been made
in different areas, such as handling complex electronic medical
records [83], and in identifying and predicting various diseases,
such as lung anomaly detection using computed tomography
scan images [84], emotion detection using different data from
smartphones [35], and identification of the burden faced by

people who travel to separate locations for receiving health care
services [85]. Smartphones provide a low-power, small-sized,
and easy method for data collection and analysis, which differs
from the usual bulky, expensive, and complex systems used for
biomedical data collection and analysis.

Smartphones are equipped with numerous sensors and
high-quality cameras, making it easy to collect different types
of data. Moreover, due to the COVID-19 outbreak and the
changes in the overall working environment that followed, there
has been a strong focus on delivering health services remotely
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[86]. The disease identification process can be made efficient
by using smartphones to collect data and provide a diagnosis,
as well as deliver results to patients.

With these factors in mind, we focused on research carried out
using machine learning and data from smartphones to identify
or predict diseases. We selected 3 areas to focus on and
formulated the research questions. We conducted a review of
the available papers collected using the screening method
explained in the section Study Selection. Here onwards, we will
discuss the results for our research questions.

Research Question 1: What Are the Databases
Available for Eye, Skin, and Voice Analysis?
We found a total of 31 databases in the collected studies,
including an unclear source, vaguely referred to as “online
sources” [57]. In most of the cases, the databases were used to
create a model for disease prediction. However, there were also
instances where the databases were used to validate a model

developed using experimental data [81] or using other databases
[72]. Since the number of collected voice-related studies was
higher than that of skin- or eye-related studies, a similar
difference in number can be observed for the list of databases,
as shown in Tables 5-7. The numbers of databases for voice,
skin, and eye were 22, 4, and 5, respectively. The voice-related
databases were used to predict a variety of diseases or health
statuses, such as Parkinson disease [26,29], emotion [35], bipolar
disorder [55], and infant cry [57]. Owing to the COVID-19
pandemic, many databases were used for the detection of
COVID-19 or cough-related anomalies [20,24,46,52]. Of 4
skin-related databases, 3 were aimed at the prediction of skin
cancer [64] and the remaining database was related to neonatal
jaundice [62]. The same database by Althnian et al [62] was
also used for jaundice detection using retinal images. Diabetic
retinopathy was the most common disease among eye databases
[66,67,69]. Eye databases also consisted of data related to
capturing eye movement [80] or gaze/concentration [74].

Table 5. Databases with voice data.

FrequencyDatabase

1CoughVid

1TASK

1Brooklyn

1Wallacedene

1GoogleAudio dataset

1Freesound

1Librispeech

2Coswara

1ComparE

1Sarcos

4mPower

1PC-GITA

1Vishwanathan

1ExtraSensory

3Online sources

1Shih et al [60]

1UEX

1RADMIS

1Bipolar Illness Onset

3YouTube

1SoundSnap

1BBC sound library
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Table 6. Databases with skin data.

FrequencyDatabase

2Ham10000

1ImageNet

1Dascalu and David [66]

1Pacheco et al [67]

Table 7. Databases with eye data.

FrequencyDatabase

1Messidor-2

1GazeCapture

1EyePacs

1APTOS

1EyeGO

Research Question 2: What Are the Machine Learning
Models Used for Eye, Skin, and Voice Analysis?
Similar to databases, machine learning models were also used
either in separation [67,87] or as a comparison along with
multiple other models [6,24,31], and sometimes as ensemble
classifiers [20,62]. As the same study usually consisted of
multiple machine learning methods, the frequency of use of
certain machine learning methods was considerably high. To
investigate the best machine learning method for each kind of
data, instead of using numbers, we calculated the frequency of
use of a particular machine learning method for each of the 3
areas. We were then able to determine the rate of machine

learning methods for each area, as shown in Tables 8-10. The
most common machine learning method used for voice-related
data was RF, while CNN was the most used for both eye- and
skin-related data.

For further analysis, we expanded on the diseases and
determined the frequency of the use of each machine learning
method for each of the diseases or anomalies found in the
collected papers. The results are shown in Figure 3. The figure
shows all machine learning methods used across various studies
for each of the diseases. Since many studies used multiple
machine learning methods (especially for Parkinson disease),
the frequency of use of some methods, such as RF, SVM, CNN,
and LR, was high.
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Table 8. Machine learning methods used with voice data.

Rate of use, %Machine learning method

1.1AdaBoosta

10.9CNNb

1.1CatBoost

4.3DNNc

3.3Decision tree

1.1Deep learning

5.4GBoostd

1.1Gaussian mixture

1.1Hidden Markov

8.7KNNe

1.1LGBoostf

10.9LRg

4.3LSTMh

1.1Multilayer

4.3Naive Bayes

1.1Passive aggressive

18.5RFi

1.1Rank-based machine learning

1.1RestNet50

13.0SVMj

4.3XGBoostk

1.1m-SVRl

aAdaBoost: adaptive boosting.
bCNN: convolutional neural network.
cDNN: deep neural network.
dGBoost: gradient boosting.
eKNN: k-nearest neighbor.
fLGBoost: light gradient boosting.
gLR: logistic regression.
hLSTM: long short-term memory.
iRF: random forest.
jSVM: support vector machine.
kXGBoost: extreme gradient boosting.
lm-SVR: multiple-output support vector regression.
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Table 9. Machine learning methods used with skin data.

Rate of use, %Machine learning method

30.0CNNa

10.0Decision tree

10.0Deep learning

10.0Multilayer

20.0RFb

10.0SVMc

10.0XGBoostd

aCNN: convolutional neural network.
bRF: random forest.
cSVM: support vector machine.
dXGBoost: extreme gradient boosting.

Table 10. Machine learning methods used with eye data.

Rate of use, %Machine learning method

41.20CNNa

5.88Computer vision

5.88Decision tree

11.76LRb

5.88Multilayer

5.88Neural network

11.80RFc

11.80SVMd

aCNN: convolutional neural network.
bLR: logistic regression.
cRF: random forest.
dSVM: support vector machine.
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Figure 3. Use of machine learning (ML) methods based on the type of disease. AdaBoost: adaptive boosting; CNN: convolutional neural network;
DNN: deep neural network; GBoost: gradient boosting; KNN: k-nearest neighbor; LGBoost: light gradient boosting; LR: logistic regression; LSTM:
long short-term memory; m-SVR: multiple-output support vector regression; RF: random forest; SVM: support vector machine; XGBoost: extreme
gradient boosting.

Research Question 3: How Are the Data Collected
From Smartphones?
To collect audio-related data, the built-in smartphone
microphone was used most of the time, both at home [26,37]
and in the experimental set up [52]. In some cases, external
microphones were also used [36]. Similarly, in many cases,
audio was also collected via custom-made smartphone apps
[21,34,38], and in some cases, it was collected via a web
interface that could be accessed using smartphones [20,25].

For the collection of skin data, pictures and videos were mainly
taken with a smartphone [58,59]. In some cases, smartphone
apps were also created for data collection [60,63]. Frequently,
pictures from smartphones were not considered adequate for
taking retinal images, and an external lens or retinal imaging
system was used alongside the smartphone to collect eye data
[20,66,67]. However, experiments have also shown that
smartphone images are equally effective to analyze eye-related
anomalies [25,71]. For collecting gaze-related data, videos taken
from the front camera of smartphones have been used effectively
[75,81].

Data of both the skin and voice have been used for the detection
of emotion and depression. However, in such studies, data apart
from voice and skin data were also collected. Combinations of
data from smartwatches, such as heart rate, skin temperature,
and breathing rate, and data from smartphones, such as
smartphone-based social interactions, activity patterns, and the
usage of apps, were used for detecting emotional changes and
the severity of depression [70]. Similarly, for detecting
emotional status, voice and other data, such as location,
accelerometer data, gyroscope data, and phone usage, were used
[31,36]. For the detection of Parkinson disease, data apart from
voice data, such as gait and balance [26], tapping of buttons on
a smartphone screen [26,33], and accelerometer data [52], were
collected. Similarly, in a study for vision monitoring, data apart
from images of the eyes, such as phone and app usage, were
collected using a smartphone app [77]. Furthermore, in many
studies, surveys and questionnaires were also regularly received
from participants during data collection, especially via
smartphone apps [26,34,36,63].

It is worth noting that there are many sensors available in
smartphones, such as accelerometers and gyroscopes, which
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can be helpful in determining the speed of touch, posture,
walking speed, location, etc. Therefore, even if the aim is to
analyze a particular health area, the same combination of data,
collected from multiple data sources, can be used to identify
different diseases. For example, in the study of Parkinson
disease, data, such as voice, accelerometer data, location,
application usage, and other phone data, were usually collected.
The same data can also be analyzed to detect emotional changes
or depression. Similarly, when collecting data on skin
abnormalities, it is possible to obtain facial data that can also
be used for eye-related analysis.

Moreover, it has been observed that with remote health
monitoring systems, especially with the use of smartphones,
people often have concerns over the access and use of their data,
such as location, application usage, screen time, and browsing
history [78,79]. These concerns of smartphone apps are higher
as they contain sensitive behavioral data. To tackle these issues,
it is necessary to build trust with the users regarding the app
and its data collection methods. It was found that state-funded
research institutes had higher levels of trust with people
compared to private institutions [88]. This shows that to conduct
research using smartphones and gather user data, it is necessary
to involve trusted institutions for governing the study, as well
as have transparency over data collection, distribution, and use
of the results.

Limitations
There are some limitations. First, for screening the collected
papers based on their titles and abstracts, we used a keyword
screening method [23]. Although great care was taken in the
selection of keywords for this screening, it must be
acknowledged that some papers may have been overlooked if
they did not contain the specified keywords. We firmly believe
that such a limitation can occur, but the number of studies will
be very few. Second, we focused only on studies that used
smartphones. This could lead to the exclusion of recent studies
that did not consider the use of smartphones to collect
health-related data.

Moreover, we only selected studies that analyzed eye-, skin-,
and voice-related diseases. Because of the niche approach of
this scoping review, we did not consider a lot of other health
areas where smartphones might have been used to gather data
for machine learning analysis. Furthermore, many new machine
learning models and other algorithms are being developed, and
existing algorithms are being improved [89]. These methods
have not been used but could potentially be used for health
diagnosis, and thus, they have been overlooked in this review.

Overall Summary
The field of the use of machine learning on smartphone-obtained
data for health care purposes is ever evolving. Through this
study, we aimed to provide information about studies that have
conducted experiments related to eye-, skin-, or voice-related
diseases, where data were obtained strictly via smartphones.

Similarly, we have provided details of publicly available
databases that have been used in studies to apply machine
learning methods for developing models to predict eye-, skin-,
or voice-related diseases. Researchers working in similar fields
can use the experiment details or the databases presented in this
study to design their research. Furthermore, the machine learning
model to use for a study needs to be determined with much
consideration. We have presented machine learning models
applied based on the study area as well as the types of diseases.
Therefore, the information provided in the paper can help reduce
the time and effort for researchers in designing experiments and
selecting the databases or machine learning models to use in
their studies. Our title and abstract screening method is also
easy to understand and replicate, and could be used by
researchers aiming to perform scoping reviews or systematic
literature reviews.

Conclusion
There has been a growth in the number of studies based on the
application of machine learning methods to data obtained from
smartphones for the prediction of diseases. However, there are
few literature reviews that provide information about the
databases used, experiments carried out, and machine learning
methods applied. We formulated a scoping review to identify
the studies that have been conducted, specifically related to the
3 areas of skin, eye, and voice, and determined the studies that
conducted experiments using smartphones to gather skin-, eye-,
and voice-related data; the publicly available databases that
include skin, eye, or voice data; and the machine learning
methods that are commonly implemented in such studies.
Furthermore, with this research, we intended to test the
effectiveness of the keyword screening method that we
developed. We first searched for relevant studies and screened
them by applying our keyword screening method to their titles
and abstracts. We analyzed the full text according to the
inclusion and exclusion criteria and collected a total of 60
studies.

After assessing the full text of all identified studies, we discarded
11 studies, and among the remaining 49 studies, we found 24
different machine learning methods and 31 different databases
used. The details from these collected studies provide insights
into how the experimental studies were conducted, which
databases were used, and which machine learning methods
provided better results. The relevance and quality of the
information acquired proved that our keyword screening method
was effective in screening papers relevant to the topic and thus
could be adopted by researchers for conducting scoping reviews.
The use of our results can help reduce the time and effort
required by researchers working in the field of artificial
intelligence for health care to gather such information in detail.
Moreover, the results presented can be used to select databases
for future studies, replicate the experimental design, or select
machine learning models suitable for the topic of interest.
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