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Abstract

Background: Clinical notes house rich, yet unstructured, patient data, making analysis challenging due to medical jargon,
abbreviations, and synonyms causing ambiguity. This complicates real-time extraction for decision support tools.

Objective: This study aimed to examine the data curation, technology, and workflow of the named entity recognition (NER)
pipeline, a component of a broader clinical decision support tool that identifies key entities using NER models and classifies these
entities as present or absent in the patient through an NER assertion model.

Methods: We gathered progress care, radiology, and pathology notes from 5000 patients, dividing them into 5 batches of 1000
patients each. Metrics such as notes and reports per patient, sentence count, token size, runtime, central processing unit, and
memory use were measured per note type. We also evaluated the precision of the NER outputs and then the precision and recall
of NER assertion models against manual annotations by a clinical expert.

Results: Using Spark natural language processing clinical pretrained NER models on 138,250 clinical notes, we observed
excellent NER precision, with a peak in procedures at 0.989 (95% CI 0.977-1.000) and an accuracy in the assertion model of
0.889 (95% CI 0.856-0.922). Our analysis highlighted long-tail distributions in notes per patient, note length, and entity density.
Progress care notes had notably more entities per sentence than radiology and pathology notes, showing 4-fold and 16-fold
differences, respectively.

Conclusions: Further research should explore the analysis of clinical notes beyond the scope of our study, including discharge
summaries and psychiatric evaluation notes. Recognizing the unique linguistic characteristics of different note types underscores
the importance of developing specialized NER models or natural language processing pipeline setups tailored to each type. By
doing so, we can enhance their performance across a more diverse range of clinical scenarios.
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Introduction

Background
Clinical decision support (CDS) tools play a vital role in
improving quality of care and patient safety by providing
clinicians with real-time patient data and evidence-based
guidance. In the 1960s and 1970s, paper-based diagnostic
systems were introduced. They used some rules to match a
patient’s symptoms with a set of possible diagnoses based on
data from previous patients. One of the earliest examples of a
paper-based diagnostic system was the Symptom Sorting
Program, developed by Weed in 1968 [1]. In the 1980s,
electronic medical records began to emerge, offering greater
flexibility and more extensive datasets. Electronic medical
records enabled clinical informaticists to collect and store patient
data more efficiently, paving the way for the development of
advanced CDS tools. One of the earliest examples of an
electronic CDS tool was the HELP system, which was
introduced in 1983 at the Latter-Day Saints Hospital in Salt
Lake City, Utah [2]. These days CDS tools use a variety of
technologies, including artificial intelligence, natural language
processing (NLP), and machine learning, to analyze patient data
and provide relevant recommendations to improve clinical
effectiveness, optimize patient safety, and reduce the risk of
errors [3].

There are several types of inputs coming from electronic health
record (EHR) platforms that can be used to develop a CDS tool,
including structured (eg, laboratory results and vital signs),
semistructured (eg, nursing flow sheets), and unstructured (eg,
clinical notes) data. Clinical notes and reports contain valuable
patient data but can be challenging to analyze due to their
unstructured nature. Clinical notes usually contain unorganized
and inconsistent data with free-form text that make it difficult
to extract the relevant information automatically. There are
medical terms, abbreviations, and synonyms in clinical notes
resulting in ambiguity and misinterpretation. Extracting clinical
insights from the large volume of unstructured data can be time
consuming, which can have a significant impact on the real-time
applicability of decision support tools [4].

NLP is a branch of artificial intelligence focused on enabling
computers to understand, interpret, and generate human
language. In the context of clinical notes, NLP techniques can
be used to extract information from unstructured text, including
named entity recognition (NER), which identifies and extracts
entities such as diseases, signs and symptoms, and treatments
[5]. In recent years, deep learning–based NER models in the
clinical domain have reached performance levels that make
them suitable for developing CDS tools with sufficient reliability
[6]. For instance, Spark NLP [7] is an open-source library built
on Apache Spark that provides various tools and pretrained
models for NLP tasks, such as NER [8,9], entity assertion, and
entity relationship extraction. However, developing and

deploying such CDS tools pose various challenges that require
careful consideration [10]. In this paper, we discuss some of
the key challenges and best practices for developing and
deploying NER-based CDS tools in clinical settings.

Challenges of NER-Based CDS Tools
There are 5 main areas of challenges in the development and
deployment of NLP-based CDS tools: note ingestion and
curation, technology, computational workflow, clinical
workflow, and user adoption. In this paper, our main focus is
on data curation, technology, and computational workflow.
Clinical note ingestion and curation can affect the performance
of NLP models, and the choice of technology can impact
scalability and reproducibility. To address the challenges we
are sharing the best practices coming from the lessons we
learned from our practical experiences.

Methods

Ethical Considerations
Data used during this study was managed following Health
Insurance Portability and Accountability Act–compliant
procedures based on retrospective anonymized electronic
healthcare records datasets. Given the analysis was purely
focused on computational performance and overall performance
of information extraction models and not related with any
clinical consideration we concluded that this study did not
involve human subjects.

CDS Application Architecture
The work presented here is part of a larger CDS system designed
to enhance patient care through timely data curation and
patient-level risk stratification, with its computational flow
shown in Figure 1. A key component of this system was the
NER pipeline, which focuses on extracting essential clinical
entities from unstructured notes, including progress notes,
radiology reports, and pathology reports. Once relevant entities
were identified through NER, these extracted entities were
subsequently used as inputs to machine learning classifiers that
support clinical decision-making, offering actionable insights
to clinicians at the point of care.

The NER pipeline itself comprises 2 main components: the note
ingestion pipeline and the NLP pipeline. This section provides
an overview of the architecture of this NER pipeline, which was
implemented for oncology and psychiatry CDS tools to generate
risk scores for metastatic disease and the likelihood of
developing episodes of aggression. However, the scope of this
paper is limited to presenting the entity extraction process
without going into the specifics of the downstream classification
components that use this information. The description and
validation of these downstream components that complete the
CDS tool will be the subject of future publications.
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Figure 1. Computational flow.

Note Ingestion Pipeline
Different clinical notes (eg, progress note, care note, and consult
note) and reports (eg, radiology impression and pathology
report) were ingested from various EHR modules (Epic) such
as Clinical Notes, Radiology Information System (RIS), and
pathology information system. A cross-platform interface engine
(Mirth Connect) [11] was used for note interfacing. Mirth stored
the Health Level 7 (HL7) messages in a NoSQL database
(MongoDB), and a Health Level 7 parser (Smolder) [12]
extracted and decrypted these notes before saving them into the
NoSQL database.

A Spark service then read the raw notes and stored them in a
Spark Dataframe, creating a unified view at the desired level,
which can be patient, visit, or bed level, based on the
specifications of the use cases. Similar to most data elements
in an EHR, such as laboratory results and vital signs, clinical
notes and reports are considered observational data. To use them
as inputs for modeling, specific sampling logic needs to be
applied to optimize the learning rate during the training phase.

The following sampling logic was applied to select relevant
clinical notes and compile a comprehensive text corpus for the
NLP pipeline. Notes were first organized by type, and then, a
random sampling was performed within each category to ensure
a diverse selection. Progress care notes, which are typically
longer and contain more clinical entities, were oversampled to
capture a wide variety of detailed clinical information.

Conversely, radiology and pathology reports, known for their
brevity, were undersampled to maintain their typical
representation in clinical workflows. This stratified approach
created a balanced training dataset that exposed the model to a
representative mix of clinical scenarios while preserving the
natural variation in note types.

NLP Pipeline
The NLP pipeline is a series of interconnected modules designed
and developed to process clinical notes and extract predefined
sets of medical terms using pretrained NER models. The pipeline
consists of several key components, including the document
module, sentence module, tokenizer module, embedding model,
and NER models.

The document module handles the input of clinical notes and
ingests them into a Spark DataFrame. The sentence module
then further segments these documents into separate sentences,
enabling more granular analysis. The tokenizer module plays
a crucial role in splitting sentences into individual words or
tokens, facilitating subsequent analysis and processing. The
embedding module focuses on transforming the tokenized words
into numerical representations, often leveraging techniques such
as word embeddings or contextualized embeddings. This step
allows the pipeline to capture semantic meaning and context
within the text. Finally, the NER module is a vital component
that identifies and classifies named entities within clinical notes,
such as diagnoses, signs and symptoms, medications, and
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electrocardiography findings. This module uses pretrained NER
models to accurately recognize and extract relevant entities from
the text.

To execute the NLP pipeline efficiently, it is often implemented
using Spark NLP [13], a powerful NLP library built on top of
Apache Spark [14]. This choice allows the pipeline to leverage
the distributed computing capabilities of Apache Spark, enabling
faster and scalable processing of large volumes of clinical notes.

By using this NLP pipeline with its various modules and
pretrained models [15], health care professionals and researchers
can automate the extraction of important information from
clinical notes, such as medical conditions, treatments, patient
outcomes, and even some complex information (eg, response
to treatment). This approach streamlines the analysis process,
facilitates research, and enhances decision-making in the health
care domain.

Performance Measurement
In this section, we present the methodology and metrics used
to measure the performance of the note ingestion and curation
pipeline and NLP pipeline. The server on which we ran the
pipelines was an Intel Xeon (R) Gold 5120 central processing
unit (CPU) @ 2.20 GHz with 56 processors, 14 CPU cores, and
187 Gb memory size. We ingested and curated progress and
care notes, radiology reports, and pathology reports. We split
them into 5 batches, each with notes of 1000 unique patients,
and measured the number of notes and reports per patient, the
number of sentences, token size, runtime, CPU use, and memory
use per note type.

We also assessed the precision (positive predictive value) of
the pretrained NER models in identifying 4 entities: disease,
symptom, drug, and procedure. To achieve this, a clinical expert
reviewed a random sample of clinical notes containing entities
identified by the pretrained NER models, classifying each
prediction as a true positive or false positive. The assertion
model developed specifically for this project was evaluated by
a clinical expert, who reviewed 342 randomly selected sentences
in which an entity was identified and marked as present or
absent. The expert then confirmed whether the assertion
generated by the model was correct.

Results

Clinical Note Characteristics
Our analysis of a corpus comprising 138,250 notes from 5000
patients randomly selected from those aged >18 years admitted
to the Mount Sinai Hospital revealed distinct characteristics for
each type of note.

The distribution of notes per patient was positively skewed
across all note types, with pathology notes ranging from 1 to
17, progress care notes from 1 to 99, and radiology notes from
1 to 88. The median number of notes per patient was 1
(interdecile range 1-2) for pathology notes, 15 (interdecile range
5-47) for progress care notes, and 3 (interdecile range 1-11) for
radiology notes. Moreover, 90% (4500/5000) of the patients

had 1 or 2 pathology notes, 5 to 47 progress care notes, and 1
to 11 radiology notes. As shown in Table 1, there were
differences in the average number of notes per patient among
the different types of notes. Progress care notes were the most
prevalent, averaging 21.16 (95% CI 20.63-21.69) notes per
patient, followed by radiology notes with 5.02 (95% CI
4.85-5.19) and pathology notes with 1.47 (95% CI 1.44-1.50).

Upon closer examination of the notes themselves, we found
that pathology notes were the highest in terms of the number
of sentences, averaging 23.85 (SD 22.78; median 17) sentences
per note, followed by progress care notes with 17.14 (SD 21.57;
median 11) sentences per note. In contrast, the number of
individual sentences in radiology notes was much lower, with
an average of 4.77 (SD 6.87; median 3) sentences per note.

However, our analysis of sentence length based on note type
revealed that progress and care notes contained longer sentences,
averaging 36.46 (SD 75.57; 95% CI 36.35-36.57) tokens per
sentence. In comparison, radiology and pathology notes were
less than half the length, with 11.83 (SD 8.56; 95% CI
11.79-11.87) and 12.16 (SD 8.83; 95% CI 12.11-12.21) tokens
per sentence, respectively. Although the difference in sentence
length between pathology and radiology notes was statistically
significant, the practical implications were minimal.

Interestingly, when examining the median number of tokens
per sentence, the differences between pathology (10 tokens),
progress care (12 tokens), and radiology notes (10 tokens) were
not significant in practical terms. The difference in means was
driven by the existence of some long sentences in the progress
care notes, with an interdecile range of 4 to 85 tokens. For
pathology and radiology notes, the ranges were 3 to 23 and 3
to 22 tokens, respectively.

Statistically significant differences were observed in the number
of clinical entities per sentence and the proportion of tokens
constituting a clinical entity (clinical entity density).

Progress and care notes exhibited the highest clinical entity
density, with 8.01 (SD 24.05; 95% CI 7.98-8.05) clinical entities
per sentence and 21.97% (SD 1.66%; 95% CI 21.97-21.99%)
of tokens forming a clinical entity chunk. Radiology notes
contained a quarter of the number of clinical entities per
sentence (2.06; SD 2.65; 95% CI 2.05-2.08) but had a
comparably lower entity density (16.92%; SD 6.47%; 95% CI
16.88-17.04%). Conversely, pathology notes had the lowest
number of clinical entities per sentence (0.53%; SD 1.07; 95%
CI 0.53-0.54) and the smallest proportion of tokens as part of
a clinical entity chunk (4.52%; SD 1.31%; 95% CI 4.49-4.55%).

Again, the higher average number of entities found in the
progress and care notes, when compared to radiology notes,
was driven by a subgroup of sentences with an unusually high
number of clinical entities. The median number of clinical
entities per sentence was the same for both types of notes (2
entities). However, the range was wider for progress and care
notes (0-15 clinical entities per sentence) compared to radiology
notes (0-5 clinical entities per sentence).
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Table 1. Descriptive analysis of the corpus compiled from 5000 patients. The interdecile range is represented by the 10th and 90th percentiles.

RadiologyProgress carePathology

500050005000Patients, n

25,098105,7997374Notes, n

119,7961,813,194175,874Sentences, n

1,456,72266,109,0582,080,590Tokens, n

247,31914,531,84394,075Entities, n

5.02; 6.13 (4.85-5.19)21.16; 19.12 (20.63-21.69)1.47; 1.08 (1.44-1.50)Notes per patient, mean; SD (95% CI)

4.77; 6.87 (4.69-4.86)17.14; 21.57 (17.01-17.27)23.85; 22.78 (23.33-24.37)Sentences per note, mean; SD (95% CI)

12.16; 8.83 (12.11-12.21)36.46; 75.57 (36.35-36.57)11.83; 8.56 (11.79-11.87)Tokens per sentence, mean; SD (95% CI)

2.06; 2.65 (2.05-2.08)8.01; 24.05 (7.98-8.05)0.53; 1.07 (0.53-0.54)Entities per sentence, mean; SD (95% CI)

1 (1-11)15 (5-47)1 (1-2)Notes per patient, mean (interdecile range)

3 (1-9)11 (1-42)17 (8-46)Sentences per note, mean (interdecile range)

10 (3-22)12 (4-85)10 (3-23)Tokens per sentence, mean (interdecile range)

2 (0-5)2 (0-15)0 (0-2)Entities per sentence, mean (interdecile range)

16.92; 6.47 (16.88-17.04)21.98; 1.66 (21.97-21.99)4.52; 1.31 (4.49-4.55)Clinical entity density %; SD (95% CI)

NER Performance
We used a set of pretrained NER models to identify 4 types of
clinical entities: diseases (n=340), drugs (n=173), procedures
(n=281), and symptoms (n=4412). As we only reviewed the
actual output of the NER models and did not annotate a gold
standard corpus, other metrics are not available for evaluation.
The highest precision was achieved for procedure entities (0.989;
SD 0.098; 95% CI 0.977-1.000), followed by diseases (0.918;
SD 0.277; 95% CI 0.888-0.947) and symptoms (0.929; SD
0.254; 95% CI 0.922-0.937). Drug entities exhibited
significantly lower precision (0.821; SD 0.382; 95% CI
0.764-0.878). We also implemented an assertion model to
categorize whether an entity was present or absent (n=342). The
model demonstrated a recall (sensitivity) of 0.922 (SD 0.264;
95% CI 0.894-0.950), a precision (positive predictive value) of
0.828 (SD 0.377; 95% CI 0.788-0.868), a specificity of 0.866
(SD 0.340; 95% CI 0.830-0.902), a negative predictive value
of 0.941 (SD 0.241; 95% CI 0.915-0.966), an accuracy of 0.889
(SD 0.311; 95% CI 0.856-0.922) and an F1-score of 0.872. The
system used in this experiment was equipped with an Intel Xeon
Gold 5120 CPU, operating at a speed of 2.20 GHz. It featured
56 processors, arranged into 14 CPU cores, each running at
approximately 2599.877 MHz. The setup also included a
substantial memory capacity of 187 GB, ensuring sufficient
resources for handling the data processing demands. The
compute time measurements presented are specific to the
previously described hardware setup and may vary across
different computational environments.

We opted for a CPU-based setup instead of a graphics
processing unit due to the highly sensitive nature of the data
derived from EHRs. In many organizations, it is preferable to
run such processes on premises to ensure data security and
confidentiality, minimizing the need to share data with external

infrastructures. This practical constraint often means that
graphics processing units are not easily available, making a
CPU setup both a feasible and secure option for processing
sensitive clinical information directly within the organization’s
own hardware environment.

The process involved dividing each note type into 5
mini-batches, with each batch containing all notes from 1000
patients. We further partition each mini-batch into 100 partitions.
This results in each partition containing 10 sequences. This
methodology significantly enhances our capability for parallel
processing. The logging frequency was set to every 5 seconds.
In terms of runtime per mini-batch, radiology and pathology
notes averaged 24 and 33 seconds, respectively. Contrastingly,
the average runtime for progress and care notes was significantly
higher, clocking in at 1498 seconds. This means that progress
and care notes required approximately 42 times more time than
pathology notes and approximately 56 times more than radiology
notes.

One key finding was that the average number of tokens in
progress and care notes was approximately 30 times more than
in pathology notes and approximately 31 times more than in
radiology notes. Hence, this substantial increase in runtime for
progress and care notes was anticipated. The experiment clearly
demonstrates a linear relationship between runtime and the size
of the notes. The mean, SD, and percentile values of computing
time for each type of clinical note are presented in Table 2.

Figure 2 presents a graph of CPU use. We noticed similar
patterns of CPU use for both radiology and pathology notes,
fluctuating between 20% and 80%. By contrast, CPU use for
progress and care notes ranged from 5% to 80% but consistently
remained at the higher end of this spectrum. This was an
anticipated outcome, given that the token size of progress and
care notes is considerably larger than that of the other note types.
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Table 2. Computational times.

MaximumPercentileMinimumMean (SD)aNote type

90th75th50th25th10th

4843353331303035.4 (7.3)Pathology

16961630153015051405137413541498.0 (132.0)Progress care

3833252423232326.6 (6.4)Radiology

aSeconds required to process all the clinical notes of each type for 5000 patients (5 batches of 1000 patients).

Figure 2. Central processing unit (CPU) use over runtime by note type.

Discussion

Principal Findings
The development and deployment of CDS tools using the NER
approach presents numerous challenges and opportunities. We

believe that our work contributes to the knowledge in this field
in several significant ways.

In contrast to previous studies focused on specific clinical note
types, our analysis includes progress care notes, radiology
reports, and pathology notes, enabling a comprehensive
comparison of linguistic features, entity density, and NER
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performance across these distinct categories. The findings
emphasize the necessity of tailored NLP pipelines, as progress
care notes, for instance, require significantly greater
computational resources and processing time than radiology or
pathology notes. The notably higher clinical entity density
observed in progress care notes, compared to radiology and
pathology reports, further highlights the variability in NER
performance across clinical domains and reinforces the need
for context-specific optimization approaches. This underscores
a gap in existing NER optimization strategies that
general-purpose models may fail to address.

Moreover, our study extends beyond traditional accuracy metrics
by providing detailed computational insights, including compute
times, CPU use, and memory use, which are essential for
optimizing real-time CDS applications.

Characteristics of Different Clinical Notes
This study provides a comprehensive understanding of the
characteristics and linguistic composition of different types of
clinical notes. Our analysis revealed long-tail distributions in
terms of notes per patient, note length, and clinical entity
density. Therefore, the 90th percentile could serve as a practical
benchmark when determining the necessary context length for
various NLP tasks on this type of clinical note–based corpus.
It is more practical and logical to design NLP systems to
accommodate 90% of the cases, excluding outliers with an
unusually large number of notes per patient or exceptionally
lengthy notes and sentences.

We identified significant differences in note length, sentence
length, and the presence and density of clinical entities among
the note types. These differences likely stem from the distinct
clinical contexts in which these notes are generated. One
possible explanation is the difference in focus between patient
care specialties and diagnostic specialties. For example, progress
care notes are typically authored by clinicians involved in
ongoing patient care, such as internal medicine or critical care
physicians. These notes are more narrative and detailed,
documenting the patient’s daily progress, treatment plans, and
responses to therapy. This structure results in a greater number
of clinical entities associated with patient management, while
the longer sentence and note lengths reflect the complexities of
continuous care.

In contrast, radiology and pathology reports are usually created
to interpret specific tests or procedures. Therefore, they are
shorter and more structured, with fewer entities per sentence,
as they summarize diagnostic findings rather than provide a
holistic account of the patient’s clinical status. The lower density
of clinical entities in these notes likely reflects the narrower
focus on reporting test results instead of capturing
comprehensive patient management. It is also plausible that for
other entity types more pertinent to pathology reports, such as
anatomical structures, sizes, or locations, the entity density
would be higher within this specific type of notes.

Patients typically had a single pathology note, and only 10%
(4500/5000) of patients had >2 pathology reports, likely
reflecting the definitive nature of pathology results in diagnosing
a medical condition. In contrast, the median number of radiology

reports was 3. This observation suggests that medical imaging
tests are used not only for diagnostic purposes but also for
reassessment and follow-up.

When analyzing the distribution of sentence lengths, we
observed peaks at specific values that did not align with the
expected statistical distribution. A qualitative analysis of these
sentences revealed that they were primarily related to copied
or templated content. For instance, within the corpus, 7521
sentences consisted of the following 20 tokens: “Attending
physician note: \n I have personally reviewed the images and
resident’s interpretation \n thereof and agree with the findings.”
This finding is consistent with the well-documented
phenomenon of redundancy in clinical notes [16,17].

Optimization Strategies and Workload Distribution

Overview
In NLP, particularly in deep learning–based NER systems such
as bidirectional long short-term memory and conditional random
fields, sentence length plays a pivotal role. This is because
sentences are the primary units of processing in such
architectures, contrasting with large language models where the
context window can encompass longer text spans. Consequently,
for deep learning NER, overly long or short sentences can
impact the model’s ability to accurately recognize and categorize
entities, emphasizing the need for optimal sentence
segmentation.

One significant finding of this study is the variation in
processing times across different types of clinical reports, as
described in Table 2. This variation indicates the complexity
and diverse nature of different report types and highlights the
need for tailored optimization strategies to improve efficiency.
However, progress and care notes exhibited considerably higher
runtime. This discrepancy suggests that progress and care notes
may contain more extensive and detailed information compared
to other report types, which requires greater memory allocation
for processing. The observed CPU use across all 3 processing
tasks, including pathology, radiology, and progress and care
notes, remained relatively consistent, as depicted in Figure 2.
This consistent CPU use indicates a balanced workload
distribution during the processing of clinical reports. However,
further optimization could be explored to ensure efficient use
of computational resources and enhance overall system
performance.

These findings emphasize the need for tailored optimization
strategies for different report types to achieve optimal processing
times and resource use. In addition, it underscores the
importance of allocating sufficient memory resources,
particularly for more complex report types such as progress and
care notes. There are some suggestions related to optimization
strategies, inlucding the following:

NoteType-Specific Preprocessing
The goal of this approach is to identify and prioritize key
sections or entities within each report type to streamline the
processing pipeline. Different note types varied significantly in
their entity densities and sequence lengths. This variety not only
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impacts processing times but also requires tailored preprocessing
strategies.

Pathology and radiology notes, while generally shorter, may
not necessarily contain fewer entities; rather, they tend to have
a higher density of specific entities such as anatomical sites,
size, and histological types, as covered in this paper. Conversely,
longer progress care notes, replete with intricate details of
patient care, pose a greater challenge due to their extended
runtime and larger data volumes. Therefore, computational
optimization strategies for these notes must account not just for
the type of document but also for the specific entities targeted
for extraction. Given this context, these progress notes
necessitated nuanced preprocessing, including segmentation
into smaller parts, to ensure efficient handling.

Therefore, the key takeaway is the need for flexible
preprocessing strategies, adaptable to the specific characteristics
of each note type, to ensure both efficiency and accuracy in
processing diverse clinical notes.

Algorithmic Optimization
The goal of this approach is to explore and fine-tune NER
models to suit the specific requirements of each note type.
Different report types may have distinct patterns or structures,
and optimizing the algorithms accordingly can lead to more
accurate and efficient processing. This may involve leveraging
domain-specific knowledge, incorporating machine learning
techniques, or adopting advanced NER models to enhance
performance.

Resource Allocation Optimization
It is advisable to allocate computational resources, such as
memory and processing power, based on the requirements of
each report type. Because different report types may have
varying complexities and information densities, it is crucial to
optimize resource allocation accordingly. If the progress care
notes contain a greater number of tokens per sentence (ie, longer
sequences), this leads to an extended runtime. In such a situation,
increasing computational resources and memory allocation
could prove to be an effective strategy. Alternatively, we could
also consider decreasing the mini-batch size and carrying out
distributed processing for each. This method could potentially
mitigate the runtime bottleneck issue. Such strategies become
particularly vital when these tools are implemented in real-time
or near–real-time environments.

Performance of the NER Models
The implemented NER models demonstrated promising
precision in identifying clinical entities, with procedures

showing the highest precision. The assertion model also
exhibited a high level of accuracy in categorizing the presence
or absence of entities, highlighting the potential of NLP tools
in processing and comprehending complex clinical data.

Recall (sensitivity) was not evaluated in this project for NER
models, as it would have required a significant manual
annotation effort beyond the primary objectives of the study.
Pretrained NER models used in this study have been reported
to achieve high F1-scores (0.96 for disease and drug entities
and 0.86 for procedure and symptom entities [8]), indicating
presumably adequate recall for our research aims. Regarding
the potential impact of recall on comparing entity density across
different document types (eg, pathology, progress notes, and
radiology), we hypothesize that recall performance is likely
consistent across these document types. This consistency is
expected, as the NER model was pretrained on data from a wide
variety of clinical documents [9], suggesting that any
recall-related misclassifications would be nondifferential across
document types. Therefore, we do not anticipate that variations
in recall would significantly affect our conclusions on entity
density differences among document types.

Conclusions
Given the promising findings of our study, it is crucial to pursue
further research in this domain. We encourage additional
exploration of the application and optimization of NLP tools in
clinical contexts. Future studies should consider expanding the
range of clinical entities under consideration and further
investigate the phenomena of redundancy and the effects of
templated content within clinical notes.

Moreover, further research could analyze different types of
clinical notes that were not included in our study, such as
discharge summaries or psychiatric evaluation notes.
Understanding the linguistic characteristics of these notes could
expand the applicability of NLP tools and enhance their
performance across a broader range of clinical scenarios.

In conclusion, this study provides valuable insights into the
development and deployment of CDS tools using NER. The
variation in processing times, memory use, and CPU use across
different report types underscores the importance of tailored
optimization strategies and resource allocation. These lessons
contribute to the overall knowledge base for designing effective
CDS tools and inform future research and development efforts
in this domain.
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