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Abstract

Background: Cerebrovascular diseases are the second most common cause of death worldwide and one of the major causes of
disability burden. Advancements in artificial intelligence have the potential to revolutionize health care delivery, particularly in
critical decision-making scenarios such as ischemic stroke management.

Objective: This study aims to evaluate the effectiveness of GPT-4 in providing clinical support for emergency department
neurologists by comparing its recommendations with expert opinions and real-world outcomes in acute ischemic stroke
management.

Methods: A cohort of 100 patients with acute stroke symptoms was retrospectively reviewed. Data used for decision-making
included patients’ history, clinical evaluation, imaging study results, and other relevant details. Each case was independently
presented to GPT-4, which provided scaled recommendations (1-7) regarding the appropriateness of treatment, the use of tissue
plasminogen activator, and the need for endovascular thrombectomy. Additionally, GPT-4 estimated the 90-day mortality
probability for each patient and elucidated its reasoning for each recommendation. The recommendations were then compared
with a stroke specialist’s opinion and actual treatment decisions.

Results: In our cohort of 100 patients, treatment recommendations by GPT-4 showed strong agreement with expert opinion
(area under the curve [AUC] 0.85, 95% CI 0.77-0.93) and real-world treatment decisions (AUC 0.80, 95% CI 0.69-0.91). GPT-4
showed near-perfect agreement with real-world decisions in recommending endovascular thrombectomy (AUC 0.94, 95% CI
0.89-0.98) and strong agreement for tissue plasminogen activator treatment (AUC 0.77, 95% CI 0.68-0.86). Notably, in some
cases, GPT-4 recommended more aggressive treatment than human experts, with 11 instances where GPT-4 suggested tissue
plasminogen activator use against expert opinion. For mortality prediction, GPT-4 accurately identified 10 (77%) out of 13 deaths
within its top 25 high-risk predictions (AUC 0.89, 95% CI 0.8077-0.9739; hazard ratio 6.98, 95% CI 2.88-16.9; P<.001),
outperforming supervised machine learning models such as PRACTICE (AUC 0.70; log-rank P=.02) and PREMISE (AUC 0.77;
P=.07).

Conclusions: This study demonstrates the potential of GPT-4 as a viable clinical decision-support tool in the management of
acute stroke. Its ability to provide explainable recommendations without requiring structured data input aligns well with the
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routine workflows of treating physicians. However, the tendency toward more aggressive treatment recommendations highlights
the importance of human oversight in clinical decision-making. Future studies should focus on prospective validations and
exploring the safe integration of such artificial intelligence tools into clinical practice.

(JMIR AI 2025;4:e60391) doi: 10.2196/60391
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Introduction

The advent of GPT-4 [1], launched by OpenAI in March 2023,
marked a significant milestone in the evolution of artificial
intelligence (AI) and its applications in various domains,
including health care. GPT-4, a model under the umbrella of
GPT, exemplifies the advancement in large language model
(LLM) technology [2,3]. The foundational architecture of this
technology involves training on extensive datasets, enabling
the model to function as a “few-shot learner.” This capability
allows GPT-4 to adapt to new domains and continuously refine
its performance through ongoing learning [2,4-6].

In the realm of clinical medicine, the potential applications of
LLMs like GPT-4 are particularly intriguing. These models
offer promise as supportive tools for health care professionals,
aiding in the efficient summarization of patient data, assisting
in decision-making processes, and potentially improving the
accuracy and speed of medical interventions [7,8]. Recent
research has underscored the capabilities of GPT-4 in complex
medical tasks [9]. Notably, the model has demonstrated
proficiency in examinations akin to the United States Medical
Licensing Examination, achieving scores that meet or nearly
meet the passing thresholds [10]. Additionally, in assessments
modeled after neurology board exam questions, GPT-4 has
shown a high accuracy rate, improving with repeated attempts
[9,11,12].

The management of acute ischemic stroke (AIS) presents a
critical and time-sensitive challenge in clinical settings. The
approach to diagnosing and treating AIS requires a synthesis
of information including patient symptoms, physical and
neurological examinations, medical history, and imaging results.
Despite the availability of established guidelines by the
American Heart Association/American Stroke Association for
stroke management [13-16], the pivotal role of the treating
physician’s judgment remains. Variability in clinical
presentations and the urgent need for decision-making
underscore the potential value of AI-assisted tools in this
context. Moreover, predicting early mortality in AIS is essential
for guiding treatment decisions, optimizing resource allocation
in health care settings, facilitating effective communication with
patients and their families, supporting research and clinical
trials, and contributing to quality improvement initiatives. In
accordance, several traditional machine learning models have
been trained for this task in recent years [17-20].

Here, we leveraged patient data from the emergency department
(ED) of a large referral hospital, focusing on individuals
presenting with stroke symptoms, to evaluate the effectiveness
of GPT-4 in delivering accurate clinical decisions for the

treatment of AIS. We also assessed its proficiency in predicting
90-day mortality outcomes. The aim of this study was to
quantify the extent to which an advanced language model like
GPT-4 can augment the clinical decision-making process in
AIS management. Specifically, we hypothesized that GPT-4
could provide accurate treatment recommendations and mortality
predictions comparable to those of human experts, potentially
contributing to improved patient outcomes in one of the most
critical areas of emergency medicine.

Methods

Cohort Selection
This retrospective study comprised 100 consecutive cases from
the ED of Rambam Healthcare Campus. All patients treated
between January 2022 and April 2023 received a confirmed
diagnosis of AIS. The inclusion criteria encompassed patients
aged older than 18 years, a National Institutes of Health Stroke
Scale (NIHSS) [21] score of 5 or higher (with the exception of
patient 93 who received tissue plasminogen activator [tPA]
offsite), and less than 5 hours from symptom onset to undergoing
a noncontrast computed tomography (CT) of the brain. All
included patients underwent noncontrast brain CT, CT
angiography, and CT perfusion while in the ED. This cohort
was specifically chosen for its alignment with American Heart
Association guidelines for acute stroke management [13],
making each patient a potential candidate for both tPA and
endovascular thrombectomy (EVT) treatment. A total of 17
patients not meeting these criteria were categorized as
“complex” cases, in which the clinical scenario warranted extra
consideration of off-guideline treatment options, and there was
a need to assess the individual patient’s unique characteristics,
medical history, and condition. For every patient, comprehensive
medical records from their ED arrival, including imaging results,
were collected and translated from Hebrew to English. Exclusion
criteria were patients with incomplete clinical data or where
stroke was not the final diagnosis.

Clinical data for each patient included demographics, medical
history, chief complaints, symptom onset time, physical and
neurological examinations, NIHSS score, imaging results
(including Alberta Stroke Program Early CT Score [22] when
available), treatment received, and mortality data. An
experienced stroke specialist, blinded to the outcomes, reviewed
the cases and made treatment decisions among no treatment,
tPA, EVT, or a combination of tPA and EVT. All data were
deidentified, removing identifiers, names, and dates.

Analysis Pipeline
The analysis used the OpenAI application programming
interface “create chat completion” method with the model
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gpt-4-1106-preview. Default parameters were set
(temperature=1; top_p=1; n=1), and submissions were made
using the R (R Foundation for Statistical Computing) wrapper
library openai. Full prompt and example are available in
Multimedia Appendix 1.

To assess the reliability of GPT-4 responses, each case
underwent 5 submissions, as well as an additional submission
without the accompanying clinical presentation narrative. For
every treatment decision, GPT-4 provided a narrative
explanation. In 95% (475/500) of cases, GPT-4 returned
responses in the requested structure, which were automatically
scraped with R. Unstructured responses were manually entered.
For estimations provided as a range, the average was used. If
GPT-4 provided a number with a greater symbol (eg, >50), the
number was recorded with an additional 5. In 0.8% (4/500) of
cases, GPT-4 did not return numeric responses for treatment
decisions, and in 8.6% (43/500) of responses, it did not provide
a 90-day mortality estimate.

Statistical Analysis
GPT-4’s responses were scaled from 1 to 7 for treatment
decisions and from 0 to 100 for 90-day mortality estimations.
Averages were calculated across the 5 repeats. All statistical
analyses were conducted using R (version 4.3.2), using base R
functions, predictive receiver operating characteristic (ROC)
1.18.5, and survival 3.5.7. ROC curves were smoothed.
Agreement between treatment decisions was measured using a
linear weighted Cohen κ coefficient, using the psych 2.3.12
library.

Ethical Considerations
This study was approved by the Rambam Medical Center
Helsinki Committee (0156-24-D) as a retrospective analysis.

The requirement for informed consent was waived due to the
retrospective nature of the study and the use of deidentified
data. All patient information was anonymized prior to analysis,
with all identifiers, names, and dates removed to ensure privacy
and confidentiality. No compensation was provided to
participants as this was a retrospective study using existing
clinical data. The study did not involve any images that could
potentially identify individual participants. This research was
conducted in accordance with the principles of the Declaration
of Helsinki and adhered to all relevant institutional and national
research ethics guidelines.

Results

Patient Demographics and Clinical Data
We generated a cohort from 100 consecutive cases of patients
presenting with acute stroke symptoms at the ED of Rambam
Healthcare Campus. All cases underwent full clinical and
radiological evaluation in the emergency setting for acute stroke
and were fully evaluated by a neurologist (Table 1 and Figure
1A). Revascularization treatment was administered to 78 of the
patients: 36 were treated with tPA, 30 with EVT, and 12
received both. Within this cohort, 13 patients died within 90
days and 21 in total. Overall, 17 cases were classified as
“complex” when not fitting exact treatment guidelines [13].
The data for each case encompassed demographics, NIHSS [21]
scores, the timing of arrival to brain CT, onset of symptoms,
and details from textual brain imaging results and risk factors
that were available as medical history at the time of admission
to the ED (Table S1 in Multimedia Appendix 2).
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Table 1. Study cohort clinical information and demographics.

Complex cases (n=17)Simple cases (n=83)Variable

7 (41)38 (46)Female sex, n (%)

71.0 (65.0-77.0)75.0 (68.0-79.5)Age (years), median (IQR)

5.0 (5.0-9.0)12.0 (8.5-16.5)First NIHSSa, median (IQR)

4.45 (3.0-5.2)1.8 (I1.5-2.6)Time to CTb (hours), median (IQR)

Brain CT findings, n (%)

7 (41)48 (58)LVOc

4 (24)47 (57)MCAd

4 (24)8 (10)PCAe

 Risk factors, n (%)

10 (59)51 (61)Hypertension

3 (18)35 (42)DMf

6 (35)36 (43)Dyslipidemia

4 (24)11 (13)Smoking

0 (0)11 (13)CKDg

0 (0)5 (6)Obese

1 (6)9 (11)Cancer

1 (6)7 (8)HFh

2 (12)19 (23)Cardiac arrhythmia

0 (0)1 (1)Family history for CADi

7 (41)29 (35)tPAj, n (%)

1 (6)29 (35)EVTk, n (%)

0 (0)12 (14)tPA + EVT, n (%)

2 (12)11 (13)90-day mortality, n (%)

4 (24)17 (20)Overall mortality, n (%)

aNIHSS: National Institutes of Health Stroke Scale.
bCT: computed tomography.
cLVO: large vessel occlusion.
dMCA: middle cerebral artery.
ePCA: posterior cerebral artery.
fDM: diabetes mellitus.
gCKD: chronic kidney disease.
hHF: heart failure.
iCAD: coronary artery disease.
jtPA: tissue plasminogen activator.
kEVT: endovascular thrombectomy.
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Figure 1. Study design and GPT-4 performance evaluation. (A) Illustration of the study design involving 100 consecutive patients with stroke who
underwent a comprehensive stroke workup, including perfusion, angiography, and noncontrast brain CT upon arrival at the emergency department.
Clinical information, demographics, comorbidities, and CT perfusion results were recorded. The textual reports from these investigations were entered
into the GPT-4 API, which was instructed to provide scores indicating whether to treat the patient, whether to administer tPA, whether to pursue EVT,
and an estimate of 90-day mortality. (B) Box plots presenting average scores of GPT-4 assessments for decision to treat (y-axis). The comparison is
made against real-world decisions and expert assessments of each case (true: to treat the patient and false: to not treat). (C) ROC curves and AUC scores
of GPT-4 average scores for decision to treat, compared to real-world decisions and expert assessments. API: application programming interface; AUC:
area under the curve; CT: computed tomography; EVT: endovascular thrombectomy; ROC: receiver operating characteristic; tPA: tissue plasminogen
activator.

A stroke specialist, blinded to the outcomes, retrospectively
reviewed each case. In 82 of the cases, the expert’s decisions
aligned with the actual treatments administered. Of note, the
expert recommended not treating 11 patients who received
treatment and suggested treatment for 7 who did not receive
any. Concerning specific treatments, full agreement was
observed in 61 cases, although the expert more frequently
recommended combining tPA and EVT than what was observed
in practice (Cohen κ=0.51, signifying moderate agreement).

GPT-4 Clinical Decisions
Independently, each case was assessed with GPT-4, generating
a treatment recommendation scale from 1=intervention not
recommended to 7=highly recommended (Figure 1A; Table S2
in Multimedia Appendix 2). To account for the variability in
GPT-4 responses, each case was assessed 5 times. Cohen κ for
treatment scores across runs ranged from 0.56 to 0.73. As

expected, the predefined “complex” cases demonstrated
significantly greater variance between runs (P=.02).

Comparing GPT-4’s treatment scale to both the expert’s decision
and the actual treatment revealed that the average scores from
GPT-4 for patients who were treated were, on average, 1.9 points
higher than those not treated (P<.001), and there was a 2.1-point
difference in comparison to the expert decision (P<.001; Figure
1B). The average scores provided an area under the ROC curve
(AUC-ROC) of 0.80 (95% CI 0.69-0.91) compared to the
real-world decision, and 0.85 (95% CI 0.77-0.93) compared to
the expert decision (Figure 1C). These average scores for AUCs
were higher than those of each independent run (Multimedia
Appendix 3). Additionally, removing the clinical presentation
narrative from GPT-4’s analysis resulted in a drop in AUC to
0.70 with the real-world decision and 0.72 with the expert
decision (Multimedia Appendix 3), highlighting the importance
of unstructured narrative data in treatment decision-making.
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Similarly, setting the temperature of GPT-4 to 0 resulted in
AUCs of 0.70 and 0.72 with the real-world and expert decisions,
respectively, suggesting the need to allow GPT-4 more creativity
to obtain better decisions.

Using a score threshold of 4, we observed 22 disagreements
between GPT-4 and the real-world treatment and 20
disagreements with the expert decision. Notably, a substantial
proportion of these disagreements coincided with cases where
the expert and real-world decisions diverged, with 18 (60%)
out of 30 such cases showing this dual disagreement. Moreover,
complex cases were more prone to discrepancies, as 7
disagreements with the real-world decision and 5 with the expert
decision were noted among the 17 complex cases. The specialist
examined the explanatory text produced by GPT-4 for all
discrepancies between the model and their blinded assessments,
evaluating whether they agreed that the explanatory text, as part
of the original model output, was logical and could be deemed
good practice. Of the 20 instances where disagreements
occurred, in 3 cases, the expert, after having carefully considered
GPT-4’s detailed explanations, conceded that GPT-4’s
assessment was preferable to their original decision. In
additional 2 cases, the expert acknowledged that GPT-4’s
suggested approach was indeed acceptable and aligned with
viable treatment options. In instances where the expert disagreed
with GPT-4’s reasoning, the disagreements primarily revolved
around 3 key issues. First, GPT-4 inaccurately associated
abnormal angiographic findings with clinical presentations. An
illustrative case is that of a patient with stenosis of the
right-sided middle cerebral artery who was presented with right

hemiparesis (case 94). Despite these 2 elements potentially
being anatomically unrelated, GPT-4 linked them erroneously.
The second notable issue pertained to ethical considerations,
particularly in a case involving a patient with active laryngeal
cancer and cognitive decline. According to guidelines, the
patient was deemed eligible for treatment, but the expert’s
decision was to not proceed with treatment as life expectancy
was short and he was palliative (case 14). Third, discrepancies
arose in deviations from guidelines, particularly in cases of
distal thrombectomies. For instance, in the case of a patient with
M2 obstruction (considered distal thrombus) aged 96 years,
GPT-4 recommended against treatment, which is the established
guidelines; however, the expert call was to proceed with
thrombectomy due to a high NIHSS score and good results in
such cases in the past from personal experience (case 54).

In assessing GPT-4’s ability to choose the best treatment option,
it showed near-perfect agreement with real-world decisions in
recommending EVT: GPT-4 suggested EVT for all patients
(42/42, 100%) treated with EVT (average score>4). The expert
suggested EVT for 55 patients, of which 50 were also
recommended EVT by GPT-4, corresponding to an AUC of
0.94 (95% CI 0.89-0.98) with real-world decisions and 0.95
(95% CI: 0.90-0.99) with the expert (Figure 2A). For tPA
treatment, GPT-4 recommended it for 38 (79%) of the 48
patients who received it, showing a closer agreement with the
expert. Of the 41 patients recommended for tPA by the expert,
GPT-4 agreed on 35 (85%), corresponding to an AUC of 0.77
(95% CI 0.68-0.86) with real-world decisions and 0.82 (95%
CI 0.73-0.90) with the expert (Figure 2B).

Figure 2. GPT-4 treatment type scores. Box plots depict GPT-4 treatment type scores, with the y-axis representing probability score (1-7 scale). Each
treatment category is color coded: green for no intervention, orange for tPA, purple for EVT, and pink for tPA and EVT. (A) GPT-4 scores for EVT,
stratified by real-world decisions and expert assessments. (B) GPT-4 scores for tPA, stratified by real-world decisions and expert assessments. EVT:
endovascular thrombectomy; tPA: tissue plasminogen activator.

Mortality Risk
We further evaluated the ability of GPT-4 to predict 90-day
mortality. The model estimated an average mortality risk of
55.1% for patients who died within 90 days, compared to 31.5%
for survivors (P<.001), yielding an AUC of 0.89 (95% CI
0.81-0.98; Figure 3A). To contextualize these results, we
compared GPT-4’s performance with that of 2 recent machine

learning models specifically trained for 90-day mortality
prediction. In our cohort, the PRACTICE model [18] achieved
an AUC of 0.70, significantly worse than the GPT-4 predictions
(log-rank P value=.02), while the PREMISE model [19] reached
an AUC of 0.77 (P=.07; Figure 3A). These comparisons
underscore GPT-4’s remarkable accuracy in mortality risk
assessment, outperforming specialized, trained predictive
models.
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Figure 3. GPT-4 mortality predictions. (A) ROC curve for 90-day mortality estimations by GPT-4 (red), PRACTICE (green), and PREMISE (blue).
(B) Kaplan-Meier plot stratifying individuals into low- and high-risk categories for mortality based on GPT-4’s 90-day mortality estimations. AUC:
area under the curve; ROC: receiver operating characteristic.

For identifying high-risk patients, we set a threshold at the top
25% of the cohort, which corresponded to a predicted mortality
risk cutoff of 41%. Within this high-risk group, 10 patients
passed away within 90 days of admission, and an additional 3
within the subsequent year (Figure 3B). Conversely, among the
remaining 75 patients categorized as lower risk, only 3 deaths
occurred within the 90-day period, and 6 in total during the first

year. The calculated hazard ratio was 6.98 (95% CI 2.88-16.9;
P<.001), reinforcing the model’s capability to stratify patients
based on their mortality risk effectively.

Discussion

Here, we demonstrate the potential of GPT-4 as a clinical
decision-support tool in AIS management. Our main findings
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show that treatment recommendations by GPT-4 closely aligned
with both expert opinions (AUC 0.85) and real-world decisions
(AUC 0.80). Notably, GPT-4 exhibited high accuracy in
predicting 90-day mortality (AUC 0.89), outperforming
specialized machine learning models.

AIS is a leading cause of mortality and disability worldwide
[23-25]. The urgency of stroke care is particularly critical in
regions with limited access to specialized stroke units or
qualified physicians [26,27]. GPT-4’s ability to operate
seamlessly within existing treatment routines, relying solely on
routine chart information, makes it valuable for quick triage in
underresourced settings [7]. This accessibility could democratize
high-level medical consultation, extending expert-level
decision-making to underresourced health care facilities.

In our study, GPT-4 demonstrated high accuracy in predicting
90-day mortality for patients with AIS undergoing endovascular
treatment. The model used a diverse range of clinical and
imaging variables, offering a more comprehensive approach
compared to existing models like Houston intraarterial therapy,
Houston intraarterial therapy 2, PREMISE, and PRACTICE
[18,19,28,29]. Unlike traditional health care predictive models
that rely on structured data, GPT-4 provided recommendations
based on narrative text. Our analyses highlighted the significance
of unstructured data, as evidenced by the drop in prediction
accuracy when the narrative clinical presentation was excluded.
This showcases GPT-4’s capability to handle complex medical
data in a way that aligns with the natural flow of clinical
information.

A crucial aspect of deploying AI models like GPT-4 in health
care is the transparency and interpretability of their
decision-making process. While GPT-4’s natural language
outputs can give the impression of explainability, these may
not necessarily reflect a truly reliable reasoning process. Our
analysis focused on the face value of GPT-4’s rationales, which
were deemed insightful by the expert reviewer. However, we
acknowledge the potential for convincing but flawed
explanations, a known limitation of LLMs. This highlights the
importance of critical evaluation and cautious interpretation of
such model outputs, particularly in high-stakes medical
decision-making contexts. Ongoing research is needed to address
the transparency and reliability of AI systems’ reasoning
processes before their broader integration into clinical practice.

Despite its promising results, our study has several limitations.
We must acknowledge certain challenges in applying GPT-4,
especially regarding its ability to assess ethical issues. The

model may face difficulties in addressing the nuanced and
complex ethical considerations intrinsic to medical
decision-making. This limitation emphasizes the necessity for
cautious and supplementary human oversight when deploying
AI tools like GPT-4 in sensitive health care contexts. The
occurrence of “hallucinations” or erroneous outputs is another
concern, although we demonstrated that running multiple
assessments can mitigate this risk. Future research should focus
on refining these methods to further reduce inaccuracies.

Another consideration is the generalizability of these findings.
While it is possible that the recommendations may partially
reflect the clinician’s intuition encoded in the clinical notes, our
analyses suggest that the model’s assessments go beyond mere
interpretation. The discrepancies observed between the GPT-4
recommendations and both the real-world treatment decisions
and the expert evaluations indicate that the model is capable of
making independent assessments based on the provided data.
Furthermore, the clinical presentation notes and imaging report
interpretations (Table S1 in Multimedia Appendix 2) do not
explicitly convey the clinician’s treatment preferences or
intuitions, suggesting that GPT-4 is not simply regurgitating
the clinician’s thought process. Another possible limitation is
the study’s exclusion criteria, particularly the retrospective
exclusion of patients with incomplete clinical data or those who
were ultimately diagnosed with conditions other than stroke.
While these exclusions were necessary to ensure the study
focused on accurately diagnosed AIS cases for which GPT-4
decision-support capabilities could be most relevant, we
acknowledge that this approach may limit the generalizability
of our findings to broader clinical settings. In real-world
scenarios, clinicians are often faced with diagnostic uncertainty
and incomplete information when making treatment decisions.
Finally, our study was conducted in a single center with a
specific patient population. Further studies across diverse
settings and larger populations are necessary to validate the
efficacy and applicability of GPT-4 in various clinical
environments.

In conclusion, our study introduces a groundbreaking approach
to clinical decision support in stroke management using GPT-4.
This model has shown the potential to process narrative text,
provide explainable recommendations, and enhance medical
decision-making. As we continue to explore and refine this
technology, it holds the promise of transforming patient care
and improving outcomes in one of the most critical areas of
medicine.
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