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Abstract

Background: The rapid advancement of deep learning in health care presents significant opportunities for automating complex
medical tasks and improving clinical workflows. However, widespread adoption is impeded by data privacy concerns and the
necessity for large, diverse datasets across multiple institutions. Federated learning (FL) has emerged as a viable solution, enabling
collaborative artificial intelligence model development without sharing individual patient data. To effectively implement FL in
health care, robust and secure infrastructures are essential. Developing such federated deep learning frameworks is crucial to
harnessing the full potential of artificial intelligence while ensuring patient data privacy and regulatory compliance.

Objective: The objective is to introduce an innovative FL infrastructure called the Personal Health Train (PHT) that includes
the procedural, technical, and governance components needed to implement FL on real-world health care data, including training
deep learning neural networks. The study aims to apply this federated deep learning infrastructure to the use case of gross tumor
volume segmentation on chest computed tomography images of patients with lung cancer and present the results from a
proof-of-concept experiment.

Methods: The PHT framework addresses the challenges of data privacy when sharing data, by keeping data close to the source
and instead bringing the analysis to the data. Technologically, PHT requires 3 interdependent components: “tracks” (protected
communication channels), “trains” (containerized software apps), and “stations” (institutional data repositories), which are
supported by the open source “Vantage6” software. The study applies this federated deep learning infrastructure to the use case
of gross tumor volume segmentation on chest computed tomography images of patients with lung cancer, with the introduction
of an additional component called the secure aggregation server, where the model averaging is done in a trusted and inaccessible
environment.

Results: We demonstrated the feasibility of executing deep learning algorithms in a federated manner using PHT and presented
the results from a proof-of-concept study. The infrastructure linked 12 hospitals across 8 nations, covering 4 continents,
demonstrating the scalability and global reach of the proposed approach. During the execution and training of the deep learning
algorithm, no data were shared outside the hospital.

Conclusions: The findings of the proof-of-concept study, as well as the implications and limitations of the infrastructure and
the results, are discussed. The application of federated deep learning to unstructured medical imaging data, facilitated by the PHT
framework and Vantage6 platform, represents a significant advancement in the field. The proposed infrastructure addresses the
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challenges of data privacy and enables collaborative model development, paving the way for the widespread adoption of deep
learning–based tools in the medical domain and beyond. The introduction of the secure aggregation server implied that data
leakage problems in FL can be prevented by careful design decisions of the infrastructure.

Trial Registration: ClinicalTrials.gov NCT05775068; https://clinicaltrials.gov/study/NCT05775068

(JMIR AI 2025;4:e60847) doi: 10.2196/60847
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Introduction

Federated learning (FL) allows the collaborative development
of artificial intelligence models using large datasets, without
the need to share individual patient-level data [1-4]. In FL,
partial models trained on separate datasets are shared, but not
the data itself, hence a global model is derived from the
collective set of partial models. This study introduces an
innovative FL framework known as the Personal Health Train
(PHT) that includes the procedural, technical, and governance
components needed to implement FL on real-world health care
data, including the training of deep learning neural networks
[5]. The PHT infrastructure is supported by a free and
open-source infrastructure known as “priVAcy preserviNg
federaTed leArninG infrastructurE for Secure Insight
eXchange,” that is, Vantage6 [6]. We will describe in detail an
architecture for training a deep learning model in a federated
way with 12 institutional partners located in different parts of
the world.

Sharing patient data between health care institutions is tightly
regulated due to concerns about patient confidentiality and the
potential for misuse of data. Data protection laws—including
the European Union’s General Data Protection Regulations;
Health Insurance Portability and Accountability Act of 1996
(HIPAA) in the United States; and similar regulations in China,
India, Brazil, and many other countries—place strict conditions
on the sharing and secondary use of patient data [7].
Incompatibilities between laws and variations in the
interpretation of such laws lead to strong reluctance about
sharing data across organizational and jurisdictional boundaries
[8-10].

To address the challenges of data privacy, a range of approaches
have been published in the literature. Differential privacy,
homomorphic encryption, and FL comprise a family of
applications known as “privacy enhancing technologies”
[11-13]. The common goal of privacy-enhancing technologies
is to unlock positively impactful societal, economic, and clinical
knowledge by analyzing data en masse, while obscuring the
identity of study subjects that make up the dataset. Academic
institutions are more frequently setting up controlled workspaces
(eg, secure research environments [SREs]), where multiple
researchers can collaborate on data analysis within a common
cloud computing environment, but without allowing access to
the data from outside the SRE desktop; however, this assumes
that all the data needed have been transferred into the SRE in
the first place [14,15]. Similarly, the National Institutes of
Health has set up an “Imaging Data Commons” to provide

secure access to a large collection of publicly available cancer
imaging data colocated with analysis tools and resources [16].
Other researchers have shown that blockchain encryption
technology can be used to securely store and share sensitive
medical data [17]. Blockchain ensures data integrity by
maintaining an audit trail of every transaction, while zero trust
principles make sure the medical data are encrypted and only
authenticated users and devices interact with the network [18].

From a procedural point of view, the PHT manifesto for FL
rules out the sharing of individual patient-level data between
institutions, no matter if the patient data have been deidentified
or encrypted [19]. The privacy-by-design principle here may
be referred to as “safety in numbers,” that is, any single
individual’s data values are obscured, by computing either the
descriptive statistics or the partial model, over multiple patients.
PHT allows sufficiently adaptable methods of model training,
such as iterative numerical approximation (eg, bisection) or
federated averaging (FedAvg [20]), and does not mandatorily
require model gradients or model residuals, which are
well-known avenues of privacy attacks [21-24]. Governance is
essential with regards to compliance with privacy legislation
and division of intellectual property between collaboration
partners. A consortium agreement template for PHT has been
made openly accessible [25], which is based on our current
consortium ARGOS (artificial intelligence for gross tumor
volume segmentation) [26]. Technologically, PHT requires 3
interdependent components to be installed—“tracks” are
protected telecommunications channels that connect partner
institutions, “trains” are Docker containerized software apps
that execute a statistical analysis that all partners have agreed
upon, and “stations” are the institutional data repositories that
hold the patient data [23]. It is this technological
infrastructure—the tracks, trains, and stations—that is supported
by the aforementioned Vantage6 software, for which detailed
stand-alone documentation exists [27].

The paper proposes a federated deep learning infrastructure
based on the PHT manifesto [19], which provides a governance
and ethical, legal, and social implications framework for
conducting FL studies across geographically diverse data
providers. The research aims to showcase a custom FL
infrastructure using the open-source Vantage6 platform,
detailing its technological foundations and implementation
specifics. The paper emphasizes the significance of the
implemented custom federation strategy, which maintains a
strict separation between intermediate models from both internal
and external user access. This approach is crucial for
safeguarding the security and privacy of sensitive patient data,
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as it prevents potential reverse engineering of intermediate
results that could compromise confidentiality. This aggregation
strategy is particularly important in the case of deep
learning–based studies where multiple iterations of models or
gradients are necessary to derive an optimal global model.

To demonstrate the infrastructure’s robustness and practical
applicability, the study presents a proof-of-concept involving
the development of a federated deep learning algorithm based
on 2D convolutional neural network (CNN) architecture [28].
This algorithm was implemented to automatically segment gross
tumor volume (GTV) from lung computed tomography (CT)

images of patients with lung cancer. Figure 1 [29] demonstrates
a manual segmentation and deep learning–based segmentation
of a tumor in the chest CT image of a patient. The subsequent
sections provide a comprehensive account of the precise
technical specifications of the infrastructure that links 12
hospitals across 8 nations, covering 5 continents. The algorithm
developed learns from the distributed datasets and deploys it
using the infrastructure. However, it is important to mention
that the choice of the use case is only exemplary in nature, and
the infrastructure is equipped to train any kind of deep learning
architecture for relevant clinical use cases.

Figure 1. Illustrative result on a hold-out validation slice; the main bulk of the gross tumor volume as determined by the oncologist (middle) has been
correctly delineated by the deep learning algorithm (right), but a small tumor mass adjacent and to the lower right of the main gross tumor volume mass
has been missed (reproduced from Figure 6 of Chapter 4 of the thesis by Patil [29], which is published under the Taverne License [Article 25fa of the
Dutch Copyright Act]).

The research used a deep learning architecture because in recent
times the application of deep learning in health care has led to
impressive results, specifically in the areas of natural language
processing and computer vision (medical image analysis), with
the promise for more efficient diagnostics and better predictions
of treatment outcomes in future [30-35]. However, for robust
generalizability, and to earn clinicians’acceptance, it is essential
that artificial intelligence apps are trained on massive volumes
of diverse and demographically representative health care data
across multiple institutions. Given the barriers to data sharing,
this is clearly an area where FL can play a vital role. Many
studies have been published that present FL on medical data
including federated deep learning [36-40]. However, only a
limited number of studies have documented the use of dedicated
frameworks and infrastructures in a transparent manner. The
adoption of a custom federation strategy or absence of explicit
reporting on the used infrastructure is observed in most of the
studies. Table 1 summarizes the small number of FL studies
that have been published in connection with deep learning
investigations related to medical image segmentations to date.

The paper primarily focuses on demonstrating the training and
aggregation mechanism of a deep learning architecture within
a FL framework. It deliberately avoids delving into the
optimization of model performance or clinical accuracy, as these

aspects fall outside the paper’s scope. Instead of emphasizing
the selection of an optimal CNN architecture or aggregation
strategy [39], the research concentrates on elucidating the
functionality of the FL infrastructure. Existing literature has
shown that FL models can achieve performance comparable to
centrally trained models [38,41,45-47]. This supports the
assumption that, given identical datasets and CNN architectures,
a model trained using FL would likely yield similar results to
one trained through centralized methods. The paper operates
under this premise, prioritizing the explanation of the FL process
over demonstrating performance parity with centralized training
approaches.

The study highlights 3 key points as follows:

• FL is particularly well suited for deep learning applications,
which typically require vast amounts of data. This makes
it an ideal showcase for the federated approach.

• When implementing federated deep learning, it is crucial
to have a robust infrastructure and use a customized, secure
aggregation strategy. These elements are essential for
safeguarding the privacy of sensitive patient information.

• FL in real-world medical data is not just a technological
challenge; it requires a comprehensive strategy that
addresses ethical, legal, governance, and organizational
aspects, as highlighted by the PHT manifesto.
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Table 1. Existing studies from the literature focusing on federated deep learning on medical images.

ScaleData typeInfrastructure and clinical use case

NVIDIA FLARE/CLARA

3 centersDICOM MRIProstate segmentation of T2-weighted MRIa [41]

7 centersChest CTbCOVID-19 pneumonia detection [42]

Tensorflow federated

3 datasetsChest CTCOVID-19 prediction from chest CT images [43]

OpenFL

71 centersBrain MRIGlioblastoma tumor boundary detection [44]

aMRI: magnetic resonance imaging.
bCT: computed tomography.

The findings of the proof-of-concept study, as well as the
implications and limitations of the infrastructure and the results,
are discussed. The subsequent section of the paper is structured
as follows: the Methods section describes the approach taken,
followed by the Results, which detail the implementation of the
infrastructure and a proof-of-concept execution. Finally, the
paper concludes with a Discussion section.

Methods

Overview
When conducting a federated deep learning study, it is crucial
to consider several key perspectives, which include both
technical as well as organizational and legal aspects. These key
factors have been instrumental in designing the infrastructure
architecture used for training the deep learning algorithm. In
this section, we discuss the technical details while adhering to
an Ethics-Legal-Social Impact framework as laid down by the
PHT manifesto. The technical design decisions are based on
the following assumptions:

Data Landscape
Understanding the data landscape is crucial in designing and
deploying FL algorithms. The technological approaches for
handling horizontally partitioned data, where each institution
contains nonoverlapping human subjects but the domain of the
data (eg, CT images of lung cancer) is the same across different
institutions, can differ significantly from those used for vertically
partitioned data, where each institution contains the same human
subjects but the domain of the data do not overlap (eg, CT scans
in one, but socioeconomic metrics in another). Additionally,
unstructured data, such as medical images, requires different
algorithms and preprocessing techniques compared with
structured data. In this paper, the architecture will only focus
on CT scans and horizontally partitioned patient data.

Data Preprocessing
In a horizontally partitioned FL setting, the key preprocessing
steps can be standardized and sent to all partner institutions.

However, the workflow needs to handle differences in patients,
scan settings, and orientations. Anonymization, quality
improvements, and DICOM standardization ensure homogeneity
and high quality across hospitals. These offline preprocessing
steps, applied consistently to the horizontally partitioned data,
enabled using the same model across institutions, crucial for
the FL study’s success.

Network Topology of the FL Infrastructure
The network topology choice for implementing FL can vary
from client-server, peer-to-peer, tree-based hierarchical, or
hybrid topologies. While peer-to-peer architecture is more
cost-effective and offers a high capacity, it has the disadvantages
of a lack of security and privacy constraints and a complex
troubleshooting process in the event of a failure. The choice of
network topology for this study is based on a client-server
architecture, offering a single point of control in the form of the
central server.

Choice of Model Aggregation Site
For a client-server architecture, the model aggregation can occur
either in one of the data providers’ machines, the central server,
or in a dedicated aggregation server. For this implementation,
we opted to use a dedicated aggregation server. The details and
benefits of the implementation are discussed in the next section.

Training Strategy
The communication mechanism for transferring weights can be
either synchronous, asynchronous, or semisynchronous, and
weights can be consolidated using ensemble learning, FedAvg,
split learning, weight transfer, or swarm learning. The strategy
used for this study is based on a synchronous mechanism using
the FedAvg algorithm. This gives a simple approach, where the
averaging algorithm waits for all the data centers to transfer the
locally trained model before initiating the averaging.

Based on the assumption, Figure 2 depicts the overall
architecture of the federated deep learning study presented in
the paper. The next section describes the FL Infrastructure in
detail.
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Figure 2. Overall architecture of ARGOS (artificial intelligence for gross tumor volume segmentation) federated deep learning architecture adapted
from Vantage6. The figure depicts a researcher connected to the central server, a secure aggregation server, trains carrying models, connected data
stations, and the communicating tracks.

The ARGOS Federated Deep Learning Infrastructure

Overview
In accordance with the PHT principles, the ARGOS
infrastructure is comprised of 3 primary categories of
components, labeled as the data stations, the trains, and the
track. Furthermore, the architectural framework encompasses
various roles that map to the level of permissions and access,
specifically a track provider, the data providers, and the
researcher. The infrastructure implementation can be further
categorized into 3 important components: a central coordination
server, a secure aggregation server (SAS), and the nodes located
at each “data station.” In the following sections, we attempt to
describe each of these components and the respective
stakeholders responsible for maintaining them.

Central Coordinating Server
The central coordination server is located at the highest
hierarchical level and serves as an intermediary for message
exchange among all other components. The components of the
system, including the users, data stations, and SAS, are
registered entities that possess well-defined authentication
mechanisms within the central server. It is noteworthy that the
central acts as a coordinator rather than a computational engine.
Its primary function is to store task-specific metadata relevant

to the task initiated for training the deep learning algorithm. In
the original Vantage6 infrastructure, the central server also
stores the intermediate results. In the ARGOS infrastructure,
the central server is designed to not store any intermediate
results but only the global aggregated model at the end of the
entire training process.

Secure Aggregation Server
The SAS refers to a specialized station that contains no data
and functions as a consolidator of locally trained models. The
aggregator node is specifically designed to possess a
Representational State Transfer (REST)–application
programming interface (API) termed as the API Forwarder. The
API Forwarder is responsible for managing the requests received
from the data stations and subsequently routing them to the
corresponding active Docker container, running the aggregation
algorithm.

To prevent any malicious or unauthorized communication with
the aggregator node, each data station is equipped with a JSON
Web Token (JWT) that is unique for each iteration. The API
Forwarder only accepts communications that are accompanied
by a valid JWT. The implementation of this functionality
guarantees the protection of infrastructure users and effectively
mitigates the risk of unauthorized access to SAS. Figure 3 shows
the architecture and execution mechanism for the SAS.

JMIR AI 2025 | vol. 4 | e60847 | p. 5https://ai.jmir.org/2025/1/e60847
(page number not for citation purposes)

Choudhury et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Architecture of the secure aggregation server, showing incoming and outgoing requests from the data station nodes. The upload and download
folders are temporary locations used within the running Docker container to store the local and averaged models through disk read or write operations.
The API forwarder, running at port 5050 and embedded within the Vantage6 infrastructure, forwards the incoming requests from the data station nodes
to the algorithm API running at local port 7000 within the Docker container through HTTP requests. The SAS is hosted behind the firewall of a proxy
server, which allows only hypertext transfer protocol secure (HTTPS) communication from the participating nodes. API: application programming
interface; FedAvg: federated averaging; JWT: JSON Web Token.

Data Stations
Data stations are devices located within the confines of each
hospital’s jurisdiction that are not reachable or accessible from
external sources other than Vantage6. The data stations
communicate with the central server through a pull mechanism.
Furthermore, the data stations not only serve as hosts for the
infrastructure node but also offer the essential computational
resources required for training the deep learning network. The
infrastructure node is the software component installed in the
data stations that orchestrates the local execution of the model
and its communication with the central server and the SAS.
Each data station is equipped with at least 1 graphics processing

unit (GPU), which enables the execution of CNNs.
Preprocessing of the raw CT images was executed locally, using
automated preprocessing scripts packaged as Docker containers,
and the preprocessed CT images are stored within a file system
volume in each station. The CNN Docker is designed and
allowed to access the preprocessed images during training. The
primary function of the data station is to receive instructions
from both the SAS and the central server, perform the
computations needed for training the CNN algorithm, and
subsequently transmit the model weights back to the respective
sources. Figure 4 depicts the architectural layout of the data
station and node component of the infrastructure.

Figure 4. Architecture of the data station node component. The node runs the CNN algorithm to learn from the local data. The node further sends and
receives model weights from the secure aggregation server. The train and validation folders are persistent locations within the data stations, storing the
preprocessed NIFTI images. At the end of each training cycle, the intermediate averaged model is first evaluated on the validation sample. CNN:
convolutional neural network; HTTPS: hypertext transfer protocol secure; NIFTI: neuroimaging informatics technology initiative.
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Train
The “train” in the form of a Docker image encompasses several
components bundled together: an untrained U-Net [48,49], a
type of CNN architecture designed for image segmentation tasks
for training on local data; the aggregation algorithm used for
consolidating the models; and a secondary Python Flask API
known as the Algorithm API for facilitating the communication
of these models. The Algorithm API is designed to cater to
requests from the API Forwarder and is built within the
algorithm container. Two levels of API ensured that the node
could handle multiple requests and divert to appropriate Docker
containers. Furthermore, the first level of API also helps in
restricting malicious requests by checking the JWT token
signature, so that the models within the master Docker container
are protected. Each data station is responsible for training and
transmitting the CNN model to the aggregator server. This
suggests that the aggregation algorithm exhibits a waiting period
during which it ensures that all data stations have effectively
transmitted their models to the server before proceeding to the
next iterations. The process is executed in an iterative manner
until convergence is achieved or the specified number of
iterations is attained.

Tracks and Track Provider
The various infrastructure components establish coordination
among themselves through the use of secure communication
channels commonly referred to as the “tracks.” The
communication channels are enabled with end-to-end
encryption. The responsibility for the maintenance of the
infrastructure, including the hosting of the central coordinating
server and the specialized SAS, lies with the track provider.
The track provider is additionally accountable for the
maintenance of the “tracks” and aids the data providers in
establishing the local segment of the infrastructure known as
the “nodes.”

Data Provider
Data providers refer to hospitals and health care organizations
that are responsible for curating the pertinent datasets used for
training the deep learning network. The responsibility of hosting
the data stations within their respective local jurisdiction lies
with the data provider. They exercise authority over the data as
well as the infrastructure component called the node.

Researcher
The researcher is responsible for activating the deep learning
algorithm and engaging in the authentication process with the
central coordinating server using a registered username and
password. This allows the researcher to establish their identity
and gain secure access to the system, with their communication
safeguarded through end-to-end encryption. The researcher can
then assign tasks to individual nodes, monitor progress, and
terminate tasks in the event of failure. Importantly, the

researcher’s methodology is designed to keep the intermediate
outcomes of the iterative deep learning training process
inaccessible, ensuring that the ultimate global model can only
be obtained upon completion of all training iterations, thereby
mitigating the risk of unauthorized access by malicious
researchers to the intermediate models and providing a security
mechanism against insider attacks.

Training Process
Each of the components described above works in a coordinated
manner to accomplish the convergence of the deep learning
algorithm. The training process begins with the researcher
authenticating with the central server. Upon successful
authentication, the researcher specifies the task details, including
a prebuilt Docker image, input parameters, number of iterations,
and the identity of the SAS. The task is then submitted to the
central server, which forwards it to the connected nodes. The
SAS is the first to receive the task request. It downloads the
specified Docker image from the registry and initiates the master
algorithm. The master algorithm orchestrates the training at
each data station node through the central server. The central
server then forwards a subtask request to all the data stations.
Like the SAS, the data nodes download the same Docker image
and initiate the node part of the algorithm. The node algorithm
runs the learning process on local data for the specified number
of epochs. After each training cycle, the node algorithm sends
the local model weights to the SAS.

The SAS verifies the JWT signature of each received model
and forwards the request to the Algorithm API. The Algorithm
API extracts the weight and metadata information of the models.
Once the SAS receives all the required locally trained models
for that cycle, it initiates the FedAvg algorithm to consolidate
the models and create an intermediate averaged model, which
is stored locally. This completes the first iteration of the training
cycle. For the second and subsequent iterations, the data stations
request the SAS to send the intermediate averaged model
weights from the previous iteration. The SAS validates these
requests and sends the model weights to the data stations, which
then use them for further training on their local data. This cycle
of training and averaging continues until the model converges
or the desired number of iterations is reached.

At the end of the training process, the SAS sends a notification
to the researcher indicating the successful completion of the
task. The researcher can then download the final global model
from the server. It is important to note that during the training
iterations, the researcher or other users of the infrastructure do
not have access to the intermediate averaged models generated
by the SAS. This design choice prevents the possibility of insider
attacks and data leakage, as users cannot regenerate patterns
from the training data using the intermediate models. Figure 5
shows the diagrammatic representation of the training process
spread across the infrastructure components.

JMIR AI 2025 | vol. 4 | e60847 | p. 7https://ai.jmir.org/2025/1/e60847
(page number not for citation purposes)

Choudhury et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Process illustration of federated deep learning training. All entities, including the researcher, the central aggregation server, and the data
stations, first authenticate with the central server. The researcher creates a task description and submits the task to the central server, which then forwards
the request to the secure aggregation node to start the master task. The master task then sends a request to all data stations to download the algorithm
Docker image and start training on the local data. Researchers can monitor the algorithm’s execution status on the central server using the “check status”
function, which reports whether each iteration is completed or aborted as processed by the secure aggregation server and data stations. At the end of
each local training, the data stations send the models to the API forwarder of the secure aggregation node by authenticating against a valid JWT token.
The JWT token ensures that no unauthorized data station is able to send or receive models from the secure aggregation server. API: application
programming interface; CNN: convolutional neural network; JWT: JSON Web Token.

JMIR AI 2025 | vol. 4 | e60847 | p. 8https://ai.jmir.org/2025/1/e60847
(page number not for citation purposes)

Choudhury et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Code Availability
The federated deep learning infrastructure and the algorithm
used in this research are open source and publicly available.
The codebase, encompassing the components of the
infrastructure, the algorithm, and wrappers for running it in the
infrastructure and the researcher notebooks, are all available
and deposited on GitHub, a public repository platform, under
the Apache 2.0 license. This open access allows the research
community to scrutinize and leverage our implementation for
further development in the field of FL.

The Vantage6 (version 2.0.0) [27,50] open-source software was
customized to cater to the specific requirements for running the
deep learning algorithm. The central server (Vantage6 version
2.0.0) and the aggregator server were hosted by Medical Data

Works BV in 2 separate cloud machines (Microsoft Azure). At
each participating center, the “node” component of the software
was installed and setup either on a physical or cloud machine
running Ubuntu (version 16.0) or above with an installation of
Python, (version 3.7 or above; Python Software Foundation),
Docker Desktop (personal edition), and NVIDIA CUDA GPU
interface (version 11.0). The source code of the customized
“node” [51] and setup instructions [52] are available on
respective GitHub repositories. The federated deep learning
algorithm was adapted to the infrastructure as Python scripts
[53] and wrapped in a Docker container. Separately, the
“researcher” notebooks [54] containing python scripts for
connecting to the infrastructure and running the algorithms are
also available on GitHub. Table 2 provides an outline of the
resource requirement and computational cost of the experiment.

Table 2. Resource requirement and computational cost.

Average execution time (per iteration)Resource requirementEnd points

HardwareSoftware

N/AbCentral server •• 4 CPUsaUbuntu (version 16) and
above • 16 GB RAM

• Docker Desktop • 20 GB Disk Space
• Python (3.7 or above)
• Vantage6 (version 2.0.0)

40 minsData station •• 4 CPUsUbuntu (version 16) and
above • 1 GPUc

• Docker Desktop • 16 GB RAM
• Python (3.7 or above) • 40 GB disk space
• Vantage6 (version 2.0.0)
• CUDA GPU Interface (ver-

sion 11.0)

60 secondsSecure aggregation server •• 4 CPUsUbuntu (version 16) and
above • 16 GB RAM

• Docker Desktop • 40 GB disk space
• Python (3.7 or above)
• Vantage6 (version 2.0.0)

aCPU: central processing unit.
bNot applicable.
cGPU: graphics processing unit.

Ethical Considerations
The work was performed independently with the ethics board’s
approval from each participating institution. Approvals from
each of the participating institutions including soft copies of
approval have been submitted to the leading partner. The lead
partner’s institutional review board approval (MAASTRO
Clinic, The Netherlands) is “W 20 11 00069” (approved on
November 24, 2020). The authors attest that the work was
conducted by the ethical standards of the responsible committee
on human experimentation (institutional and national) and with
the Helsinki Declaration of 1975.

Results

Overview
The study was carried out and concluded in 4 primary stages
using an agile approach as follows: planning, design and
development, partner recruitment, and execution of federated
deep learning. The planning phase of the study, which
encompassed a meticulous evaluation and determination of the
following inquiries, held equal significance to the description
of the clinical issue and data requirements.

• What are the minimum resource requirements for each
participating center?

• How to design a safe and robust infrastructure to effectively
address the requirements of a federated deep learning study?

• How can a reliable and data-agnostic federated deep
learning algorithm be designed?
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• What are the operational and logistical challenges associated
with conducting a large-scale federated deep learning study?

The second phase, that is, the design and development phase,
primarily focused on the creation, testing, and customization
of the Vantage6 infrastructure for studies specifically focused
on deep learning. To meet the security demands of these
investigations, this study involved the development of the SAS,
which was not originally included in the Vantage6 architecture.
The CNN algorithm was packaged as a Docker container and
made compatible with the Vantage6 infrastructure, allowing it
to be easily deployed and used within the Vantage6 ecosystem.
Prior to the deployment of the algorithm, it underwent testing
using multiple test configurations consisting of data stations
that were populated with public datasets.

The primary objective of the third phase entailed the recruitment
of partners who displayed both interest and suitability from
various global locations. The project consortium members
became part of the project by obtaining the necessary
institutional review board approvals and signing an infrastructure
user agreement. This agreement enabled them to install the
required infrastructure locally and carry out algorithmic
execution. The inclusion criteria for patient data, as well as the
technology used for data anonymization and preprocessing,
were provided to each center. The team collaborated with each
partner center to successfully implement the local component
of the infrastructure.

The concluding stage of the study involved the simultaneous
establishment of connections between all partner centers and

the existing infrastructure. The algorithm was subsequently
initiated by the researcher and the completion of the
predetermined set of federated iterations was awaited across all
centers.

Proof of Concept
The architectural strategy described above was implemented
among ARGOS consortium partners on real-world lung cancer
CT scans. For an initial “run-up” of the system, we deployed
the abovementioned PHT system across 12 institutions, located
in 8 countries and 4 continents. A list of members participating
in the ARGOS consortium can be found on the study protocol
[26]. In total, 2078 patients’ data were accessible via the
infrastructure for training (n=1606) and holdout validation
(n=472). For this initial training experiment, the 12 centers were
divided into 2 groups. The first, referred to as group A,
comprised 7 collaborators, and we were able to reach a total of
64 iterations of model training each with 10,000 steps per
iteration. Likewise, group B comprising 6 hospitals was able
to train the deep learning model for 26 iterations. It was
observed that no significant improvement of the model was
observed for both groups after 26th iteration. The results from
the proof-of-concept study are shown in Figure 6.

While the training time for the models was similar at each
center, how quickly they could be uploaded and downloaded
depended heavily on the quality of the internet connection. This
meant the entire process was significantly slowed down by the
center with the slowest internet.
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Figure 6. Plots showing the results from training the convolutional neural network on two groups as follows: group 1 (A, B, E, H, I, K, L) and group
2 (A, C, D, F, G, M). (A) Average Dice score per iteration of the model trained on group 1. (B) Average Dice score per iteration of the model trained
on group 2. (C) Average training loss per iteration of the model trained on group 1. (D) Average training loss per iteration of the model trained on group
2.

Discussion

This study demonstrated the feasibility of a privacy-preserving
federated deep learning infrastructure and presented a
proof-of-concept study for GTV segmentation in patients with
lung cancer. Using the PHT framework, the infrastructure linked
12 hospitals across 8 nations, showcasing its scalability and
global applicability. Notably, throughout the process, no patient
data were shared outside the participating institutions, addressing
significant data privacy concerns. The introduction of a SAS
further ensured that model averaging occurred in a secure
environment, mitigating potential data leakage issues in FL.

One of the most used methodologies in recent years has been
the use of FL for promoting research on privacy-sensitive data.
To orchestrate FL on nonstructured data in the horizontal
partitioning context, it is essential to develop specialized

software for edge computation and technical infrastructures for
cloud aggregation. These infrastructures enable federated
machine learning (FML) responsibilities to be carried out in a
secure and regulated manner. However, only a limited number
of these studies have documented the background governance
strategies and the ethical, legal, and social implications
framework for conducting such studies.

The study presented a novel approach for executing large-scale
federated deep learning on medical imaging data, integrating
geographically dispersed real-world patient data from
cross-continental hospital sites. The deep learning algorithm
was designed to automatically delineate the GTV from chest
CT images of patients with lung cancer who underwent
radiotherapy treatment. The underlying FL infrastructure
architecture was designed to securely perform deep learning
training and was tested for vulnerabilities from known security
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threats. This paper predominantly discussed the FL infrastructure
architecture and presented a firsthand experience of conducting
such studies. The preliminary training of the deep learning
algorithm serves as the feasibility demonstration of the
methodology, and further refinement is required to achieve
acceptable clinical-grade accuracy and generalizability.

The study used an open-source and freely accessible
technological stack to demonstrate the feasibility and
applicability of federated deep learning. Vantage6, a
Python-based FL infrastructure, is used to train and coordinate
deep learning execution. TensorFlow and Flask, both
open-source Python libraries, are used for the development of
the algorithm, subsequently encapsulated within Docker services
for containerization purposes. The communication channels
between the hospital, central server, and the aggregation node
have been secured using Hypertext Transfer Protocol Secure
and Secure Hash Algorithm encryption. The hospital sites’
computer systems were based on the Ubuntu operating system
and equipped with at least 1 GPU to enhance computational
capabilities. The participating centers had the flexibility to
choose any CUDA-compatible GPU devices and determine the
number of GPUs to use, enabling resource-constrained centers
to contribute. However, a limitation exists in terms of
computational time due to the synchronous training process
being dependent on the slowest participant.

The infrastructure has been tested against known security attacks
and as defined by the Open Worldwide Application Security
Project top-ten categories [55]. It has been found that the
Vantage6 app is impeccable against insecure design, software
and data integrity failures, security logging and monitoring
failures, and server-side request forgery and sufficiently secured
against broken access control, cryptographic failures, injection,
security misconfigurations, vulnerable and outdated components,
and finally identification and authentication failures. Since the
infrastructure is dependent on other underlying technologies
like Docker and Flask-API, the security measures in these
technologies also affect the overall security of the infrastructure.
Additionally, the infrastructure is hosted behind proxy firewalls,
adding to its overall security against external threats.

In this study, we implemented a SAS positioned between the
data nodes (eg, hospitals and clinics) and the central server. The
SAS plays a crucial role in strengthening the privacy and
confidentiality of the learning process. The SAS acts as an
intermediary that temporarily stores the local model updates
from the participating data nodes, ensuring complete isolation
from the central server, researchers, and any external intruders.
The key benefits of using a dedicated SAS over a random
aggregation mechanism in FL are as follows:

• Privacy protection of individual user data and model
updates:
• The secure aggregation protocol ensures that the central

server only learns the aggregated sum of all user
updates, without being able to access or infer the
individual user’s private data or model updates.

• By isolating the intermediate updates, the secure
aggregation process prevents external attackers from
performing model inversion attacks.

• Tolerance to user dropouts:
• The SAS is designed to handle situations where some

users fail to complete the execution. In the case of
synchronous training, the server stores the latest
successful model, enabling data nodes to pick up where
they left off instead of restarting from scratch.

• Integrity of the aggregation process:
• The secure aggregation protocol provides mechanisms

to verify the integrity of the intermediate models by
allowing only the known data nodes to send a model.
This maintains the reliability and trustworthiness of
the FL system.

FL offers 2 main approaches for model aggregation: sending
gradients or weights [56,57]. In gradient sharing, data nodes
update local models and transmit the gradients of their
parameters for aggregation. Conversely, weight sharing involves
sending the fully updated model weights directly to the server
for aggregation. Sharing gradients have a higher risk of model
inversion attacks. In the study presented here, the data nodes
sent model weights instead of model gradients, thus preventing
the “gradient leakage” problem. However, weight sharing is not
failproof either [58], and the SAS plays a crucial role again in
preventing users—internal or external—from accessing the
weights from the aggregator machine.

The deployment of the FL infrastructure and training of the
deep learning algorithm presented unique challenges that needed
to be catered to. Some of them are listed below:

• Heterogeneity across hospitals: Initially, it was not possible
to confirm the technology environment at each site. This
required significant work to overcome the obstacles
connected with each center while deploying a functional
infrastructure, good communication, and efficient
algorithms.

• Inconsistent IT policies: Standardizing the setup across
institutions was hindered by varying IT governance and
network regulations in different health care systems across
different countries.

• Clinical expertise gap: The predominance of medical
personnel over IT specialists at participating hospitals
necessitated extensive documentation to ensure clinician
comprehension of the FL process.

• Network bottlenecks: Network configurations at
participating sites significantly impacted training duration,
often leading to delays in model convergence.

The study presented in the paper has identified several areas
that require further investigation and improvement. While the
findings are valuable, the infrastructure, algorithm, and
processes still need to be made more secure, private, trustworthy,
robust, and seamless [59]. For example, incorporating
homomorphic encryption of the learned models will enhance
privacy and provide model obfuscation against inversion attacks.
Finally, to further enhance confidence and trust in federated
artificial intelligence, it is crucial to conduct additional studies
involving a larger number of participating centers and a thorough
clinical evaluation of the models.
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SAS: secure aggregation server
SRE: secure research environment
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