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Abstract
Background: Delirium is prevalent in intensive care units (ICUs), often leading to adverse outcomes. Hypoactive delirium is
particularly difficult to detect. Despite the development of new tools, the timely identification of hypoactive delirium remains
clinically challenging due to its dynamic nature, lack of human resources, lack of reliable monitoring tools, and subtle clinical
signs including hypovigilance. Machine learning models could support the identification of hypoactive delirium episodes by
better detecting episodes of hypovigilance.
Objective: Develop an artificial intelligence prediction model capable of detecting hypovigilance events using routinely
collected physiological data in the ICU.
Methods: This derivation study was conducted using data from a prospective observational cohort of eligible patients
admitted to the ICU in Lévis, Québec, Canada. We included patients admitted to the ICU between October 2021 and June
2022 who were aged ≥18 years and had an anticipated ICU stay of ≥48 hours. ICU nurses identified hypovigilant states
every hour using the Richmond Agitation and Sedation Scale (RASS) or the Ramsay Sedation Scale (RSS). Routine vital
signs (heart rate, respiratory rate, blood pressure, and oxygen saturation), as well as other physiological and clinical variables
(premature ventricular contractions, intubation, use of sedative medication, and temperature), were automatically collected
and stored using a CARESCAPE Gateway (General Electric) or manually collected (for sociodemographic characteristics and
medication) through chart review. Time series were generated around hypovigilance episodes for analysis. Random Forest,
XGBoost, and Light Gradient Boosting Machine classifiers were then used to detect hypovigilant episodes based on time
series analysis. Hyperparameter optimization was performed using a random search in a 10-fold group-based cross-validation
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setup. To interpret the predictions of the best-performing models, we conducted a Shapley Additive Explanations (SHAP)
analysis. We report the results of this study using the TRIPOD+AI (Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis for machine learning models) guidelines, and potential biases were assessed using
PROBAST (Prediction model Risk Of Bias ASsessment Tool).
Results: Out of 136 potentially eligible participants, data from 30 patients (mean age 69 y, 63% male) were collected for
analysis. Among all participants, 30% were admitted to the ICU for surgical reasons. Following data preprocessing, the study
included 1493 hypovigilance episodes and 764 nonhypovigilant episodes. Among the 3 models evaluated, Light Gradient
Boosting Machine demonstrated the best performance. It achieved an average accuracy of 68% to detect hypovigilant episodes,
with a precision of 76%, a recall of 74%, an area under the curve (AUC) of 60%, and an F1-score of 69%. SHAP analysis
revealed that intubation status, respiratory rate, and noninvasive systolic blood pressure were the primary drivers of the model's
predictions.
Conclusions: All classifiers produced precision and recall values that show potential for further development, with slightly
different yet comparable performances in classifying hypovigilant episodes. Machine learning algorithms designed to detect
hypovigilance have the potential to support early detection of hypoactive delirium in patients in the ICU.
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Introduction
Delirium is defined by the Diagnostic and Statistical Manual
of Mental Disorders, 5th edition (DSM-5) as a “transient
disturbance of attention and awareness, manifested as a
reduced ability to control, focus, maintain, and transfer
attention and as a weakened orientation to the environment”
[1]. As reported by Fiest et al [2], a missed or delayed
diagnosis of delirium is associated with adverse outcomes,
particularly in intensive care units (ICUs), where it can lead
to prolonged hospital stays, increased mortality rates, slower
recovery, and persistent cognitive impairment [2-4].

There are two types of delirium: hyperactive delirium,
characterized by restlessness and agitation, and hypoactive
delirium, which presents with low vigilance and apathy [5].
Hypoactive delirium is the most common form of delirium.
It is often unrecognized due to the challenges of diagnosing
this specific subtype of delirium [6]. Kiely [7] suggests that
patients with hypoactive delirium may have a higher risk of
mortality compared to other delirium subtypes. Despite its
clinical relevance, hypoactive delirium is often undetected
in routine clinical practice [6,8]. Improvements in screen-
ing and therapy have occurred, but the identification of
hypoactive delirium still poses a serious challenge, given
that the onset of episodes remains difficult to determine
and fluctuates over time [9]. Furthermore, its detection is
labor-intensive, requiring frequent reevaluation and clinical
interpretation using bedside instruments and questionnaires
[10]. These instruments and questionnaires become even
harder to use when patients and health care providers
speak different languages [11]. A systematic review of ICU
delirium prediction models by Ruppert et al [3] also found
that while many models performed well, they only predicted
the condition using baseline admission data from a single
point in time, not considering the dynamic nature of delirium.

The main symptom of hypoactive delirium is decreased
vigilance, also known as hypovigilance [5]. As defined by

van Schie et al [12], “vigilance is the ability to remain
aware of relevant and unpredictable changes in an individ-
ual’s surrounding environment, regardless of whether such
changes actually occur.” Van Schie also described delirium
as two-dimensional. First, the level of alertness required to
be vigilant, and second, the extent to which vigilance may
increase or decrease over time [12].

Dynamic changes in a patient’s vigilance level can
potentially be detected using continuous collection and
analysis of psychophysiological signals. This method
involves measuring physiological parameters as proxies for
the activity of a person’s central and autonomic nervous
systems to estimate their vigilance level. This approach
is based on the hypothesis that the locus coeruleus-norepi-
nephrine system plays a significant role in attention-related
activities [13-15]. According to Marois et al [16], this system
has been associated with vigilance, attention, orienting,
arousal, and the sleep-wake cycle [16-20]. As Marois [16]
outlined, several psychophysiological markers of hypovigi-
lance can be gathered using substitute proxy measures of the
central nervous system and of the peripheral nervous system.
Arslan and Ünal [21] reported that the autonomic nervous
system modulates heart rate (HR), blood pressure, digestion,
respiration, pupillary reactivity, and regulates other internal
functions. Heart rate variability (HRV) is considered a valid
measurement for monitoring the autonomic nervous system
[22,23], but is not routinely collected in all ICUs.

International guidelines advocate for sedatives and
analgesics to ensure patient comfort during painful events
[24]. However, when used to induce coma for mechani-
cal ventilation, sedative and analgesic medications such as
benzodiazepines and opioids place patients at high risk for
delirium [25,26]. According to Riker and Fraser [27], sedative
and analgesic therapy is also related to several important
side effects, including hypotension, bradycardia and other
dysrhythmias, and sepsis. At least one published delirium
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prediction model includes the use of benzodiazepines and
antipsychotics as predictors [3].

Marois et al [16] and Oken et al [28] stated that prediction
models using artificial intelligence (AI) have been developed
to quantify hypovigilance using psychobehavioral correlates
of vigilance in laboratory settings, but real-world examples
are lacking. The same scoping review identified 21 psycho-
physiological models of hypovigilance detection, in which
almost all relied on at least one of the following sig-
nals, targeting both central and autonomic nervous systems:
electrocardiography, photoplethysmography, electroencepha-
lography, electrooculography, and eye tracking [16]. While
sensitive, these systems are resource-intensive and hard to use
in dynamic environments such as the ICU.

Despite the clinical need for new diagnostic tools, there
is still a lack of consensus regarding the most accurate tool
to use in clinical practice. There are also significant bar-
riers to the widespread use of more sophisticated diagnos-
tic modalities, such as electroencephalography, in clinical
settings due to poor signal quality [16], specialized and
costly equipment requirements [29], and patient discomfort
associated with extended wear [30]. These factors hinder
the adoption of these sensors in routine health care settings.
Moreover, other emerging sensors capable of monitoring
HRV are not universally incorporated into ICU monitors and
are not part of routine data collection.

Patients admitted to the ICU are assessed hourly by
critical care nurses to determine their level of vigilance. This
assessment is necessary because the condition of patients in
the ICU often fluctuates. Current delirium prediction models
rely on static baseline data taken at admission, which fail
to capture the fluctuating nature of vigilance over time
[3]. Moreover, vigilance detection models developed in lab
environments lack real-world clinical validation [16]. Clinical
real-world settings, such as ICUs, can provide a reliable
data collection environment where patients often experi-
ence frequent episodes of hypovigilance. Further research is
needed to identify effective detection methods for patients in
the ICU, including but not limited to the use of automated
hypovigilance assessment tools that could be reliably used
on a large scale by nonexperts and that could be used in
all patients regardless of the language they speak [31]. AI
technologies offer a novel modality to support the detection
of hypovigilance. The development of a reliable tool capable
of monitoring vigilance represents an initial step in the
creation of a tool that can accurately diagnose delirium. The
objective of this project was to derive an AI-driven predic-
tion model able to continuously detect recurrent episodes of
hypovigilance using routinely collected physiological markers
in the ICU.

Methods
Design and Setting
We conducted a derivation study using data collected from
a prospective observational cohort study carried out in the
ICU at the Hôtel-Dieu de Lévis Hospital. Its research protocol

was not published or registered in a clinical trials registry.
We report our findings using the Transparent Reporting of
a multivariable prediction model for Individual Prognosis
Or Diagnosis for machine learning models (TRIPOD+AI)
guidelines [32,33] (checklist provided in Checklist 1). We
also used the Prediction model Risk Of Bias Assessment
Tool (PROBAST) to identify potential biases [34] (Multi-
media Appendix 1). The code and datasets generated to
support preprocessing and training the models are available
for download from a Zenodo repository [35].

Participants
Eligible patients were admitted to the Hôtel-Dieu de Lévis
Hospital ICU between October 2021 and June 2022. Inclusion
criteria were (1) age ≥18 years and (2) an anticipated
ICU stay of ≥48 hours from admission. We did not
include patients anticipated to stay <48 hours because these
patients are often elective patients in the postoperative period
undergoing surgeries that require short observation periods
in the ICU (eg, simple thoracic surgeries) and carry a much
lower risk of developing episodes of hypovigilance during
their ICU stay.

Exclusion criteria were (1) inability to obtain informed
consent (from patients themselves or their substitute decision-
makers), (2) inability to communicate in English or French,
(3) neurodegenerative diseases (eg, Alzheimer disease), and
(4) unavailability of the data collection device. We excluded
patients unable to communicate in English or French or with
cognitive disorders, as they would potentially not be capable
of answering our study questionnaires, potentially biasing our
outcome measure based on the capacity of individuals to
interact with bedside nurses. Patients who presented in the
ICU when the data collection device was unavailable (eg, due
to maintenance or system failure) were not included because
no data collection was possible during these periods. We
also stopped collecting data for participants who stayed >5
days in the ICU because we wanted to maximize the number
of patients included in our study. If we had included data
from patients who stayed more than 5 days, all of our team’s
human resources would have been spent collecting data on a
smaller and less diverse number of patients.

Data Collection
Despite the inability to blind bedside nurses to the predic-
ted outcome (hypovigilance), they were unaware of the
ongoing project. In addition, all vital signs used as predic-
tors were automatically collected by the General Electric
(GE) CARESCAPE Gateway, eliminating any potential for
information bias.

Event Identification
Intensive care nurses assessed patients’ levels of vigilance
using 2 scales. Bedside ICU nurses completed hourly
assessments of the patient’s vigilance using the Richmond
Agitation and Sedation Scale (RASS) [36] or the Ramsay
Sedation Scale (RSS) [37,38]. RASS is a 10-point scale
that assesses sedation and agitation based on criteria that
evaluate the patient’s response to verbal stimulation. The
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RSS categorizes sedation levels across 6 states and is widely
used in clinical settings [21]. While the RASS is standard for
patients who are intubated, the RSS is used when participants
are not intubated. There is a strong correlation between the
2 scales, which demonstrates good interrater reliability [39].
Following the study by Mistraletti et al [24], we identified
hypovigilant episodes when RASS scores were <0, indicating
a drowsy to unarousable state, and RSS scores >2, signifying

a drowsy to unarousable condition. These specific criteria
served as the basis for labeling vigilance states as episodes of
hypovigilance versus nonhypovigilance (Figure 1).

We did not capture the sociodemographic characteristics of
the nurses who conducted the RASS and RSS assessments.
Vital signs were automatically captured by the GE CARE-
SCAPE Gateway.

Figure 1. Labeling process to identify episodes of hypovigilance using the corresponding Ramsay Sedation Scale and Richmond Agitation and
Sedation Scale.

Clinical Information
At enrollment, we collected participant data on age, sex,
height, and comorbidities. We also collected information
on the type of admission (medical vs. surgical), history
of depression, need for ventilatory support, and need
for intubation. We documented whether any intravenously
administered sedative or analgesic agents (eg, midazolam,
propofol, hydromorphone, or fentanyl) were being adminis-
tered at the time of vigilance assessment by bedside nurses.
Use of intravenous sedation and analgesia was extracted from
nursing notes as a binary variable (presence or absence of
one of these medications). Multiple medications could be
administered simultaneously.

When patients were admitted to the ICU, we also collected
data on (1) the Glasgow Coma Scale (GCS) to measure

patients’ level of consciousness, ranging from 3 to 15, with
lower scores indicating more severe deficits [40,41]; (2)
participants’ baseline functional capabilities using the Pfeffer
Functional Activities Questionnaire (FAQ) [42]; and (3) the
Clinical Frailty Scale (CFS) to evaluate the baseline frailty
status of participants with scores ranging from 1 (very fit) to
9 (terminally ill) [43]. These questionnaires are described in
Multimedia Appendix 2. These tools were used to describe
the population included in our cohort, but were not integrated
into our AI algorithm.

Physiological Time Series Collection
We used a GE CARESCAPE Gateway (GE HealthCare) to
streamline and automate continuous data collection. Gateway
data was extracted and securely stored in a comma-sep-
arated values format on local servers. Vital signs and
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physiological markers were continuously monitored and
recorded at one-minute intervals, allowing for the exploration
of indicators associated with hypovigilant episodes. Bedside
vital signs and data automatically recorded via the gateway
included HR, respiratory rate (RR), premature ventricular
complex count, oxygen saturation, body temperature (when
an internal body temperature probe was used), invasive

arterial blood pressure, and noninvasive blood pressure (Table
1). Intubation was automatically derived from the presence
of inhaled CO2 while intubated (CO2-IN) or exhaled CO2
while intubated (CO2-EX; Table 1). Occasionally, more than
one timestamp’s worth of data was gathered by the gateway.
To ensure data consistency, we systematically removed all
duplicate lines.

Table 1. Bedside vital signs and data recorded with the General Electric CARESCAPE Gateway.
Feature Description Unit
HR Heart rate Beats per minute (bpm)
RR Respiration rate Breaths per minute (bpm)
SpO2-% Oxygen saturation Percentage (%)
SpO2-R Pulse oximeter pulse rate Beats per minute (bpm)
NBP-D Noninvasive diastolic blood pressure millimeters of mercury (mm

Hg)
NBP-M Noninvasive mean blood pressure mm Hg
NBP-S Noninvasive systolic blood pressure mm Hg
PVC Premature ventricular complex count Events per minute
AR-D Arterial line diastolic pressure mm Hg
AR-S Arterial line systolic pressure mm Hg
AR-M Arterial line mean pressure mm Hg
AR-R Arterial line pulse rate Beats per minute (bpm)
CO2-EX Exhaled CO2 while intubated mm Hg
CO2-IN Inhaled CO2 while intubated mm Hg
Temperature Rectal temperature Degrees Celsius (°C)

Time Series Selection
Time series of sequential changes in vigilance states were
generated by selecting physiological measurement data within
a 5-minute window before and after each hypovigilant or
nonhypovigilant episode, resulting in an 11-point time series
spanning 11 minutes (Figure 2). RASS and RSS assessments
were made hourly; if two measurement points were the same,
the condition was considered constant throughout the hour.
When two consecutive vigilance levels were different, no
assumptions were made for the time points between these
two vigilance assessments. The decision to use an 11-minute
window in each time series aimed to maximize clinical
relevance, better characterize state changes, and optimize the
classification capacity of our AI models.

Figure 2 illustrates the 2 simple rules we followed
to label episodes of hypovigilance before and after the
hourly vigilance assessments determined by bedside nurses.
Labels (hypovigilant vs nonhypovigilant) were automatically
assigned for each separate vigilance state as determined by
bedside nurses. Additional imputed labels were assigned to
time points before and after each hourly vigilance assessment
performed by the nurses based on two simple rules. The
first rule determined if two labels were within 60 minutes

of each other. If two consecutive vigilance assessments were
made ≤60 minutes apart, we proceeded to the second rule.
If the assessments’ labels were >60 minutes apart, we did
not add any new labels for new hypovigilance episodes.
The second rule determined if the consecutive vigilance
states (and associated labels) were identical. If they were
identical, we added labels at 5-minute intervals for each
episode of hypovigilance or nonhypovigilance between the
original labels, based on the value of the vigilance state
at both boundaries. If they were not identical, we did not
add additional episodes of hypovigilance or nonhypovigilance
between the consecutive discordant labels, because determin-
ing the moment when the state changed from hypovigilant
to nonhypovigilant (or vice versa) was not documented by
bedside nurses and was impossible to determine retrospec-
tively. For example, in case 1, no additional labels were
added because the consecutive labels differed. In case 2,
labels were added at 5-minute intervals when the consecu-
tive labels were identical and less than 60 minutes apart.
However, in case 3, no additional labels were added because
the consecutive states remained the same but were separa-
ted by more than 60 minutes. This approach preserved the
temporal structure integrity of our model.
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Figure 2. Label identification process.

JMIR AI Giguère et al

https://ai.jmir.org/2025/1/e60885 JMIR AI 2025 | vol. 4 | e60885 | p. 6
(page number not for citation purposes)

https://ai.jmir.org/2025/1/e60885


Time Series Preprocessing

Missing Values and Data Cleaning
We used a backward- and forward-filling strategy to address
missing values in the vital signs time series [44]. Backward
filling involves filling in missing values in a dataset by using
preceding data values to complete the gaps. In other words,
missing values were filled based on available data preceding
them in the time series [44]. In some cases, backward filing
was impossible due to the lack of available previous data.
In such cases, forward filling was performed. Forward filling
involves using future values to fill in missing data [44].

Real-world data is also inevitably contaminated with noise,
artifacts, and unreliability due to patient movement, sen-
sor unavailability, or electrical interference. We deliberately
chose to analyze all of the data, knowing that it may present
noise and artifacts, using robust machine learning techniques
instead of relying solely on cleaned datasets for traditional
statistical analysis. We aimed to develop a model that is not
only representative of real-world conditions but also capable
of generalizing to diverse clinical scenarios. By adopting a
machine learning approach, we could effectively learn from
the inherent variability in the data and sensor availability,
including occasional artifacts, rather than eliminating them
entirely. Excessive data cleaning and artifact removal may
result in a model that performs well in a controlled setting
but fails to translate effectively in real-world applications.
Our methodology emphasizes the importance of building
resilience in our models to account for the inevitable noise
present in ICU data.

Features Extraction
Since the objective of this project was to derive an
AI algorithm capable of continuously detecting recurrent
episodes of hypovigilance using routinely collected physio-
logical markers in the ICU, we focused our development on
physiological features that could be automatically captured by
the GE CARESCAPE Gateway. As features for our model,
we extracted the first-, second-, and third-order derivatives
for each participant’s temporal data stream to observe global
variations or trends across all patient observations. The
first derivative represents the rate of change over time. For
example, it allows for the identification of rapidly increasing
or decreasing blood pressure. The second derivative refers
to the acceleration of the rate of change, for example, how
the slope of a vital signs curve evolves over time [45]. A
positive second derivative might suggest an acceleration in
blood pressure increase, while a negative second derivative
could indicate an acceleration in blood pressure decrease.
The third derivative captures variation in acceleration, that
is, the rate at which the acceleration changes [46]. This third
derivative can be useful for detecting unusual changes. By
using derivatives, we aimed to capture subtle physiological
changes over time that might otherwise go unnoticed.

We also observed that some features (arterial line diastolic
pressure, arterial line mean pressure, arterial line pulse rate,
arterial line systolic pressure, temperature, CO2-EX, and
CO2-IN) were missing for >40% of participants. This can
be explained because these sensors were only used in certain
critically ill patients when indicated. The presence of these
features in certain patients reflects that a patient is critically
ill and needs more invasive life support (eg, intubation,
mechanical ventilation, and sedation) or invasive monitoring
(eg, arterial blood pressure catheter or internal temperature
probe). CO2-EX and CO2-IN are features only available
when a patient is intubated. The presence of a temperature
measurement captured by the GE CARESCAPE Gateway is
only available when an internal temperature probe is used.
Variables measured by an arterial line (arterial line diastolic
pressure, arterial line mean pressure, arterial line pulse rate,
and arterial line systolic pressure) are only available when
an arterial line is installed. To mitigate potential bias in our
classifier due to missing variables in less ill patients, we
replaced these features with Boolean (presence or absence)
variables indicating whether an arterial line was present, the
patient was intubated, or an internal body temperature probe
was used. This approach enhances the generalizability of our
findings by accurately representing typical ICU practices.

, arterial line mean pressure, arterial line pulse rate, and
arterial line systolic pressure) are only available when an
arterial line is installed. To mitigate potential bias in our
classifier due to missing variables in less ill patients, we
replaced these features with Boolean (presence or absence)
variables indicating whether an arterial line was present, the
patient was intubated, or an internal body temperature probe
was used. This approach enhances the generalizability of our
findings by accurately representing typical ICU practices.

Features Selection
Our objective was to identify significant differences between
the two vigilance states (hypovigilant vs nonhypovigilant)
with a non-normal distribution of the data. We elected to
reduce the feature space by only selecting features that were
significantly different between the two states, on average.
To this end, we performed Mann-Whitney U tests [47] on
the distribution of the features. The dataset was divided into
training and test sets (refer to Figure 3), and the Mann-Whit-
ney U test was performed separately on each set. Only the
variables that were statistically significant within a particu-
lar set were included in the respective model trained on
that set. As a result, multiple models were generated, each
using a subset of the variables found to be significant in
their respective sets. This approach ensured that the models
were tuned to capture the most relevant features for predict-
ing hypovigilance states, considering the variability observed
across sets during the cross-validation process. To provide
statistics on the selected features, we counted the number of
times a variable was found to be significant across sets.
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Figure 3. Data splitting and hyperparameter optimization to evaluate the performance of the models. AUC: area under the curve.

Machine Learning Models
We used 3 distinct AI models for detecting hypovigilance
events: Random forest (RF) from the Python Scikit-learn
library [48], Extreme Gradient Boosting (XGBoost) from
the XGBoost library [49], and the Light Gradient Boosting
Machine (LightGBM) classifier from the LightGBM library
[50]. We chose these classifiers because RF and XGBoost
were used in prior studies to identify delirium and hypovigi-
lance [28]. LightGBM was also used because of its previ-
ous application in other ICU databases, such as the Medical
Information Mart for Intensive Care III database [51].

RF is a real-time classification algorithm that excels
in capturing nonlinear relationships, making it applicable
to domains such as clinical outcome prediction [52]. It
is composed of a set of data structures characterized by
decisions (branches), called trees, with each tree depending
on random variables. It creates a forest from a group of
decision trees trained using the bagging method. The key
notion behind the bagging method is the combination of
multiple learning models to improve overall sensitivity [52].
XGBoost uses gradient-based decision trees. It is tailored
for classification and regression modeling of tabular datasets
[49]. As described by Qian et al [51], the LightGBM
classifier uses iterative training to obtain the most advanta-
geous identification model. Qian et al [51] explained that
LightGBM uses a gradient-boosting framework using a
tree-based learning algorithm to reduce computation time.
Data Splitting and Hyperparameters
Search
To preserve patient data and account for the limited num-
ber of patients in our dataset, we used a 10-fold, group-
based cross-validation strategy. The data were partitioned
into groups of random size at the patient level. This
approach ensured that all within-patient-related information
was retained during model evaluation, making models more
robust to new participants.

To enhance the performance of our 3 AI classifiers, we
used the random search technique for hyperparameter tuning
for each split. This technique is widely recognized for its

computational efficiency compared to traditional grid search
methods, as it requires less computational time [53].

In Figure 3, the model was trained and evaluated using
group cross-validation. The data were split at the patient
level into training and testing subsets for each fold of the
cross-validation, with varying group sizes ranging from one
to several patients. Across all folds, the Mann-Whitney U test
was performed to select only the significant features in each
model. Performance metrics (accuracy, precision, and recall)
were computed on the testing subset during each fold.
Performance Evaluation
The performance metrics included average accuracy, which
measured the proportion of correct predictions made by the
model across all iterations of the cross-validation process;
precision, which assessed the proportion of true positive
predictions among all positive predictions, providing insight
into the ability of the model to make precise classifica-
tions; and average recall (sensitivity), which evaluated the
capability of the model to correctly identify positive instances
from the entire dataset. In addition, we computed the average
area under the curve (AUC), which serves as a measure of the
model’s ability to distinguish between positive and negative
classes, and the average F1-score, which provides a balanced
assessment by considering both precision and recall. These
metrics collectively indicate the overall performance of our
model in classification tasks. We also generated calibration
curves for the 3 different classifiers using one representative
model from the cross-validation process.

To interpret the predictions of our best-performing
models, we conducted a Shapley Additive Explanations
(SHAP) analysis [54]. For this analysis, we selected one
of the top-performing models identified during 10-fold
group-based cross-validation and retrained it on the entire
dataset of 30 participants. The resulting SHAP values
provided insight into each feature's contribution to the
model's output, although the exact feature importance may
vary between individual model.
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Sensitivity Analyses
We also aimed to evaluate the impact of including the
medication variable (use of sedatives or analgesics) on the
performance of our models. We therefore performed 2 main
sets of sensitivity analyses: one excluding and the other
including the medication variable as a variable of interest.
Patient and Public Involvement
Patients and the public were not involved in the design,
conduct, reporting, or dissemination plans of this research.
Ethical Considerations
The study was approved by the research ethics committee
of the Centre intégré de santé et de services sociaux de
Chaudière-Appalaches (2021‐771).

Results
Patient Characteristics
Among 136 patients considered for inclusion in our cohort,
30 were eligible (Figure 4). These 30 patients experienced
a total of 1493 hypovigilant episodes and 764 nonhypovigi-
lant episodes. Two participants did not have any hypovigilant
episodes. As shown in Table 2, participants in our cohort
were aged 69 years (mean), male (63%), admitted to the ICU
for surgical (30%) or medical (70%) reasons, and mostly
intubated, receiving intravenous sedation-analgesia medica-
tion (70%).

Figure 4. Flowchart of the data collection process. ICU: intensive care unit.

JMIR AI Giguère et al

https://ai.jmir.org/2025/1/e60885 JMIR AI 2025 | vol. 4 | e60885 | p. 9
(page number not for citation purposes)

https://ai.jmir.org/2025/1/e60885


Table 2. Demographic and clinical characteristics of participants (N=30).
Characteristic Value
Age (years), mean (SD); rangea 68.9 (11.0); 35‐86
Height (cm), mean (SD); rangea 168.0 (8.9); 152‐183
Sex, n (%)
  Women 11 (36.7)
  Men 19 (63.3)
Length of ICUb stay (days), mean (SD); rangea 8.60 (5.29); 1.33‐22.24
Comorbidities, n (%)
  Cardiovascular diseases 22 (73.3)
  Respiratory disease 14 (46.7)
  Renal disease 8 (26.7)
  Diabetes 8 (26.7)
  History of stroke 3 (10.0)
  No comorbidities 1 (3.3)
  Other 21 (70.0)
Depression in the past, n (%)
  Yes 1 (3.3)
  No 29 (96.7)
Type of admission, n (%)
  Medical 21 (70.0)
  Surgical 9 (30.0)
Respiratory assistance, n (%)
  Yes 25 (83.3)
  No 5 (16.7)
Intubated, n (%)
  Yes 21 (70.0)
  No 9 (30.0)
Admission assessment
  Glasgow Coma Scale, mean (SD); rangea 14 (1); 8‐15
  Functional Activity Questionnaire (FAQ), mean (SD); rangea 3 (5); 0‐19
  Clinical Frailty Scale, median (IQRc) 3 (2-4)

aRange: minimum - maximum values.
bICU: intensive care unit.
cIQR: interquatile range.

Figure 5 illustrates the frequency of significant features
identified through the Mann-Whitney U test conducted during
the LightGBM cross-validation. This is consistent across all
classifiers, as they all used the same groups. Green bars
represent features identified as significant across the 10-fold
cross-validation procedure using the base model without the
inclusion of the medication variable. The purple bar indicates
the addition of the medication variable, which was consis-
tently selected as a significant feature across all folds. The
first, second, and third derivatives are labeled as “_D1,”
“_D2,” and “_D3,” respectively.

Variables that were consistently significant across multiple
folds were intubation, noninvasive mean blood pressure,
noninvasive systolic blood pressure, RR, and the presence of

an internal body temperature probe. Other key features were
also frequently found significant included the presence of an
arterial line, noninvasive diastolic blood pressure, premature
ventricular complex count (PVC) count, the second deriva-
tive of PVC count (PVC_D2), the first derivative of RR
(RR_D1), oxygen saturation (SpO2-%), and HR determined
by the pulse oximeter pulse rate. These features exhibited
varying degrees of importance across cross-validation folds,
suggesting their potential relevance in detecting hypovigi-
lance episodes. Notably, the use of intravenous sedation and
analgesia medication variable was significant in 10 instan-
ces, highlighting its importance in our models. In addition,
only the following derivatives were significant in our feature
analysis: PVC_D2, RR_D1, and SpO2_D1.
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Figure 5. Significant features in the models. Green bars represent features identified as significant across the 10-fold cross-validation procedure
using the base model without the inclusion of the medication variable. The purple bar indicates the addition of the medication variable, which was
consistently selected as a significant feature across all folds.

Classification Results
The classification results of the three AI classifiers—
XGBoost, RF, and LightGBM—along with an additional
set of the 3 models incorporating the sedative or analgesic
medication variable, are presented in Table 3.

For the models excluding the sedative or analgesic
medication variable, the LightGBM model demonstrated
the highest average accuracy, average precision, average
recall, average AUC, and average F1-score. Furthermore,

it exhibited an average recall of 74% (SD 18%) and an
average precision of 76% (SD 11%). XGBoost followed as
the second-best classifier with an average recall of 73% (SD
18%) and an average precision of 75% (SD 10%). When
the sedative or analgesic medication variable was incorpo-
rated, LightGBM remained the top-performing classifier,
closely followed by XGBoost and RF. Their performances
are relatively similar, except in terms of average recall,
where both XGBoost and LightGBM achieved 70% and 71%,
respectively, and RF achieved 64%.

Table 3. Classification performance metrics for our 3 artificial intelligence models.

Model
Average accuracy,
mean (SD)

Average precision,
mean (SD)

Average recall, mean
(SD)

Average AUCa, mean
(SD)

Average F1-score, mean
(SD)

Models without incorporating the sedative or analgesic medication variable
  XGBoostb 0.66 (0.11) 0.75 (0.10) 0.73 (0.18) 0.58 (0.09) 0.68 (0.10)
  Random forest 0.67 (0.15) 0.76 (0.11) 0.68 (0.22) 0.60 (0.12) 0.69 (0.12)
  LightGBMc 0.68 (0.12) 0.76 (0.11) 0.74 (0.18) 0.60 (0.12) 0.69 (0.11)
Models with the incorporation of the sedative or analgesic medication variable
  XGBoost 0.70 (0.15) 0.76 (0.13) 0.70 (0.19) 0.62 (0.14) 0.72 (0.14)
  Random Forest 0.71 (0.15) 0.77 (0.13) 0.64 (0.25) 0.63 (0.13) 0.72 (0.15)
  LightGBM 0.70 (0.15) 0.76 (0.13) 0.71 (0.21) 0.62 (0.12) 0.72 (0.14)

aAUC: area under the curve.
bXGBoost: Extreme Gradient Boosting.
cLightGBM: Light Gradient Boosting Machine.

Feature Importance
To better understand which physiological parameters most
influenced the model’s prediction of hypovigilance, we
computed SHAP values for the features used in our
LightGBM classifier. The analysis revealed that intubation
status, noninvasive systolic blood pressure, and RR were the

most influential predictors. A detailed SHAP summary plot
is provided in the Multimedia Appendix 3. For this specific
model, the first derivative of oxygen saturation (SpO2-%_D1)
also had an impact. This indicates that the rate of change in
oxygen saturation appears to be more informative in assessing
vigilance than the absolute oxygen saturation level itself. No
other derivatives influenced the model presented.
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Figure 6 presents calibration curves comparing 3 classi-
fier models. The black dotted diagonal line represents ideal
calibration, where predicted probabilities perfectly align with
observed event frequencies. Deviations above the diagonal
indicate overestimation of probabilities (overconfidence), and
deviations below indicate underestimation (underconfidence).
In this specific test fold, the RF model (line with squares)
displayed the most substantial deviations, indicating the least
accurate calibration among the classifiers. The XGBoost
model (line with circles) exhibited improved calibration,

albeit with some residual discrepancies. The LightGBM
model (line with triangles) demonstrated the closest approx-
imation to perfect calibration. It is important to note that
the cross-validation procedure resulted in 30 distinct models,
and this figure illustrates only 3 representative examples.
Although this study’s primary objective was to evaluate
predictive performance, future research should prioritize
calibration techniques to optimize probability estimates in the
final selected model.

Figure 6. Calibration curves comparison. LightGBM: Light Gradient Boosting Machine; XGBoost: Extreme Gradient Boosting.

Discussion
Principal Findings
This study aimed to develop an AI model to identify
hypovigilance episodes in patients using data from a single
ICU. Our results demonstrate that the differentiation of
episodes of hypovigilance from nonhypovigilance episodes
is possible with 3 different classifiers using routinely acquired
clinical ICU data.

While most researchers agree that an AUC below 0.6
indicates poor performance, there is less consensus on how
to classify higher values [55]. AUC values between 0.7
and 0.8, for example, have been inconsistently described as
poor, moderate, fair, or even good. We acknowledge that the

performance statistics of our AI models, ranging in the poor
to moderate range (AUCs of 0.58-0.63), preclude any clinical
application at this time.

The LightGBM classifier showed slightly better results
than XGBoost and RF across multiple evaluation criteria.
However, all the classifiers showed significant variability in
correctly identifying true positives across different folds of
the cross-validation process. The high SD of our results may
be due to differences in participant characteristics or class
imbalances during training. A precision score of 76%, with
a SD of 11%, indicates the ability to correctly identify true
positives among all positive results across different folds.
LightGBM classifiers generally outperformed both XGBoost
and RF in terms of average accuracy, precision, recall, AUC,
and F1-score. These results demonstrate the need for further
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refinement and prospective, external validation with larger
datasets. The XGBoost algorithm achieved a recall rate of
73% and an average precision rate of 75%. A screening tool
needs to be sensitive and have a high recall [56]. Our average
recall rate of 74% indicates we still need to decrease the
number of false negatives generated by our model, because
missing an episode of hypovigilance in the ICU could have
serious consequences. Our sensitivity analysis revealed a
clear improvement in model performance with the inclusion
of medication data about the use of intravenous sedatives and
analgesics, which correlated with the occurrence of hypovi-
gilant episodes. This suggests the importance of incorporat-
ing other time-dependent concurrent contextual data into a
predictive model developed to continuously monitor for the
risk of hypovigilance.

Although our models do not demonstrate perform-
ance characteristics to support current clinical application,
they collectively demonstrate promise for potential future
refinement and research. Despite these limitations, our
models remain superior to random chance and offer the
opportunity to inform future studies on patients whose level
of vigilance is at risk of fluctuating in the ICU. Future studies
on this subject need to ascertain whether performance can
be enhanced over time, including the calibration of a future
model to optimize probability estimates. Any AI tool that
enhances patient care, particularly for those who are most
vulnerable in the ICU, is worthy of further investigation and
validation if conducted ethically and with respect for equity,
patient privacy, high-quality standards, and transparent data
reporting.
Comparison With Prior Work
The majority of research on hypovigilance has previously
been conducted in laboratory settings, which offer a highly
regulated setting but might not accurately reflect real-world
ICU situations [16]. Also, the field of vigilance is often
poorly defined, which makes it hard to compare our results
to the existing literature [28]. The existing vigilance research
is mostly focused on driving and flight simulations, during
which operators do experience hypovigilance, but it may not
present the same as in patients in the ICU [16].

Although our study did not focus on the detection of
delirium, we did study how to detect hypovigilance, which
is an important component of hypoactive delirium. Compara-
ble delirium prediction models, which also use noninvasive
features, show similar or slightly better performances. For
example, a model developed in South Korea by Oh et al
[57], using automatically collected variables including HRV,
achieved a slightly better-balanced accuracy of 70%, with a
maximum accuracy of 71.5%. Despite its lower performance,
our model still shows promise considering that we derived
our algorithm on a smaller dataset without HRV data. These
results are also in line with other delirium studies using
electroencephalography and electrocardiography [58].

To improve the accuracy of future delirium diagnostic
and prediction models, we considered the dynamic nature
of a patient’s condition and incorporated real-time data into

our models that centered only on the detection of hypovigi-
lance and not delirium [3]. A future enhanced and more
accurate automated model could potentially offer real-time
patient monitoring throughout their ICU stay. Such a model
could use data that are generally accessible across all ICUs.
As mentioned by Marois et al [16], the variability of the
baseline “gold standard” in hypovigilance prediction models
is a significant challenge. Different studies use diverse gold
standards, some lacking prior validation. To address this, our
study used 2 validated sedation scales (RSS and RASS) in
a clinical setting, incorporating a validated gold standard to
enhance the labeling process of hypovigilant episodes.
Strengths
Our study has several strengths. First, by conducting our
research in a real-world ICU setting and using simple and
routinely collected vital signs and physiological markers used
in ICUs around the world, we ensured that our findings are
relevant and transferable to similar health care settings. In
addition, we used rigorous data collection methods using an
automated vital sign data collection system. This ensured
the consistency and accuracy of our dataset, minimizing the
risk of classification bias. Our data collection and classifica-
tion methods are entirely noninvasive and exclude proce-
dures such as blood tests or electroencephalography, thereby
increasing the integration potential into AI-based decision
support systems. Given that no baseline sociodemographic
variables such as age, sex, past medical history, or other
clinical variables were included in our model, our first model
without the intravenous sedative or analgesic medication
variable could stand alone without any human-collected
data. Another strength of our model is that our AI-derived
detection model based on automatically collected vital signs
is agnostic to language, which makes it more equitable for
patients who speak languages different from their health care
providers, and in settings where hypovigilance and delirium
are assessed using detection tools that depend on understand-
ing the language being used.

Our study analyzed numerous episodes of hypovigilance
and nonhypovigilance in patients in the ICU. These episodes
often lasted for extended periods, making them suitable for
detailed analysis. The regular assessments of vigilance by
experienced nurses using the RASS or RSS provided a rich
dataset for training machine learning models. The expertise
and familiarity of the bedside nurses with these standard
assessment tools contributed to the reliability and credibility
of our outcome measures.

Our study also took advantage of the routine use of
intravenous sedatives and analgesics in the ICU, such as
propofol, hydromorphone, fentanyl, and midazolam, that
induce prolonged states of deep sedation. This provided
valuable opportunities to detect episodes of hypovigilance,
allowing us to refine our model and improve its effectiveness
in identifying clinically relevant conditions. Identification
of hypovigilance has important implications for health care
settings in screening persons at risk of delirium. Delirium
screening is a time-consuming task that requires complet-
ing multicomponent screening tools such as the Confusion
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Assessment Method for the ICU. Motivated by the grow-
ing sophistication of AI models in the medical domain, our
project investigated the possibility of using machine learning
to enhance the screening capacity of hypovigilance in the
context of nursing shortages. This potentially represents a
viable path toward improving patient outcomes and decreas-
ing the workload of health care professionals [59]. The
creation of AI algorithms capable of detecting early onset
of hypovigilant episodes may allow clinicians to apply timely
delirium treatments or mitigation measures, thereby enhanc-
ing the outcomes of patients in the ICU.
Limitations
We used the PROBAST checklist to assess the risk of bias
in our models (Multimedia Appendix 1) [34]. Based on this
assessment, we identified several limitations to our study.
First, our study recruited a small cohort of 30 participants
and only used data collected for the first 5 days of their
ICU stay. Data collection was limited to 5 days because
we wanted to maximize the number of patients included
in the study. If we had included data from patients dur-
ing their entire ICU stay, we would have risked biasing
our results with some patients who can stay up to several
months in the ICU. In such cases, human resources would
have been spent on collecting data for fewer patients, thus
threatening the external validity of our study. Moreover,
obtaining consent for studies in critical care settings can be
difficult because substitute decision-makers are not always
available. Even though we had a small number of individ-
ual participants, each participant underwent hourly, 24-hour
vigilance assessments. In addition, the GE CARESCAPE
Gateway recorded vital signs at 1-minute intervals, yielding
a substantial amount of data for each participant. To address
the limitation associated with the small size of our cohort,
we used a 10-fold group cross-validation approach. Future
studies that include a larger sample in other ICUs will help
identify new patterns in physiological marker fluctuations that
will help identify hypovigilant states. The cross-validation
method used to evaluate the performance of our model across
multiple patient groups helped us make full use of our small
dataset. The cross-validation strategy also helped identify
stable and reliable model performance metrics, minimizing
overfitting risk and providing more accurate estimates of the
true performance of our model on the entire patient dataset.
The wide SDs of our performance metrics are attributed to
our small dataset. Nonetheless, our models showed moderate
discriminative power, surpassing chance, which suggests a
hopeful path for future refinement and improvement. Future
studies will need to include a greater number of participants
to allow stratification based on comorbidities and detect
within-class trends. This effort would require a deep learning
approach to deal with the high number of potential interac-
tion terms between different comorbidities and the risk of
hypovigilance. Moreover, a larger sample size would allow
a future AI model to produce a more powerful and better-cali-
brated model capable of predicting discrete ordinal outcomes
(eg, discriminating between a RASS of 0 vs –1 [drowsy] vs
–2 [light sedation] or –3 [moderate sedation]).

A second limitation comes from the fact that our models
were built using physiological data captured at low frequency,
using 1-minute intervals. Low-frequency data collection
limited our ability to capture the subtle changes in high-fre-
quency variations that could be manifested in the transition
from nonhypovigilant to hypovigilant states, such as changes
in HRV. HRV would have been a valuable characteristic, as
shown in other contexts [16], but we could not collect this
data with our current GE CARESCAPE Gateway setup. To
address this lack of HRV, we investigated the use of the
derivatives of the HR variable in our study to measure the rate
of change of HR in our model, as well as the use of other
cardiac measures such as PVC count as a surrogate for heart
irritability and sympathetic nervous system activation [60].
Despite this effort, we did not find a relationship between the
derivatives of the HR and the occurrence of hypovigilance.
We did find, however, that the rate of change of oxygenation
saturation (first derivative of SpO2%) did predict hypovigi-
lance, which may have some biological plausibility because
lower saturation leads to lower brain tissue oxygenation [61].

Third, while other more sophisticated hypovigilance
detection models incorporate continuous electroencephalogra-
phy data [28], this was not possible in our study. Few ICUs
have access to continuous electroencephalography monitor-
ing simultaneously for all their patients, underscoring the
importance of developing a model that does not rely on
these rarely available sensors to ensure its generalizability to
many settings. Hence, our approach enables the detection of
hypovigilance in a broader context, where electroencephalog-
raphy may not be readily available.

Fourth, our exclusion of patients with cognitive deficits
limits the external validity of our findings. Any future
refinements of our AI model will need to include these
high-risk populations who are increasingly becoming frequent
patients in the ICU [62]. Despite this limitation, our study
adds evidence about the feasibility of conducting a privacy-
compliant and ethically responsible AI study with vulnerable
patients in the ICU that holds promise to improve the quality
of patient care in the ICU.

Finally, we did not include patient comorbidities or
elements from the medical history in our model development.
Including these additional features could have potentially
resulted in a superior model, but the decision was made
to exclude them because our objective was to develop an
automated tool that would minimize the burden on busy
clinicians and rely only on features automatically captured by
the GE CARESCAPE Gateway. Despite this, we did explore
whether using data about sedative and analgesic medication
administered would improve the performance of our model,
even if medication administration is manually documented by
bedside nurses in patients’ charts. Future studies will have
to explore how to automatically capture and integrate data
about the administration of psychoactive medications, their
administration route, their exact time of administration, and
their interaction with any preexisting comorbidities. Other
potential candidate predictor variables could also be included
to enhance the performance of future AI models, such as the
time of the day [63] or ambient noise level in the room [64].
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Conclusion
We developed an automatic machine learning algorithm to
detect hypovigilance in patients in the ICU using routine
and easily captured physiological parameters. The classifi-
ers presented in this study demonstrated that hypovigilance
could be distinguished from nonhypovigilance cases with

poor-to-modest results. Our models exhibited potential for
future improvement. Our study adds to the increasing
evidence about the potential of machine learning algorithms
in real-world clinical settings and identifies avenues for
future research to enhance the detection of hypovigilance and
improve patient outcomes.
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