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Abstract
Background: A major challenge in using electronic health records (EHR) is the inconsistency of patient follow-up, resulting
in right-censored outcomes. This becomes particularly problematic in long-horizon event predictions, such as autism and
attention-deficit/hyperactivity disorder (ADHD) diagnoses, where a significant number of patients are lost to follow-up before
the outcome can be observed. Consequently, fully supervised methods such as binary classification (BC), which are trained to
predict observed diagnoses, are substantially affected by the probability of sufficient follow-up, leading to biased results.
Objective: This empirical analysis aims to characterize BC’s inherent limitations for long-horizon diagnosis prediction from
EHR; and quantify the benefits of a specific time-to-event (TTE) approach, the discrete-time neural network (DTNN).
Methods: Records within the Duke University Health System EHR were analyzed, extracting features such as ICD-10
(International Classification of Diseases, Tenth Revision) diagnosis codes, medications, laboratories, and procedures. We
compared a DTNN to 3 BC approaches and a deep Cox proportional hazards model across 4 clinical conditions to examine
distributional patterns across various subgroups. Time-varying area under the receiving operating characteristic curve (AUCt)
and time-varying average precision (APt) were our primary evaluation metrics.
Results: TTE models consistently had comparable or higher AUCt and APt than BC for all conditions. At clinically relevant
operating time points, the area under the receiving operating characteristic curve (AUC) values for DTNNYOB≤2020 (year-of-
birth) and DCPHYOB≤2020 (deep Cox proportional hazard) were 0.70 (95% CI 0.66‐0.77) and 0.72 (95% CI 0.66‐0.78) at
t=5 for autism, 0.72 (95% CI 0.65‐0.76) and 0.68 (95% CI 0.62‐0.74) at t=7 for ADHD, 0.72 (95% CI 0.70‐0.75) and 0.71
(95% CI 0.69‐0.74) at t=1 for recurrent otitis media, and 0.74 (95% CI 0.68‐0.82) and 0.71 (95% CI 0.63‐0.77) at t=1 for
food allergy, compared to 0.6 (95% CI 0.55‐0.66), 0.47 (95% CI 0.40‐0.54), 0.73 (95% CI 0.70‐0.75), and 0.77 (95% CI
0.71‐0.82) for BCYOB≤2020, respectively. The probabilities predicted by BC models were positively correlated with censoring
times, particularly for autism and ADHD prediction. Filtering strategies based on YOB or length of follow-up only partially
corrected these biases. In subgroup analyses, only DTNN predicted diagnosis probabilities that accurately reflect actual clinical
prevalence and temporal trends.
Conclusions: BC models substantially underpredicted diagnosis likelihood and inappropriately assigned lower probability
scores to individuals with earlier censoring. Common filtering strategies did not adequately address this limitation. TTE
approaches, particularly DTNN, effectively mitigated bias from the censoring distribution, resulting in superior discrimination
and calibration performance and more accurate prediction of clinical prevalence. Machine learning practitioners should
recognize the limitations of BC for long-horizon diagnosis prediction and adopt TTE approaches. The DTNN in particular is
well-suited to mitigate the effects of right-censoring and maximize prediction performance in this setting.
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Introduction
Electronic health records (EHR) are a rich source of data that
can be used to develop effective clinical prediction models
to improve patient care [1]. However, a major challenge is
that patients have inconsistent follow-ups, leading to right-
censored outcomes, and follow-up length typically depends
on observed covariates. This challenge is exacerbated in
long-horizon event prediction, such as prediction of an
autism and attention-deficit/hyperactivity disorder (ADHD)
diagnosis early in life, because many patients are lost to
follow-up before the outcome can be observed. Consequently,
the probability of observing a diagnosis depends not only on
the probability of diagnosis but also on the probability of
sufficient follow-up (ie, the probability that diagnosis occurs
before censoring). As a result, binary classification (BC)
models trained to predict observed diagnoses are substantially
affected by the probability of sufficient follow-up unless
filtering strategies are carefully applied [2].

A common filtering strategy to mitigate this effect is to
exclude all individuals with insufficient follow-up. However,
this is not feasible for many long-term prediction tasks. For
example, sufficient follow-up for ADHD would extend into
adolescence and adulthood; therefore, this criterion would
preclude the development of early ADHD prediction models.
Even in cases where such a criterion is feasible, it can
significantly reduce the sample size available for learning
and introduce systematic biases [3], as it tends to exclude
subpopulations with shorter follow-up, including disadvan-
taged groups.

Time-to-event (TTE; ie, survival analysis) methods are
the natural alternative, as they are designed for right-cen-
sored outcomes. Various versions of classification trees and
random forests [4,5], Bayesian networks [6,7], Cox propor-
tional hazards regression [8] and neural networks [9,10] have
been applied to survival data with mixed success, and have
been adapted to the EHR setting [11]. Deep learning [12]
models such as DeepSurv [13] or deep Cox proportional
hazards (DCPHs), which follow the Cox proportional hazards
framework but uses a neural network to predict the log-hazard
ratio, have become popular for EHR prediction tasks. Neural
network-based TTE approaches are advantageous because
they can efficiently process large, unstructured, high-dimen-
sional inputs and capture complex nonlinear relationships
between features and outcomes.

However, common TTE approaches also have limitations
relevant to long-horizon diagnosis prediction. Unlike in
survival analysis, the event of interest never occurs in most
patients, and typically we are more concerned with predict-
ing diagnosis probability than predicting diagnosis timing.
Consequently, approaches that predict the probability of
diagnosis separately from its timing [14] are well-suited
for long-horizon diagnosis prediction, whereas DCPH and

other approaches that assume relative likelihood does not
change over time are less appropriate. These considerations
motivate our current work to use a discrete-time neural
network (DTNN), which combines the benefits of BC and
TTE approaches.

First, the DTNN offers significant flexibility. Specifically,
it does not assume a particular parametric form for the event
time density, and in particular, allows the effect of covariates
on risk to vary across the time horizon. Second, the DTNN
predicts the probability of no-event within the time horizon,
which is useful in diagnosis prediction where the event of
interest may often not occur. For these reasons, we have
found DTNN to be advantageous in our work.

In this paper, we examine the advantages of the DTNN
approach compared to BC and DCPH across 4 long-horizon,
EHR-based event prediction tasks. We hypothesize that the
DTNN approach will yield higher discrimination performance
and more accurate likelihood predictions compared to BC
even after common filtering strategies are applied due to
the inability of BC to disentangle the probability of diagno-
sis from that of insufficient follow-up. We further hypothe-
size that DTNN performance will be higher than DCPH,
and DTNN predictions will better reflect real-world clinical
prevalence and patterns. The code for our work is available
online [15].

Methods
Ethical Considerations
All study procedures were approved by the Duke Health
Institutional Review Board (Pro00111224) and comply with
institutional policies and federal regulations. A waiver of
participant consent was approved due to the minimal risk
posed by study procedures and the infeasibility of obtaining
consent in a large retrospective cohort. No compensation
was provided to the participants. Identifiers were omitted
during analysis, which was executed within the Duke PACE
(Protected Analytics Computing Environment), a highly
secure virtual network space designed for protected health
information.
Cohort Identification
Analyses were based on inpatient and outpatient encoun-
ters within the Duke University Health System (DUHS), a
large academic medical center based in Durham, NC. DUHS
provides care to approximately 85% of children in Dur-
ham and surrounding Durham County, which has a diverse
population with varying demographic and socioeconomic
status [16]. Records were extracted from the current (2014‐
2023) DUHS EHR, which is based on the platform developed
by Epic.
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Study inclusion criteria were the following: (1) date of
birth between January 1, 2014 and October 29, 2022; and
(2) ≥1 visit within the DUHS before aging 30 days. DUHS
encounters between January 1, 2014 and June 2, 2023 were
extracted for individuals meeting these criteria. See Figure S1
in Multimedia Appendix 1 for the distribution of year of birth
for this identified cohort.
Diagnosis Identification
We focused on 4 clinical diagnoses: autism spectrum disorder
(autism), ADHD, recurrent otitis media (ROM), and food
allergy (FA). We used computable phenotypes previously
established within DUHS [17] or formulated in consultation
with clinicians. The classification criteria are provided in
Tables S1 and S2 in Multimedia Appendix 1.
Experimental Setup
BC models predicting observed diagnoses are significantly
influenced by adequate follow-up probabilities, requiring
meticulous filtering strategies. We first conducted baseline

experiments to establish the performance of BC models
with and without exclusion criteria based on year-of-birth
(YOB) or follow-up length. Correspondingly, we have 3
models trained on different cohort subsets, which are denoted
as BCYOB≤2020, BCYOB≤2018, and BCt≥5 (where t denotes
follow-up length). The upper limit of the dataset for the
prediction tasks was capped at 2020 due to the rarity of
autism and ADHD diagnoses before the age of 2 years
(Figure 1). For subset YOB ≤2018, we excluded all chil-
dren who were age younger than 5 years at the end of our
observation window to limit effects of early censoring on
model predictions. For subset t≥5, we excluded all children
with <5 years of follow-up as a more aggressive measure;
note that this subset overlaps the subset YOB≤2018. Next,
we introduced 2 TTE models, namely DTNNYOB≤2020 and
DCPHYOB≤2020, and evaluated their performance against the
3 BC approaches. To summarize, we explored the effect of
each setup when training the corresponding model to predict
each of the 4 conditions, yielding 20 models in total.

Figure 1. Distribution of observed diagnosis ages in years (upper panel) and months (lower panel). Children with diagnoses before respective
diagnosis age cutoffs (marked by the red line) were excluded. Note that there were 2 ADHD diagnoses before the age cutoff of 3 years. ADHD:
attention-deficit/hyperactivity disorder; FA: food allergy; ROM: recurrent otitis media.

Our features were based on encounters taking place before
the following predefined, condition-specific prediction ages:
15 months, 3 years, 4 months, and 3 months for autism,
ADHD, ROM, and FA, respectively (Figure 1). These ages
were chosen to be clinically useful prediction times that were
earlier than most observed diagnoses. Individuals diagnosed
or censored before these cutoffs were excluded from the
analysis. To prevent temporal data leakage, the events used
for prediction were limited to those taking place before the
first diagnosis code (ICD-10 [International Classification of
Diseases, Tenth Revision]) associated with the outcome of
interest. The distribution of censoring ages can be found in
Figure S2 in Multimedia Appendix 1.

The use of predefined diagnosis age cutoffs was a
deliberate design decision. First, we aimed to demonstrate
the predictive value of detection models based solely on
EHR data collected from early ages [17]. Second, using
fixed age-offs standardizes the data collection period for all
individuals, which simplifies analysis and ensures consis-
tency across the dataset. This approach allows us to focus
on understanding model performance across various clinical

conditions without the additional complexity of time-depend-
ent updates.

For each diagnosis, the dataset was partitioned randomly,
allocating 60% for training, 20% for validation, and 20% for
testing.
Model Development

Overview
Each observation was represented by the triplet X , T, S ,
where X ⊆ Rd is a d-dimensional feature vector,T ∈ (0, Emax] is an observed event or censoring time over
a finite time horizon, and S ∈ 0, 1  indicates whether T
is a right-censoring time (S=0) or an event time (S=1). The
observed time T is the minimum of the event time E and the
right-censoring time C, that is, T = min E, C .

The model selection process began with experimenting
with different combinations of fully connected layers and
transformer architectures. See Figure 2 for the final model
architectures.
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Figure 2. Model architectures of DTNN, DCPH, and BC. BC: binary classification; DCPH: deep Cox proportional hazard; DTNN: discrete-time
neural network; FC: fully connected; MLP: multilayer perceptron; ReLU: rectified linear unit.

Pretraining Medical Concept Embeddings
Patient histories were represented as timestamped sequen-
ces of DUHS EHR events, including ICD-10 diagno-
sis codes, medications (RxNorm [18] codes), procedures
(Current Procedural Terminology [19] codes), and laborato-
ries (Logical Observation Identifiers Names and Codes [20]
codes). Events were mapped to corresponding Word2Vec
embeddings, which were learned by training the model on
these event sequences to capture contextual relationships
between codes. The model used a Continuous Bag of Words
approach with negative sampling, producing embeddings of
size 256. Padding and out-of-vocabulary indices were also
included and mapped to a vector of zeroes. Table S3 in
Multimedia Appendix 1 details the hyperparameters used
during the training process.

Encoder Architecture
The BC and TTE models all shared a common underlying
encoder architecture comprised of (1) an embedding layer, (2)
a fully connected layer with rectified linear unit activation
applied in parallel to each embedding, (3) a global mean
pooling layer, and (4) a fully connected layer with rectified
linear unit activation. The embedding layer was initialized
with frozen pretrained weights from the Word2Vec model.
The sequence length was fixed at 512. Shorter sequences
were padded, while longer sequences were truncated by
selecting the most recent events preceding the age cutoff for a
given model. The mean pooling layer was applied across the
sequence dimension, resulting in a single fixed-length vector
with dimension equal to that of the embeddings.

Prediction Head
In DTNN, the prediction head was a single fully connected
hidden layer with Softmax activation, producing a probability
distribution across multiple bins. The bin boundaries can be
found in Table S4 in Multimedia Appendix 1. Under the
common assumption of noninformative right-censoring, we
may ignore the censoring density and optimize the likelihoodP t,  s  |x; θ  over the observed data D = xi, ti, si i = 1N  by
minimizing the following loss:

LMLE θ = − silog pθ ti |xi + 1 − si log Pθ ti |xi

where Pθ is the survival function associated with pθ and T
has been discretized such that each ti indicates which interval
contains min E, C .

In BC and DCPH, the prediction head was a fully
connected hidden layer predicting the log-odds and
log-hazard ratio, respectively, with corresponding binary
cross entropy or cox negative partial log-likelihood [21]
loss. Whereas BC directly predicts the probability that
diagnosis will be observed (by applying the logistic
function to the predicted log-odds), with DCPH this
probability may be derived from the predicted log-hazard
ratio and baseline hazard function. Note that for BC, we
assumed a constant predicted probability irrespective of the
time point.
Hyperparameter Tuning
The hyperparameters, consisting of learning rate and weight
decay, were then chosen through a grid search to minimize
loss on the validation set (Table S5 in Multimedia Appen-
dix 1). These optimized models were subsequently used for
evaluation on the test set.
Model Evaluation

Calibration Curves
The BC models were evaluated using the probability
calibration module from the scikit-learn library [22], while
the TTE models were evaluated by comparing the observed
probabilities (ie, estimated survival probabilities of the
Kaplan-Meier estimator) and the predicted probabilities at
selected time intervals [23].

Performance Metrics
Our primary evaluation metrics were the time-varying area
under the receiving operating characteristic curve (AUCt) and
time-varying average precision (APt) [24], which quantify
the model’s ability to discriminate between individuals
diagnosed before the age t (positives; S=1, t≤t) and indi-
viduals remaining event-free beyond age t (negatives; t>t).
This time-dependent approach is necessary due to censor-
ing, which prevents many diagnoses from being observed.
In contrast, the standard area under the receiving operating
characteristic curve (AUC) and average precision (AP) do
not differentiate between nondiagnosed individuals with short
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versus long follow-up, making them unsuitable for evaluating
predicted diagnosis probabilities.

Harrell concordance index [25] was also used to quan-
tify the agreement between likelihood predictions and event
times. This metric quantifies the model’s ability to dis-
criminate between individuals diagnosed earlier and those
diagnosed later or not at all.

For each metric, we computed the 95% CI of the distribu-
tion over performance obtained from 100 bootstrap samples
in the test set.

As we were unable to directly assess the accuracy of
the predicted probabilities because diagnoses were not fully
observed in the dataset, we instead contextualized them and
reasoned about their correctness by analyzing the correspond-
ing published trends.
Subgroup Analysis
To explore possible differential effects of each model setup
on specific demographics, we analyzed model predictions and
performance in subgroups defined by YOB, follow-up length
(ie, age at censoring), sex, race, and insurance. Biological
sex was classified as male or female. Race was categorized
into the following groups: Asian, Black or African American,
White, unavailable, and other. Insurance status was separated
into public, private, and other categories.

To assess the performance of our models on out-of-distri-
bution (OOD) data, we extended the evaluation to include
children born after 2018 and individuals with a follow-up
duration of <5 years for the YOB and follow-up length
plots, respectively. For the YOB plots, 2019 and 2020 were
designated as OOD years for BCYOB≤2018. Since BCt≥5
also fulfilled the YOB≤2018 criteria, the same years were,
by extension, considered OOD. Similarly, for the follow-up
length plots, individuals with a follow-up duration of ≥5 years
were categorized as in-distribution, while those with <5 years
were classified as OOD.

Semisynthetic ROM Dataset
To further explore the effect of early censoring on
each method’s ability to predict diagnosis probability, we
simulated early censoring for ROM cases. Unlike ADHD,
most ROM diagnoses were observed rather than censored due
to the earlier age of diagnosis. Leveraging prior knowledge
of true ROM labels, we introduced artificial censoring by
scaling the true censoring distribution such that the maximum
age is at 1.2 years to mimic the ADHD scenario. Generating
a semisynthetic ROM dataset served 2 purposes: reproduc-
ing earlier findings on BC limitations with censored data
and demonstrating DTNN model performance under such
conditions. Additional DTNN and BC models were trained
on this semisynthetic train dataset and subsequently evaluated
on the original test dataset.

This study follows the Consolidated Reporting of Machine
Learning Studies guidelines (Checklist 1) [26].

Results
Patient Characteristics
Records for 57,701 unique patients meeting study criteria
were initially extracted. After excluding children born after
2020, the evaluation dataset comprised 43,536 patients (Table
1). Based on the respective diagnosis age cutoffs (Figure 1),
we further excluded 1 individual with autism as an outlier
due to a diagnosis within the first month of birth, along
with 2 individuals with ADHD, 25 individuals with ROM,
and 70 with FA. Additionally, individuals with censoring
ages preceding the age cutoffs were excluded: 9332 from the
autism dataset, 17,691 from the ADHD dataset, 6171 from the
ROM dataset, and 5847 from the FA dataset.

Table 1. Patient demographics.
Variable and category or value All Autism ADHDa ROMb FAc

Total, n (%) 43,536 (100) 749 (1.7) 618 (1.4) 5201 (11.9) 916 (2.1)
Sex
  Male, n (%) 22,583 (51.9) 590 (78.8) 432 (69.9) 2951 (56.7) 544 (59.4)
  Female, n (%) 20,953 (48.1) 159 (21.2) 186 (30.1) 2250 (43.3) 372 (40.6)
  Chi-square (df) N/Ad 221.9 (1) 79.7 (1) 58.8 (1) 21.5 (1)
  P value N/A <.001 <.001 <.001 <.001
Race, n (%)
  Asian 1835 (4.2) 23 (3.1) 8 (1.3) 145 (2.8) 63 (6.9)
  Black or African American 13,132 (30.2) 272 (36.3) 206 (33.3) 1226 (23.6) 278 (30.3)
  White 18,681 (42.9) 266 (35.5) 326 (52.8) 2936 (56.5) 418 (45.6)
  Unavailable 3874 (8.9) 57 (7.6) 29 (4.7) 390 (7.5) 45 (4.9)
  Other 6014 (13.8) 131 (17.5) 49 (7.9) 504 (9.7) 112 (12.2)
  Chi-square (df) N/A 22.1 (4) 55 (4) 521.9 (4) 44.7 (4)
  P value N/A <.001 <.001 <.001 <.001
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Variable and category or value All Autism ADHDa ROMb FAc

Insurance, n (%)
  Public 23,262 (53.4) 431 (57.5) 326 (52.8) 2011 (38.7) 319 (34.8)
  Private 20,127 (46.2) 316 (42.2) 288 (46.6) 3178 (61.1) 596 (65.1)
  Other 147 (0.3) 2 (0.3) 4 (0.6) 12 (0.2) 1 (0.1)
  Chi-square (df) N/A 4.3 (2) 0.7 (2) 571.1 (2) 141.7 (2)
  P value N/A .12 .69 <.001 <.001

aADHD: attention-deficit/hyperactivity disorder.
bROM: recurrent otitis media.
cFA: food allergy.
dN/A: not applicable.

Male-to-female ratios were 3.7 for autism, 2.3 for ADHD,
1.3 for ROM, and 1.5 for FA. All diagnoses were associ-
ated with sex (P<.001) and racial status (P<.001). ROM
and FA were associated with insurance status (P<.001), but
autism and ADHD were not (P=.12 and P=.69, respectively).
Private insurance rates were 3178/5201 (61.1%) and 596/916
(65.1%) in the ROM and FA groups, respectively, compared
to 316/749 (42.2%) and 288/618 (46.6%) in the autism and
ADHD groups, respectively.

The mean age at diagnosis for autism and ADHD was 3.75
years and 6.22 years, respectively, higher than that for ROM
and FA, which were 1.57 years and 2.01 years, respectively
(Figure 1).
Analysis of Performance Metrics
In general, the TTE models consistently matched or out-
performed BC models with higher AUCt values across all
conditions (Figure 3 and Table S6 in Multimedia Appendix
1). At clinically relevant operating time points, the AUC

values for DTNNYOB≤2020 and DCPHYOB≤2020 were 0.70
(95% CI 0.66‐0.77) and 0.72 (95% CI 0.66‐0.78) at t=5 for
autism, 0.72 (95% CI 0.65‐0.76) and 0.68 (95% CI 0.62‐0.74)
at t=7 for ADHD, 0.72 (95% CI 0.70‐0.75) and 0.71 (95%
CI 0.69‐0.74) at t=1 for ROM, and 0.74 (95% CI 0.68‐0.82)
and 0.71 (95% CI 0.63‐0.77) at t=1 for FA, compared to 0.60
(95% CI 0.55‐0.66), 0.47 (95% CI 0.40‐0.54), 0.73 (95% CI
0.70‐0.75), and 0.77 (95% CI 0.71‐0.82) for BCYOB≤2020,
respectively.

Conversely, the regular AUC values for BCYOB≤2020
were consistently higher than those for DTNNYOB≤2020 and
DCPHYOB≤2020. Notably, a statistically significant differ-
ence (P<.05) was observed in the ADHD prediction task
(BCYOB≤2020ADHD : AUC 0.75, 95% CI 0.71‐0.80; DTNNYOB≤2020ADHD :
AUC 0.64, 95% CI 0.59‐0.69; DCPHYOB≤2020ADHD : AUC 0.64,
95% CI 0.60‐0.69). With filtering, BCYOB≤2020 and BCt≥5
exhibited decreased regular AUC, with the latter experiencing
a larger decline.

Figure 3. Comparison of AUCt (solid lines) and regular AUC (bar graphs). ADHD: attention-deficit/hyperactivity disorder; AUC: area under the
receiving operating characteristic curve; AUCt: time-varying area under the receiving operating characteristic curve; BC: binary classification;
DCPH: deep Cox proportional hazard; DTNN: discrete-time neural network; FA: food allergy; ROM: recurrent otitis media; t: t denotes follow-up
length; YOB: year-of-birth.

The regular AP and APt exhibited similar trends as descri-
bed above, with higher APt but lower regular AP for TTE
models (Figure S3 and Table S7 in Multimedia Appen-
dix 1). However, direct comparison and interpretation are

difficult due to the variation in test prevalence across
different datasets. The concordance index, comparing ordered
predicted event probabilities with observed event times,
further demonstrates that the TTE models consistently
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performed as well as or better than the BC models (Table
S8 in Multimedia Appendix 1). In particular, DTNNYOB≤2020
and DCPHYOB≤2020 achieved 0.656 and 0.667 for autism,
0.682 and 0.657 for ADHD, as compared to 0.629 and 0.558
for BCYOB≤2020, respectively.

The predicted probabilities for all models closely align
with the observed estimates for in-distribution years,
demonstrating overall good calibration, while OOD curves
(ie, years 2019 and 2020) for BCYOB≤2018 and BCt≥5 show
poor calibration (Figure 4).

Figure 4. Calibration analysis. The predicted probabilities were compared with observed event rates across different probability bins, using
Kaplan-Meier estimates for the TTE models and true binary outcomes for the BC models. OOD curves (ie, years 2019 and 2020) were also
added for BCYOB≤2018 and BCt≥5. ADHD: attention-deficit/hyperactivity disorder; BC: binary classification; DCPH: deep Cox proportional hazard;
DTNN: discrete-time neural network; FA: food allergy; OOD: out-of-distribution; ROM: recurrent otitis media; t: t denotes follow-up length; TTE:
time-to-event.
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Semisynthetic Censoring Experiment
Results

The DTNNYOB≤2020ROM, ss  performance remained comparable toDTNNYOB≤2020ROM  and BCYOB≤2020ROM , exhibited good calibration,
AUCt and regular AUC values. However, BCYOB≤2020ROM, ss

displayed worse calibration due to underprediction, and had
lower AUCt and regular AUC values (Figure 5). Note that
comparing performances beyond 1.2 years would be unfair,
as those observed times were not available for model learning
during training in the semisynthetic setup.

Figure 5. Comparison of performance metrics evaluated on the original test set between BC and DTNN models trained on original and semisynthetic
ROM train datasets. AUC: area under the receiving operating characteristic curve; AUCt: time-varying area under the receiving operating characteris-
tic curve; BC: binary classification; DTNN: discrete-time neural network; ROM: recurrent otitis media; YOB: year-of-birth.

Subgroup Analyses
Probabilities predicted by BCYOB≤2020 decreased over time
across all conditions. This trend was less pronounced for
BCYOB≤2018 and BCt≥5 (Figure 6). In contrast, the probabil-
ities predicted by DTNNYOB≤2020 for autism and ADHD
showed a consistent yearly increase. For ROM, predicted

probabilities declined from 2014 to 2017, then increased
from 2018 onward. For FA, predicted probabilities modestly
increased from 2014 to 2015, then stabilized at approxi-
mately 3.4%‐3.5% in subsequent years. The results for
DCPHYOB≤2020 were heterogeneous.

Figure 6. Grouped analysis of predicted probability distributions by year-of-birth. ADHD: attention-deficit/hyperactivity disorder; BC: binary
classification; DCPH: deep Cox proportional hazard; DTNN: discrete-time neural network; FA: food allergy; ROM: recurrent otitis media; t: t
denotes follow-up length; YOB: year-of-birth.

We expanded our YOB subgroup analysis to include 2019
and 2020 to evaluate BC model behaviours during these

OOD years (Figure 6). BCt≥5 exhibited a modest decrease
in predicted probabilities across all the conditions, more
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pronounced in 2020 than in 2019, while BCYOB≤2018
remained relatively stable.

There was a positive correlation observed between the
predicted probability and follow-up length in all BC models,
albeit to a lesser extent in BCYOB≤2020 and BCt≥5 (Figure
7). A similar trend was apparent in the analysis of the
concordance between predicted nonevent probabilities with

the observed censoring times (Table 2), with BCYOB≤2020ADHD
showing the highest concordance index of 0.734. BC
predictions appeared to align with the test prevalence (Figures
S7-S9 in Multimedia Appendix 1), whereas DTNN and
DCPH predictions did not (Figures S5 nd S6 in Multimedia
Appendix 1).

Figure 7. Grouped analysis of predicted probability distributions by follow-up length in years. ADHD: attention-deficit/hyperactivity disorder; BC:
binary classification; DCPH: deep Cox proportional hazard; DTNN: discrete-time neural network; FA: food allergy; ROM: recurrent otitis media; t: t
denotes follow-up length; YOB: year-of-birth.

Table 2. Concordance index by comparing ordered predicted nonevent probabilities of BCa models with observed censoring times.
Autism ADHDb ROMc FAd

BCYOB≤2020e 0.581 0.734 0.605 0.558
BCYOB≤2018 0.533 0.625 0.605 0.535
BCt≥5f 0.5 0.605 0.576 0.491

aBC: binary classification.
bADHD: attention-deficit/hyperactivity disorder.
cROM: recurrent otitis media.
dFA: food allergy.
eYOB: year-of-birth.
ft denotes follow-up length.

In all 4 conditions, DTNN predicted a greater likelihood of
diagnosis for males. Among the racial groups, Asians had
the highest predicted probability for autism and FA, while
White individuals displayed the highest predicted probability
for ADHD and ROM. Regarding insurance status, individuals
with private insurance were more likely to be diagnosed with

ROM and FA; however, findings for autism and ADHD were
equivocal (Figure 8).

The individual results of the subgroup analysis by
demographics for each model setup are available in Figures
S10-S12 in Multimedia Appendix 1.

JMIR AI Loh et al

https://ai.jmir.org/2025/1/e62985 JMIR AI 2025 | vol. 4 | e62985 | p. 9
(page number not for citation purposes)

https://ai.jmir.org/2025/1/e62985


Figure 8. Demographics analysis of probability distributions by DTNNYOB≤2020. The subgroups are sex, race, and insurance status. ADHD:
attention-deficit/hyperactivity disorder; DTNN: discrete-time neural network; FA: food allergy; ROM: recurrent otitis media; YOB: year-of-birth.

Discussion
Principal Findings
Our study contributes to the understanding of how right-cen-
soring influences model performance and predicted proba-
bilities over time using EHR data. We highlight inherent
limitations of BC in such contexts, even with filtering
strategies. Furthermore, our results reinforce the potential of
TTE approaches, particularly DTNN, in mitigating bias from
the censoring distribution, leading to superior discrimination,
calibration, and clinical prevalence prediction.
Principal Results
First, we demonstrated that BC cannot disentangle the
probability of diagnosis and early censoring, even with
filtering. The BC models displayed poor AUCt performance,
despite achieving high regular AUC scores (Figure 3 and
Table S6 in Multimedia Appendix 1). This discrepancy arises
because AUCt calculation excludes individuals censored
before prediction time t whereas regular AUC calculation
does not. Thus, the AUC is artificially inflated by “cor-
rectly” predicting diagnosed individuals in this subgroup of
individuals who were censored early as negative cases. With
filtering, BCYOB≤2018 and BCt≥5 benefitted less, resulting in
lower regular AUC scores because more true cases with later
diagnoses were excluded.

Spurious positive correlations between the predicted
probability and follow-up length imply that BC models
were unduly benefitting from early censoring (Figure
7), along with increased concordance between predicted

nonevent probabilities and observed censoring times (Table
2). Similarly, these differences were less prominent in
BCYOB≤2020 and even less in BCt≥5, but not completely
absent.

This contrast was exacerbated in long-horizon prediction
tasks such as ADHD, with the degree of variation correspond-
ing with the tail end of the diagnosis age distributions (Figure
1). ADHD showed the highest proportion of later diagnoses,
followed by autism and FA, and the lowest in ROM. These
results corroborate observations associating censoring with
biased improved outcomes, where hazard ratios fall below 1
compared to complete follow-up and correlate inversely with
the proportion of censored cases [27].

Second, we found that TTE models outperformed BC
models on all datasets. In diagnoses with longer time
horizons, heavy right-censoring leads to many individu-
als having unknown status, while shorter prediction time
horizons tend to have better follow-up. DTNNYOB≤2020
and DCPHYOB≤2020 achieved comparable or higher AUCt
scores in predicting ROM and FA (Figure 3 and Table S6
in Multimedia Appendix 1), suggesting that TTE mod-
els matched or surpassed BC models on datasets with
less censoring. This superiority is particularly pronounced
in autism and ADHD datasets, which experience heavier
censoring. The main insight is that TTE models are well-
suited to predict clinical outcomes, especially those with
prolonged time horizons.

In our semisynthetic ROM censoring experiment, we
reproduced the limitations of BC as evidenced by the
deterioration in AUCt and regular AUC performance of

JMIR AI Loh et al

https://ai.jmir.org/2025/1/e62985 JMIR AI 2025 | vol. 4 | e62985 | p. 10
(page number not for citation purposes)

https://ai.jmir.org/2025/1/e62985


BCYOB≤2020ROM, ss  when evaluated on the original dataset (Figure
5 and Table S6 in Multimedia Appendix 1). This result
supports our earlier claim that the BC models were under-
predicting diagnosed individuals with early censoring. We
also demonstrated that DTNNYOB≤2020ROM, ss  remained well-cali-
brated and maintained comparable AUCt performance asDTNNYOB≤2020ROM  (Figure 5), demonstrating the applicability
of our TTE approach in situations with partially observed
information.

We also examined the impact of BC filtering strategies
on OOD years. Specifically, we extended the evaluation
to include 2019 and 2020 (Figure 6). Notably, a discern-
ible decline in predicted probabilities was observed for
BCt≥5 across all clinical conditions, with a slightly more
pronounced drop in 2020 compared to 2019. In contrast,
predicted probabilities by BCYOB≤2018 remained relatively
stable during the same OOD years. This suggests that the
inclusion of older individuals (ie, born before 2018) with
shorter follow-up (ie, <5 years) makes predictions more stable
on OOD years. However, including these individuals results
in declining predicted probabilities due to early censoring on
in-distribution years, as we have previously demonstrated.
Moreover, BCYOB≤2018 and BCt≥5 showed poor calibration
for all diagnoses on OOD years (Figure 4), rendering them
unsuitable for clinical deployment.

Temporal and demographics trends were poorly rep-
resented in BC and DCPH. The probability of diagno-
sis should remain stable or increase over time due to
improved awareness and tools unless specific interventions
are implemented. However, BCYOB≤2020 exhibited declining
predicted probability for all diagnoses because the models
assigned lower probability scores to individuals born later,
despite the absence of temporal information during learning.
Inadvertently, BC predictions follow test prevalence, which
also contributes to its poor performance in the demographics
subgroup analysis.

The unclear patterns in DCPH models likely result from
a violation of the proportional hazards assumption, which is
common in practice. For example, varying severity levels in
autism and ADHD diagnoses can lead to nonproportionality,
where low-likelihood groups initially exhibit delays in hazard
before catching up with the high-likelihood groups [28]. By
assuming constant hazard rates over time, DCPH models may
not fully leverage the complexity of likelihood representa-
tions and time-dependent covariate impacts. While excel-
ling in providing generalized representations at a population
level (Figure 3 and Figure S4 in Multimedia Appendix 1),
our findings suggest inconsistent or inaccurate outcomes in
subgroup analyses (Figures 6 and 7, and Figures S10-S12 in
Multimedia Appendix 1). DTNN, however, does not assume
proportional hazards, enabling better capture of time-depend-
ent covariate influences on survival.

In contrast to the BC and DCPH models, the diagno-
sis probabilities predicted by the DTNN models (Figures
6 and 8) are in keeping with actual prevalence, reflecting
both temporal and demographic trends. For example, autism

prevalence increased from 2.24% in 2014 to 2.79% in 2019
[29], with higher rates among males and Black individuals
[30]. Our demographics analysis for ADHD also concurs
with trends toward increased prevalence in males and White
individuals [31]. Note that the reported prevalence in DUHS
may exceed nationwide estimates, given its status as a
regional hub for neurodevelopmental diagnosis.

Interestingly, for ROM, our DTNN models appear
consistent with distinctive temporal patterns including (1)
declining prevalence from 2014 to 2017 associated with
the availability of postpneumococcal conjugate vaccines [32]
and (2) increasing prevalence from 2018 to 2020 amid the
COVID-19 pandemic [33]. The DTNN models also accu-
rately predict increased likelihood associated with male sex,
White race, lower socioeconomic status [32,34], and private
insurance, which reflect health care use disparities [35,36].

Our models suggest stable FA prevalence (~3.4%‐3.5%),
adding to mixed data that challenge whether rates have
increased (range: 4.8%‐8%) [37]. This discrepancy may
arise due to difficulties in estimating true prevalence [38,39]
or our stricter diagnostic criteria (ICD-10 code+IgE-based
laboratory test) compared to other studies using surrogate
laboratory tests or self-report, which tend to overestimate
rates of clinical disease [40-42]. Demographically, our
findings corroborate higher FA prevalence among males [43]
and Asian and non-Hispanic Black individuals compared
to non-Hispanic White individuals [44]. Additionally, our
models corroborated the lower FA prevalence reported among
children with public insurance [45].

Our findings suggest that TTE models, particularly the
DTNN, should be preferred in clinical settings dealing with
right censored outcomes. First, the DTNN models outper-
formed BC models, yielding clinically meaningful discrim-
inatory performance with AUCt≥0.7 at early ages across
all 4 clinical conditions, supporting earlier diagnoses and
timely interventions. Second, the DTNN approach addresses
label bias that may lead to underprediction, as evidenced by
its superior discrimination, calibration and ability to reflect
clinical prevalence. While the modelling approach is arguably
more challenging, it avoids the need for complex and often
opaque filtering procedures.
Limitations
Our study has important limitations. First, it is confined to
data from DUHS only, which primarily serves a population
with a high representation of Black and White individuals.
This demographic makeup may limit the generalizability of
the results to other health systems with different patient
demographics. Second, computable phenotypes are imperfect,
as the identification and timing of diagnosis can vary in
practice. Third, not all information, including vital signs
and laboratory values, was used during the training process.
Fourth, we do not include every possible filtering strategy and
competing model, which may contribute to the breadth of our
findings. Fifth, sex bias may also influence diagnosis trends,
with males being more likely to be diagnosed with autism
in practice. To the extent that sex affects the distribution of
event times, the discrete-time approach can help mitigate this
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bias, because it does not conflate diagnosis probability with
timing unlike BC and DCPH approaches. However, to the
extent that sex also influences the probability of diagnosis
at any given point, this is not a bias that we can overcome
by choice of model alone and will require efforts to change
assessment practices. Finally, the constrained size of our
dataset prevents us from conducting finer subgroup analyses.
For example, we could not explore temporal trends among
different demographics, such as instances where autism
rates among Black children surpassed those among White
children [46]. To address these limitations, we recommend

incorporating data from diverse health systems, including
a broader range of clinically relevant EHR data, exploring
additional filtering strategies, and expanding dataset size to
enable more detailed subgroup analyses.
Conclusion
Machine learning practitioners should acknowledge the
inherent limitations of BC on right-censored outcomes and
consider TTE approaches, particularly DTNN, in the clinical
context. Our study paves the way for future research to
identify and optimize models to improve patient outcomes.
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