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Abstract

Background: Cancer progression is an important outcome in cancer research. However, it is frequently documented only in
electronic health records (EHRS) as unstructured text, which requires lengthy and costly chart reviewsto extract for retrospective
studies.

Objective: Thisstudy aimed to evaluate the performance of 3 deep learning language model sin determining breast and col orectal
cancer progression in EHRs.

Methods: EHRsfor individuals diagnosed with stage 4 breast or colorectal cancer between 2004 and 2020 in Manitoba, Canada,
were extracted. A chart review was conducted to identify cancer progression in each EHR. Data were analyzed with pretrained
deep learning language models (Bio+Clinical BERT, Clinical-BigBird, and Clinical-Longformer). Sensitivity, positive predictive
value, area under the curve, and scaled Brier scores were used to evaluate performance. Influential tokens were identified by
removing and adding tokens to EHRs and examining changes in predicted probabilities.

Results: Clinical-BigBird and Clinical-Longformer modelsfor breast and colorectal cancer cohorts demonstrated higher accuracy
than the Bio+Clinical BERT models (scaled Brier scoresfor breast cancer models: 0.70-0.79 vs 0.49-0.71; scaled Brier scoresfor
colorectal cancer models: 0.61-0.65 vs 0.49-0.61). The same models also demonstrated higher sensitivity (breast cancer models:
86.6%-94.3% vs 76.6%-87.1%; colorectal cancer models: 73.1%-78.9% vs 62.8%-77.0%) and positive predictive value (breast
cancer models: 77.9%-92.3% vs 80.6%-85.5%; colorecta cancer models: 81.6%-86.3% vs 72.9%-82.9%) compared to
Bio+Clinical BERT models. All models could remove morethan 84% of chartsfrom the chart review process. The most influential
token was the word progression, which was influenced by the presence of other tokens and its position within an EHR.

Conclusions: The deep learning language models could help identify breast and colorectal cancer progression in EHRs and
remove most charts from the chart review process. A limited number of tokens may influence model predictions. Improvements
in model performance could be obtained by increasing the training dataset size and analyzing EHRs at the sentence level rather
than at the EHR level.
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Introduction

Methods

Background

Cancer progression isan important intermediate prognostic and
predictive marker of clinical outcomes among patients with
cancer. It is defined as the growth or spread of an existing
cancer. Progression is distinct from cancer recurrence, which
is the diagnosis of a second episode of cancer after the first
episode is considered cured. Unfortunately, cancer progression
and itsdate of occurrence are frequently not availablein cancer
registries and are only documented in the electronic health
record (EHR) as unstructured text. Reports such as pathology
and radiology reports also contain text that can inform the
diagnosis of cancer progression in clinical notes. Therefore, the
inclusion of cancer progression in retrospective research requires
a chart review, which can be lengthy and expensive.
Consequently, researchers may not have been able to include
progression as an outcome in retrospective studies.

Algorithms using administrative claims data (eg, diagnosisand
procedure codes and pharmacy-dispensed medication) have
been developed to identify cancer recurrence and progression
[1-3]. However, these algorithms do not approximate case
definitions obtained from chart reviews well. When algorithms
demonstrated sensitivity values >90%, the positive predictive
values (PPV) were only near or <50%. PPV can be low due to
algorithms misclassifying changes in treatment as cancer
progression or recurrence when the change was due to other
reasons (eg, toxicity). In addition, most algorithms demonstrated
sensitivity values <100%. Methods other than algorithms that
use administrative claims data are needed to reduce
misclassifications and improve accuracy.

One recent option is to use pretrained deep learning language
models, which have the potential to improve model accuracy
relative to claims-based algorithms while decreasing the need
for lengthy and costly chart reviews. Bidirectional encoder
representations from transformers (BERT) [4] is an example of
such a model, which can be fine-tuned to datasets to perform
tasks such as creating classification models. This approach has
demonstrated higher accuracy in developing text classification
models than previous deep |earning language models (eg, long
short-term memory models [4]). Rather than using proxy
information for identifying cancer progression (eg, claims data),
these language models can analyze data directly from EHRSs.

Objectives
The objective of this study wasto devel op and compare models
to identify cancer progression in EHRs for stage 4 breast and

colorectal cancer cohorts using 3 pretrained deep learning
language models.

https://ai.jmir.org/2025/1/e63767

Data

Stage 4 breast and colorectal cancer cohorts were identified
from the Manitoba Cancer Registry. Individuals diagnosed
between January 1, 2004, and December 31, 2020, were
included. EHRs for physician visits on or after an individual’s
diagnosis date were extracted from the CancerCare Manitoba's
ARIA system up to April 30, 2022. Only text from physician
noteswithin EHRswas extracted because these recordsincluded
notes such as physicals and histories, progression notes, and
treatment plans that would discuss the suspicion, investigation,
and diagnosis of progression. Notes from other professionals
(eg, nutritionists, social workers, and nurses) were removed
because the diagnosis of cancer progression isthe responsibility
of physicians. Radiology and pathology reports as source
documents were excluded. Radiology and pathology reports
were stored as PDF files, which had issues with extracting text
and retaining proper format (eg, text from multiple columns
would be read as a single line rather than separate lines from
different columns). Training and validation breast cancer cohorts
included EHRs from individual s diagnosed between January 1,
2004, and December 31, 2017. Training and vaidation colorectal
cancer cohorts included EHRs from individuals diagnosed
between January 1, 2011, and December 31, 2017. Training and
validation cohorts consisted of weight-stratified datasets
representing 80% and 20% of the EHRs, respectively. Test
cohorts consisted of EHRs from individuals with breast or
colorectal cancer diagnosed between January 1, 2018, and
December 31, 2020. Tempora externa validation was used
because external validation is more rigorous than internal
validation [5].

Cancer progression reported in clinical notes was defined as a
requirement for treatment change due to tumor growth. Tumor
growth could be determined radiologically, when new lesions
appeared or had increased in size on imaging. Criteria such as
the response evaluation criteriain solid tumors may or may not
have been reported in clinical notes. Tumor growth could also
be considered by rising blood marker values or pathologically
(eg, new lesions). Progression could aso be defined clinically
when deterioration requires a change in treatment, such as
enrollment in palliative care.

Labels were provided for each EHR to identify cancer
progression. Three-class labels were considered: (1) cancer
progression (reported by an oncologist in the clinical noteusing
the previously mentioned factors); (2) mention of progression
but not actual progression or suspicion of progression (which
occurred for 1 of 3 reasons—tumor growth was reported in the
clinical note as not having increased enough to justify achange
in treatment; nononcological use, eg, “the patient’s symptoms
are progressing well”; or suspicion of progression without
sufficient evidence to indicate adiagnosis); and (3) no mention
of progression. Three-class|abelswere generated to potentially
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reduce false-positive rates. Two trained research assistants
reviewed EHRs for the breast cancer cohort, 2 other trained
research assistants reviewed EHRs for the colorectal cancer
cohort, and a third individual with prior training provided the
final label when disagreementsin labels occurred between chart
reviewers.

Analysis

Preprocessing of data before analysis consisted of changing all
text to lowercase and removing words that contained more than
50 characters. Some EHR notes had PROGRESS NOTE as the
first header. This text was removed to prevent models from
confusing this term with cancer progression. Three pretrained
deep learning language models (Bio+Clinicad BERT [6],
Clinical-BigBird [7], and Clinical-Longformer [7]) were used
to analyze data. Bio+Clinica BERT is limited to a maximum
of 512 tokens, whereas Clinica-BigBird and
Clinical-Longformer arelimited to amaximum of 4096 tokens.
Three approaches were used with Bio+Clinica BERT to account
for the 512-token maximum: analyzing the first 512 tokens
(head), analyzing the last 512 tokens (tail), and analyzing the
first 256 and last 256 tokens (head and tail). Five-fold
cross-validation was used with a repeated weighted k-fold
function. The following parameters were used to optimize the
results on the validation dataset: batch size (16 and 32 for
Bio+ClinicalBERT; 4 for  Clinicd-BigBird and
Clinical-Longformer), learning rate (1e-2 and 1e-5), and weight
decay (0 and 0.25). Up to 10 epochs were considered with a
stopping rule (a patience of 3 for Bio+Clinica BERT and a
patience of 1 for Clinical-BigBird and Clinical-Longformer).
When the parameters were determined, the analysis was
completed by combining the training and validation cohorts.
The developed models were then applied to the test datasets.
The models were analyzed with 2-class labels (cancer
progression vs other labels combined) and 3-class labels. The
models were run using a workstation with 2 GPUs of 24 GB
RAM each.

M odel Performance

Accuracy (ie, correct classification) was used to compare model
performance by epoch. After the epoch numbers were selected,
themodel performance was evaluated on the validation and test
cohorts. Performance measuresfor eval uating the 3-classmodels
were based on the predicted probabilities of the “cancer
progression” category versus the other 2 categories combined.
Reported measures included sensitivity, PPV, area under the
curve (AUC; a measure of discrimination), scaled Brier score
(ameasure of predictive accuracy), and the percentage of charts
reduced (ie, true negatives plus false negatives divided by the
total number of EHRs). The probability threshold used for
sensitivity and PPV was 0.50. Models generated with breast
cancer data were applied to the colorectal cancer test dataset,
and vice versa, to evaluate generalizahility.

Additional output was generated when evaluating the test
datasets. The rate of progression over time was calculated for
the observed data using the Kaplan-Meier (KM) approach. The
predicted rate of progression over time was generated by
assuming that the models would be used as a screening tool to
reduce the number of charts that need to be reviewed or to
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replace the need for a chart review. When eval uating the model
as a screening tool to reduce the number of charts required to
review, the time to first progression predicted by the model on
or after the first observed EHR identifying cancer progression
was used to cal culate timeto progression. Thiswas done because
when used as a screening tool, users should not identify cancer
progression before the observed date. In contrast, when
evaluating the model to replace the need for a chart review, the
time to the first EHR predicted by the model to mention
progression was used to indicate timeto progression. The hazard
ratio (HR) from a Cox regression model with age at diagnosis
(=65 years vs <65 years) as a predictor was also run using the
observed data. Similar to the KM analysis, Cox regression
models were run, assuming that the models were used as a
screening tool or to replace a chart review. Predicted values
closeto both observed KM rates and HRsindicate that amodel
approximated the observed data well.

Modé Interpretability

Thedetection of influential tokenswas determined by selecting
samples of EHRsidentified astrue positive, true negative, false
positive, and false negative from the test cohorts. EHRs with
predicted probabilities near 0.00, 0.50, and 1.00 were sampled.
EHRs were modified by replacing individual words or partial
sentences with nonsensical terms (eg, X XXXXX) or by adding
words or partial sentences that were assumed to be influential.
Common terms that describe cancer progression (eg,
progression) were added or removed from EHRs. Partial
sentences such as no evidence of progression and has not
progressed yet were also added. The predicted probabilities of
the original and modified EHRswere compared. If an EHR had
a predicted probability near 1.00, individual words and partial
sentences were removed until the predicted probability was
decreased to near O.

Ethical Considerations

The study was conducted according to the guidelines of the
Declaration of Helsinki and was approved by the University of
Manitoba's Heath Research Ethics Board (HS21379
[HS2017:422]; approval date March 28, 2022), the University
of Waterloo’'s Ethics Board (44261; approval date April 29,
2022), the Manitoba Health’s Provincia Health Research
Privacy Committee, and the CancerCare Manitoba's Research
and Resource Impact Committee. Because data were
retrospectively collected and analyzed, informed consent was
not required, and compensation was not provided. No
identifiable information was included in the manuscript to
further maintain and ensure privacy and confidentiality.

Results

Breast Cancer

In the breast cancer training (19,031 EHRS) and validation (4758
EHRs) datasets, 3884 (16.33%) EHRs indicated cancer
progression, and 4324 (18.18%) indicated progression
mentioned but not present (ie, ratios of 0.24 and 0.27 relative
to the no cancer progression class). In the breast cancer test
dataset (4486 EHRS), 582 (12.97%) EHRs indicated cancer
progression, and 817 (18.21%) indicated progression mentioned
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but not present (ie, ratios of 0.19 and 0.26 relative to the no
cancer progression class). The number of tokens per chart
differed by the model tokenizer (Table 1). All 3 tokenizers
reported that more than 30% (breast cancer training and

Table 1. Number of tokens by tokenizers.

Lambert et d

validation data: 8860/23,789, 7719/23,789, and 7775/23,789;
breast cancer test data: 1955/4758, 1724/4758, and 1737/4758)
of EHRs had more than 512 tokens and that no EHRs had more
than 4096 tokens.

Model and metric Breast cancer Colorectal cancer
Training and validation (n=23,789) Test (n=4486) Training and validation (n=23,977) Test (n=6045)
Bio+ClinicaBERT
Mean (SD) 486 (323) 548 (358) 488 (316) 547 (357)
Maximum 2821 2717 2987 3619
EHRS?>512, n (%) 8860 (37.24) 1955 (43.58) 9186 (38.31) 2744 (42.84)
Clinical-BigBird
Mean (SD) 451 (300) 506 (331) 451 (292) 505 (331)
Maximum 2569 2523 2784 3342
EHRs>512, n (%) 7719 (32.45) 1724 (38.43) 7866 (32.81) 2368 (36.97)
Clinical-L ongfor mer
Mean 453 (301) 508 (332) 454 (293) 508 (333)
Maximum 2584 2528 2796 3353
EHRs>512, n (%) 7775 (32.68) 1737 (38.72) 7966 (33.22) 2401 (37.49)
8EHR: electronic health record.
Only 1 epoch was required for the breast cancer models. The larger token models (Clinical-BigBird and

Bio+ClinicalBERT reached 99% to 100% accuracy in the
training dataset by the fourth or fifth epoch, but accuracy for
the validation dataset was highest at the first epoch.
Clinical-BigBird and Clinical-L ongformer reached 99% to 100%
accuracy in the training dataset by the second epoch, but
accuracy for the validation dataset was highest at thefirst epoch.
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Clinical-Longformer) demonstrated higher predictive accuracy
(ie, scaled Brier scores) than the Bio+Clinica BERT modelsin
both validation and test datasets (Table 2). The highest
sensitivity, PPV, and AUC were also achieved by the larger
token modelsin the test datasets.
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Table 2. Results by model and outcome class for breast cancer validation and test datasets.

Datasets and metrics Biot+Clinica BERT Clinica-BigBird Clinical-Longformer
2-class 3-class 2-class 3-class 2-class 3-class
Head Tall Head Head Tail Head
and tail and tail
Validation
Sensitivity, % 71.9 71.2 80.7 79.0 84.2 74.0 84.0 86.0 76.7 86.72
PPVb, % 85.1 90.5 86.8 88.1 84.7 87.5 88.7 84.2 93.0 84.1
AUCE 0.96 0.97 0.97 0.97 0.98 0.97 0.98 0.98 0.97 0.98
Scaled Brier score 0.60 0.62 0.68 0.68 0.70 0.64 0.73 0.71 0.72 0.72
Charts reduced, % 86.2 87.2 84.8 854 83.8 86.2 84.5 83.3 86.5 83.2
Test
Sensitivity, % 84.5 76.6 87.1 82.3 85.9 825 86.6 93.6 94.3 93.6
PPV, % 85.1 87.1 81.8 855 80.6 83.6 92.3 77.9 78.7 81.6
AUC 0.98 0.97 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99
Scaled Brier score 0.71 0.66 0.69 0.70 0.68 0.68 0.79 0.72 0.70 0.76
Charts reduced, % 87.1 88.6 86.2 875 86.2 87.2 87.8 84.4 84.4 85.1

9 talicization indicates the highest value.
bppy; positive predictive value.
CAUC: area under the curve.

The test dataset included 140 individuals, of whom 77 (55%)
had at least 1 EHR indicating cancer progression. Because the
larger token models indicated higher accuracy than the
Bio+ClinicalBERT models, an additional output was generated
to evaluate their performance. Model predictions were used to
identify the first EHR after diagnosis that predicted cancer
progression (to represent amodel replacing achart review) and
the first EHR on or after the first EHR identifying cancer
progression (to represent a model being used as a screening
tool). The resulting data were then analyzed using KM curves.
All 4 larger token models (Clinica-BigBird and
Clinical-Longformer, each with 2- and 3-class outcomes)
demonstrated good performance as a screening tool (Figure 1),

https://ai.jmir.org/2025/1/e63767
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where KM estimates derived were good approximations of
observed cancer progression rates. In total, 3 of the 4 models
demonstrated an overestimation of cancer progression when
used to replace a chart review. The Clinical-BigBird 2-class
model reported the highest PPV (92.3%) among the 4 models
and demonstrated estimates very close to the observed data
when used to replace a chart review. Similarly, when the data
generated were included in Cox regression models with age at
diagnosisasapredictor, al larger token models provided results
similar to the observed data when used as a screening tool, and
all larger token models, except the Clinical-Longformer 3-class
model, provided results similar to the observed data when used
to replace a chart review (Table 3).
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Figure 1. Kaplan-Meier curves of time to progression for the observed data and through the use of Clinical-BigBird and Clinical-Longformer in the
breast cancer test dataset (A: 2-class Clinical-BigBird; B: 3-class Clinical-BigBird; C: 2-class Clinical-Longformer; and D: 3-class Clinical-Longformer).
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Table 3. Cox regression estimates (age predictor: 265 years vs <65 years) for the breast cancer test cohort.
Model HR? (95% Cl)
Observed 0.62 (0.39-0.98)
Screening tool
Clinical-BigBird 2-class 0.62 (0.39-1.01)
Clinical-BigBird 3-class 0.60 (0.37-0.96)
Clinical-Longformer 2-class 0.60 (0.37-0.95)
Clinical-Longformer 3-class 0.61 (0.38-0.97)
Replace chart review
Clinical-BigBird 2-class 0.64 (0.40-1.01)
Clinical-BigBird 3-class 0.67 (0.45-1.00)
Clinical-Longformer 2-class 0.64 (0.43-0.96)
Clinical-Longformer 3-class 0.79 (0.52-1.18)
8HR: hazard ratio.
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Colorectal Cancer

In the colorectal cancer training (19,182 EHRS) and validation
(4795 EHRYs) datasets, 2980 (12.42%) EHRs indicated cancer
progression, and 3035 (12.66%) indicated progression
mentioned but not present (ie, ratios of 0.16 and 0.17 relative
to the no cancer progression class). Inthe colorectal test dataset
(6405 EHRs), 683 (10.66%) EHRsindicated cancer progression
and 807 (12.60%) indicated progression mentioned but not
present (ie, ratios of 0.14 and 0.17 relative to the no cancer
progression class). The number of tokens per chart differed by
model tokenizer (Table 1). All 3 tokenizers reported that more
than 30% (colorectal cancer training and validation data:
9186/23,977, 7866/23,977, and 7966/23,977; colorectal cancer
test data: 2744/4975, 2368/4975, and 2401/4975) of EHRs had
more than 512 tokens and that no EHRs had more than 4096
tokens.

Lambert et d

Only 1 epoch was required for the colorectal cancer models.
Bio+ClinicalBERT reached 99% to 100% accuracy in the
training dataset by the fourth or fifth epoch, but accuracy for
the validation dataset was highest at the first epoch.
Clinical-BigBird and Clinical-L ongformer reached 99% to 100%
accuracy in the training dataset by the second epoch, but
accuracy for the validation dataset was highest at thefirst epoch.

The Clinical-L ongformer model sreported the highest sensitivity
and PPV for the validation dataset (Table 4). The
Clinical-BigBird 3-class model reported the highest AUC and
scaled Brier score for the validation dataset. The
Bio+ClinicalBERT 2-class head and tail model reported the
highest PPV and percentage of charts reduced. The highest
sengitivity, PPV, AUC, and scaled Brier scorefor thetest dataset
were found with the larger token models, whereas the highest
percentage of charts reduced was found with the
Bio+Clinical BERT 3-class tail model.

Table 4. Results by model and outcome class for colorectal cancer validation and test datasets.

Datasets and metrics Bio+Clinica BERT Clinical-BigBird Clinical-Longformer
2-class 3-class 2-class 3-class 3-class 3-class
Head Tail Head Head Tal  Head
and and
tail tail
Validation
Sensitivity, % 80.9 78.5 82.0 86.4 79.9 80.4 824 88.4 81.0 9132
pp\/b’ % 88.3 85.2 88.7 84.0 80.3 87.1 88.3 874 91.8 824
AUCE 0.98 0.98 0.97 0.99 0.98 0.98 0.98 0.99 0.98 0.99
Scaled Brier score 0.72 0.67 0.73 0.73 0.66 0.72 0.75 0.77 0.76 0.75
Charts reduced, % 88.6 88.6 88.5 87.2 87.6 88.5 88.4 874 89 86.2
Test
Sensitivity, % 74.1 62.8 71.9 77.0 63.7 69.7 78.5 75.4 73.1 78.9
PPV, % 79.8 811 824 72.9 824 82.9 81.6 82.0 86.3 81.9
AUC 0.96 0.95 0.96 0.96 0.95 0.96 0.97 0.96 0.96 0.97
Scaled Brier score 0.56 0.49 0.54 0.61 0.54 0.58 0.63 0.61 0.65 0.64
Charts reduced, % 90.1 91.7 90.7 88.7 91.8 91.0 89.7 90.2 91.0 89.7

3 talicization indicates the highest value.
bppy: positive predictive value.
CAUC: area under the curve.

Thetest dataset included 225 individual s, of whom 127 (56.4%)
had at least 1 EHR indicating cancer progression. Because the
larger token models indicated higher accuracy than the
Bio+Clinical BERT models, an additional output was generated
to evaluate their performance. All 4 larger token models
(Clinical-BigBird and Clinical-Longformer, each with 2- and
3-class outcomes) dlightly underestimated progression rates as
ascreening tool (Figure 2), but provided good approximations

https://ai.jmir.org/2025/1/e63767

of cancer progression rateswhen replacing achart review. When
the data generated wereincluded in Cox regression modelswith
age at diagnosisasapredictor, the Clinical-BigBird 3-classand
Clinical-Longformer 2-class models provided results that were
similar to the observed datawhen used as a screening tool (Table
5). Only the Clinical-BigBird 3-class model provided results
similar to the observed datawhen used to replace achart review.
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Figure 2. Kaplan-Meier curves of time to progression for the observed data and through the use of Clinical-BigBird and Clinical-Longformer in the
colorectal test dataset (A: 2-class Clinical-BigBird; B: 3-class Clinical-BigBird; C: 2-class Clinical-Longformer; and D: 3-class Clinical-Longformer).
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Table 5. Cox regression estimates (age predictor: = 65 years vs <65 years) for the colorectal cancer test cohort.

Model HR? (95% Cl)
Observed 1.23(0.87-1.75)
Screening tool

Clinical-BigBird 2-class
Clinical-BigBird 3-class
Clinical-Longformer 2-class
Clinical-Longformer 3-class
Replace chart review
Clinical-BigBird 2-class
Clinical-BigBird 3-class
Clinical-Longformer 2-class

Clinical-Longformer 3-class

1.31 (0.89-1.92)
1.22 (0.84-1.79)
1.27 (0.86-1.88)
1.30 (0.89-1.90)

1.41 (0.99-1.99)
1.27 (0.89-1.79)
1.37 (0.95-1.97)
1.33 (0.95-1.87)

3HR: hazard ratio.
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Application of Modelsto Different Cancer Sites

When models developed by analyzing colorectal cancer data
were applied to the breast cancer test datasets, the results were
slightly lower than those obtained from the models devel oped

Lambert et d

using breast cancer data (Table 6). For example, the scaled Brier
scores ranged from 0.58 to 0.69 when amodel devel oped using
colorectal cancer datawas applied, but were 0.66 to 0.79 when
amodel developed using breast cancer data was applied.

Table 6. Results by model and outcome class for the model applied to different cancer sites.

Modgl, test dataset, and Bio+Clinica BERT Clinical-BigBird Clinical-Longformer
metrics
2-class 3-class 2-class  3-class 2-class  3-class
Head Tall Head andtail Head Tail Head and tail
Colorectal cancer model applied to breast cancer test dataset
Sensitivity, % 763 768 763 761 759 730 ga42 838 771 820
vab’ % 83.9 85.1 81.6 78.3 87.0 83.3 814 83.3 87.0 82.7
AUCE 0.96 0.96 0.94 0.95 0.95 0.95 0.97 0.97 0.95 0.96
Scaled Brier score 0.62 0.63 0.61 0.58 0.65 0.60 0.65 0.68 0.69 0.66
Charts reduced, % 88.2 88.3 87.9 87.4 88.7 88.6 86.6 86.9 88.5 87.1
Breast cancer model applied to colorectal cancer test dataset
Sensitivity, % 69.4 634 75.4 70.7 63.0 70.3 68.5 83.6 86.8 824
PPV, % 80.6 825 76.3 80.9 82.9 .7 86.8 74.6 70.8 74.0
AUC 0.97 0.96 0.97 0.97 0.96 0.97 0.97 0.98 0.98 0.98
Scaled Brier score 0.55 0.52 0.55 0.57 0.55 0.55 0.58 0.61 0.55 0.61
Charts reduced, % 90.8 91.8 89.5 90.7 91.9 90.4 91.2 88.1 86.9 88.1

3 talicization indicates the highest value.
bppy: positive predictive value.
CAUC: area under the curve.

When models devel oped by analyzing breast cancer data were
applied to the colorectal cancer test datasets, the results were
also dlightly lower than those obtained from the models
developed using colorectal cancer data (Table 6). For example,
the scaled Brier scores ranged from 0.52 to 0.61 when amodel
developed using breast cancer data was applied but were 0.49
to 0.65 when a model developed using colorectal cancer data
was applied.

Identifying I nfluential Wordsin EHRs

Using the Clinical-L ongformer 2-classmodel, influential words
were identified by modifying EHRs and reporting differences
in predicted probabilities (Multimedia Appendix 1). In addition,
all EHRs sampled were provided with 1D values for reference
(B_1-B_6for breast cancer and C_1-C_6 for colorectal cancer).
The most common influential word identified from the sample
EHRswas progression. |n both the breast and colorectal models,
the presence of the word progression early in the chart had a
larger impact. For exampl e, the predicted probability of sample
B_2 decreased from >0.99 to <0.01 when the word progression
was removed early in the chart. The predicted probability of
sample C_2 decreased from 0.99 to 0.08 when the first 2
occurrences of progression were removed, despite having 4
additional occurrences of progression later in the EHR. The
effect of adding theword progression to EHRswasinconsistent.
When it was added to the first sentence of samplesB_1, B_3,
B_5,B_6,C 1,C_3,C_5,and C_6, the predicted probabilities
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increased to 0.70, 0.60, 0.99, 0.98, 0.86, 0.59, 0.88, and 0.57,
respectively.

Predicted probabilities were also influenced by the frequency
of tokens within an EHR. Adding progression twice to EHRs
that did not mention progression had an inconsistent impact.
Although progression was added twice in B_3 and C_1, the
predicted probabilities were only 0.21 and <0.01, respectively.
In contrast, adding progressiontwiceto B_1and C_3increased
predicted probabilities to 0.79 and 0.96, respectively. Brain
metastases were mentioned twice in a false-negative sample
(B_5). By removing the first occurrence of brain, the predicted
probability decreased from 0.49 to 0.04. When brain was added
to thefirst sentence, the predicted probability increased to 0.63.

Word combinationswere also influential. The expression disease
is progressing increased the predicted probabilities more than
adding only the words disease or progression separately. For
example, when this expression was added to the first sentences
of samplesB_1, B_3,and C_1, the predicted probabilitieswere
0.91, 0.92, and 0.98 versus 0.70, 0.60, and 0.86 when only
progression was added. However, the predicted probability
remained 0.59 for sample C_3 when either the term progression
or the phrase disease is progressing was added to the first
sentence. Despite the inclusion of progression, the addition of
no evidence of progression and has not progressed yet was
associated with limited increases in predicted probabilities for
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true-negative and false-negative EHRs (values ranging
<0.01-0.22 for samplesB_1,B_3,C_1,and C_3).

Although none of the sample EHRs contained thewordsrelapse
or recurrence, these termswere sometimes used interchangesbly
with cancer progression (ie, tumor growth occurring without
remission) in the physician notes reviewed. When relapse was
added to the first sentence of true-negative and fal se-negative
samples, the effect on predicted probabilities was inconsi stent:
0.07 for B_1, 0.94 for B_3, 0.33 for C_1, and <0.01 for C_3.
When recurrence was added to thefirst sentence of true-negative
and fal se-negative sampl es, the effect on predicted probabilities
wasasoinconsistent: 0.17 forB_1,0.89forB_3,0.91for C 1,
and 0.39 for C_3.

Similarly, the false-negative B_3 sample described an individual
with breast cancer who had worsened disease and was
subsequently enrolled in the palliative care program (predicted
probability of 0.04). The false-negative C_3 sample described
an individual with colorectal cancer who had a substantial
increase in carcinoembryonic antigen test values that required
a change in chemotherapy regimen (predicted probability of
<0.01). Although these EHRs included text describing cancer
progression, the predicted probabilities generated were near O.
These terms may have been too infreguent in the training data
for the language models to recognize them.

Discussion

Principal Findings

The larger token models (Clinica-BigBird and
Clinical-Longformer, which can include up to 4096 tokens)
demonstrated higher accuracy in capturing cancer progression
in EHRsthan the Bio+Clinica BERT models (which caninclude
up to 512 tokens). All larger token models trained on breast
cancer data provided good approximations of the observed data
when used asascreening tool (ie, provided good approximations
for both KM estimates and HRs from a Cox regression model)
and could remove approximately 85% of EHRs from the chart
review process. The Clinical-BigBird 2-class model also
provided good approximationsfor the observed datawhen used
to replace achart review. In contrast, the only model trained on
colorectal cancer data that provided good approximations for
both KM estimates and HRs from a Cox regression model was
the Clinical-BigBird 3-class model to replace a chart review.

The models that were generated were not strongly influenced
by cancer-site-specific terms (eg, site of cancer progression,
site for radiation therapy, and chemotherapy regimen). Breast
cancer models applied to colorectal cancer data were only
dlightly less accurate than colorectal cancer models, and
colorectal models applied to breast cancer data were only
dightly less accurate than breast cancer models. In addition,
cancer-specific terms were not influential when removing or
adding words from sample EHRs and generating predicted
probabilities. The results from identifying influential wordsin
EHRs suggest that the appearance of the word progression
earlier in a chart led to higher accuracy compared to when it
appeared later in a chart. This could explain why the
Bio+Clinical BERT model that analyzed the tail of EHRs had
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the lowest scaled Brier scores among the models. This may be
because cancer progression more commonly appeared at the
beginning of EHRs and allowed better pattern recognition for
models that included this information. The lack of
cancer-site—specific information could increase the applicability
of the current models to a variety of cancer sites. However,
larger datasets may be required to identify tokens missed by the
current models that would be needed to distinguish the use of
progression to describe cancer progression (eg, tumor growth
and associated change in treatment) from other uses of
progression (eg, apatient is progressing well in their treatment),
such as terms indicating diagnostic uncertainty and diagnostic
procedures. In this situation, the 3-class model would be
advantageousin distingui shing between these 2 classes of terms.
The results also indicated that models included relationships
between tokens where sometimes combinations of words could
increase accuracy more than individual words (eg, disease is
progressing vsonly progression or no evidence of progression).
Sometimes the words relapse and recurrence were used to
describe cancer progression (ie, tumor growth without
remission), and their less frequent use may explain why they
were less influential than the more commonly used word
progression. In addition, theinconsi stent impact of tokens could
be due to the absence or presence of other tokens found in an
EHR.

Although larger token models demonstrated higher accuracy
relative to the Bio+Clinica BERT models, alimited number of
tokens appeared to be strongly captured by the models evaluated
for influential tokens. If limited tokens are required to identify
cancer progression, providing outcome labels for individual
sentences rather than individual EHRSs could increase accuracy
by limiting the number of tokens that need to be considered,
which would facilitate a model’s ability to recognize patterns
in the analyzed text. In addition, analyzing data at the sentence
level would remove the impact of token location within EHRS.
However, if limited tokens related to cancer progression are
found to be influential because of inadequate examples of less
commonly used terminology, larger datasets may be required.

All models demonstrated near-perfect AUC scores (ie,
0.95-0.99). However, AUC only reports whether predicted
probabilities are higher for cases than for controls [8,9]. This
ignores how close predictions are to outcome labels, aswell as
the rate of the outcome [10]. Due to these limitations, AUC
lacks sensitivity when comparing different models [8]. In
contrast, the scaled Brier score is ametric that accounts for the
difference between predicted probabilities and outcome labels,
while al so accounting for the outcome rate[11]. Thisincreases
the sensitivity to detect differences between the models. For
example, AUC valuesranged from 0.95t0 0.99, but scaled Brier
scores ranged from 0.49 to 0.79. Although a scaled Brier score
of 0.79 may indicate near-perfect prediction, it does not indicate
the impact of error (eg, the level of overestimation or
underestimation). Because the purpose of the models is to
simplify the chart review process, the ideal evaluation would
be to compare the data generated from a model with the data
generated from a chart review (eg, KM curves and Cox
regression estimates compared with the observed data).
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Limitations

Comparisons between generated data and chart review data
could be biased (ie, KM curves and Cox regression HRs). The
test dataset for breast cancer included 77 individuals with a
cancer progression event, and the test dataset for colorectal
cancer included 127 individual swith acancer progression event.
It has been suggested that external datasets should have at least
100 or 200 events [12-14] (and potentially more [15]) to
effectively evaluate model performance. Although the other
output reported (eg, sensitivity and PPV) was based on more
than 200 events of cancer progression, this output may still be
misleading. The previously mentioned recommendations were
based on the performance of statistical models, which require
substantially less data to achieve the same performance as
machine learning models [16] or the same variability in
performance [17].

Results generated for the test datasets substantially improved
for some models, were relatively unchanged, or were worsein
comparison with the validation dataset. Some of the
improvement can be expected from generating models that
analyze data by combining the training and validation datasets
(ie, increased sample size). However, different results could
have been obtained from selecting different seeds. Reporting
the average and variation of performance metrics acrossmodels
with different seeds (eg, dozens) would provide more reliable
evaluations. Thishas previously been demonstrated in statistical
models when comparing results from split-sampling to
bootstrapping [18,19], where split-sampling (ie, reporting the
performance of 1 model) required substantially more data than
bootstrapping (ie, average across multiple models) to achieve
the samelevd of accuracy. However, the feasibility of averaging
model performance metrics depends on computational resources,
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model complexity, and dataset sizes. For example, the
processing time for the training datasets of Clinical-BigBird or
Clinical-Longformer modelsin this study was morethan 6 hours
using a workstation with 2 NVIDIA RTX A5000 GPUs with
24 GB RAM each. Calculated floating-point operations per
second (FLOPS) in single-precision (FP32) operations varied
from approximately 750 GigaFLOPS with 2-class
Bio+Clinical BERT modelsto 13 TeraFL OPSwith 3-classlarger
token models. A larger dataset would be required to generate
more accurate models, which would also increase the processing
time.

The cancer cohort consisted of Manitoba residents and only
included breast and colorectal cancer cases. The results may
not be generalizableto other geographic locationswhere clinical
notes and terminology may differ. Model generalizability would
need to be evaluated with additional cancer sites.

Conclusions

In conclusion, the Clinical-BigBird and Clinical-Longformer
models were able to generate tools to aid in screening EHRsS
from Manitoba, Canada, to identify breast and colorectal cancer
progression. They could potentially remove at least 84% of
EHRs from the chart review process to generate data for future
retrospective research studies using breast and colorectal cancer
EHRs. The colorectal models demonstrated more errors than
the breast cancer models. In addition, the models appeared to
include limited tokens to generate predictions. Additional
research may be required to improve model performance. For
example, improvements could be obtained by increasing the
training dataset size and by analyzing EHRs at the sentence
level rather than at the chart level. Both factors could increase
the number of relevant tokens captured by the models for
identifying cancer progression.
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