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Abstract
Background: Pathophysiological responses to viral infections such as COVID-19 significantly affect sleep duration, sleep
quality, and concomitant cardiorespiratory function. The widespread adoption of consumer smart bed technology presents
a unique opportunity for unobtrusive, real-world, longitudinal monitoring of sleep and physiological signals, which may be
valuable for infectious illness surveillance and early detection. During the COVID-19 pandemic, scalable and noninvasive
methods for identifying subtle early symptoms in naturalistic settings became increasingly important. Existing digital health
studies have largely relied on wearables or patient self-reports, with limited adherence and recall bias. In contrast, smart
bed–derived signals enable high-frequency objective data capture with minimal user burden.
Objective: The aim of this study was to leverage objective, longitudinal biometric data captured using ballistocardiography
signals from a consumer smart bed platform, along with predictive modeling, to detect and monitor COVID-19 symptoms at an
individual level.
Methods: A retrospective cohort of 1725 US adults with sufficient longitudinal data and completed surveys reporting
COVID-19 test outcomes was identified from users of a smart bed system. Smart bed ballistocardiography-derived metrics
included nightly pulse rate, respiratory rate, total sleep time, sleep stages, and movement patterns. Participants served as
their own controls, comparing reference (baseline) and symptomatic periods. A two-stage analytical pipeline was used: (1) a
gradient-boosted decision-tree “symptom detection model” independently classified each sleep session as symptomatic or not,
and (2) an “illness-symptom progression model” using a Gaussian Mixture Hidden Markov Model estimated the probability
of symptomatic states across contiguous sleep sessions by leveraging the temporal relationship in the data. Statistical analyses
evaluated within-subject changes, and the model’s ability to discriminate illness windows was quantified using receiver
operating characteristic metrics.
Results: Out of 122 participants who tested positive for COVID-19, symptoms were detected by the model in 104 cases.
Across the cohort, the model captured significant deviations in sleep and cardiorespiratory metrics during symptomatic periods
compared to baseline, with an area under the receiver operating characteristic curve of 0.80, indicating high discriminatory
performance. Limitations included reliance on self-reported symptoms and test status, as well as the demographic makeup of
the smart bed user base.
Conclusions: Smart beds represent a valuable resource for passively collecting objective, longitudinal sleep and physiological
data. The findings support the feasibility of using these data and machine learning models for real-time detection and tracking
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of COVID-19 and related illnesses. Future directions include model refinement, integration with other health signals, and
applications for population-scale surveillance of emerging infectious diseases.
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Introduction
COVID-19 is responsible for a pandemic with hundreds of
millions of confirmed cases and millions of deaths worldwide
[1]. The majority of patients with COVID-19 (~80%) have
mild influenza-like symptoms, 15% have severe symptoms,
and approximately 5% develop a critical condition [2].
COVID-19 symptoms overlap with other respiratory illnesses,
such as influenza, severe acute respiratory syndrome (SARS),
and Middle East Respiratory Syndrome (MERS) [3,4].

“Smart” devices capable of collecting longitudinal
biosignal datasets hold promise for infectious illness
monitoring [5]. Consumer devices that track biometric signals
over prolonged periods, such as fitness trackers and smart-
watches, may be ideal tools for this task [6]. If worn
consistently, these devices can establish baseline values for
biometric signals and then detect deviations from baseline,
such as during illness [7,8]. When used in conjunction with
predictive platforms, symptoms of COVID-19 can be detected
and symptom exacerbation monitored in participants using
wearable smart devices [9,10]. Some studies have demonstra-
ted that changes from baseline in certain biometric indicators
measured by these devices, including resting heart rate, sleep
duration, oxygen saturation, or breathing rate, might predict
the onset of COVID-19 before symptoms are present [9-18].

Sleep metrics are revealing health indicators due to sleep’s
important role in immunity. Studies have shown that sleep
duration affects the susceptibility to, and survival from,
infectious disease [19]. Certain antimicrobial peptides and
cytokines act to prolong sleep, and increased sleep during
infection is protective [20]. Thus, a possible immunologi-
cal function of sleep is to support host defense, which has
the evolutionary advantage of preparing the immunological
response during a period of low metabolic need and quies-
cence [21].

Conversely, sleep disturbance appears to negatively impact
immune function. For example, sleep deprivation induces a
temporal shift in circulating levels of interleukin-6 (IL-6),
such that IL-6 is undersecreted at night and oversecre-
ted during the day, leading to excessive levels of day-
time inflammation [22]. Moreover, sleep disturbance may
impair the adaptive immune response, which could com-
promise the effectiveness of vaccines [23,24]. Although
prior research suggests that perivaccination sleep influen-
ces antibody response, evidence on whether sleep disturban-
ces impact real-world vaccine effectiveness remains limited
and sometimes inconclusive. Notably, sleep metrics such as
awakening frequency have shown associations with break-
through infections beyond traditional risk factors [25].

While reduced sleep has been associated with an increased
risk of respiratory infections, such as pneumonia and
susceptibility to the common cold [26,27], immune activation
triggered by microbial infections has also been linked to
disruptions in both non–rapid eye movement and rapid eye
movement sleep stages [19].

Previously, we demonstrated the ability to use sleep
metrics collected from users of a smart bed platform to
detect influenza-like illness (ILI) symptoms [28,29]. Using
aggregated sleep data, we investigated whether seasonal
trends in ILI rates reported by the US Centers for Dis-
ease Control and Prevention (CDC) could be approximated
using predictions from our ILI symptom detection model
described below [28]. The model predictions correlated with
the reported ILI rates in the period from January 2019 to
December 2020.

The ILI symptom detection model described herein
comprises 2 stages: first, the binary detection-level stage
that is based on the association between disturbed sleep and
immune activation due to infection; and second, a temporal-
dimension stage that is based on the association between
disturbed sleep and immune activation due to infection.
A temporal-dimension stage based on a Gaussian Mixture
Hidden Markov State transition model (GMHMM) that
accounts for the fact that the transition between ill and healthy
states likely depends on historical data.

The aim of this study was to leverage longitudinal,
retrospective, biometric data captured using ballistocardiogra-
phy signals from a consumer smart bed platform [30] along
with predictive modeling to detect and monitor COVID-19
symptoms at an individual level. Importantly, the data were
acquired unobtrusively during sleep.

Methods
Smart Bed Technology
The Sleep Number smart bed technology tracks the user’s
bed presence, body movements, heart rate, and breathing rate
in real time to determine the duration and quality of sleep
[30]. Similar to bed sensors used in health care facilities
and consumer solutions located under the mattress [31,32],
the smart bed uses a single pressure sensor embedded inside
the mattress’s inflatable bladder to capture high-resolution
full-body ballistocardiography readings, sampled at 1 kHz
[30]. This type of smart bed is currently used by sev-
eral hundred thousand individuals across the United States,
spanning a broad age range, and operates without the need for
specific sensor calibration [33].
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The smart bed starts collecting data as soon as the
participant gets into bed and stops once they leave the bed
(Figure 1A–D). Embedded software processes the data and
sends the sleep metrics to the cloud [30]. Features used
for this model include breathing rate (all-night mean of
the instantaneous breathing rate), heart rate (all-night mean
of the instantaneous heart rate), motion (mean normalized
motion: difference between maximum and minimum pressure
signal for 10 seconds; normalized motion is then calculated
by dividing motion by the personal pressure), total sleep

duration (time in bed while asleep), restful sleep duration
(sleep duration minus restless time: amount of time where
the motion level is higher than the motion-noise-threshold
[baseline noise for an in-bed interval]), time to fall asleep
(time between getting into bed and falling asleep), and sleep
quality (the “Sleep IQ” score provided in the Sleep Number
mobile app that correlates with sleep quality). The data are
then organized into sleep sessions, defined by a continuous
time spent in bed not containing any out-of-bed period longer
than 2 hours.

Figure 1. Overview of the study approach for data collection and model development. (A) The smart bed with pressure sensors collects (B) biometric
signals that are used to extract (C) sleep metrics used in (D) model development. BCG: ballistocardiography; GMHMM: Gaussian Mixture Hidden
Markov State transition model.

Survey Description and Inclusion Criteria
The survey included questions on demographics, pre-
existing health conditions, general health and behaviors,
and COVID-19–specific questions about exposure, testing,
diagnosis, symptomatic period, and hospitalization that
occurred before November 2020. The full survey is provi-
ded in the Multimedia Appendix 1. The survey collected
data between August 2020 and November 2020. Of the
participants who completed the survey, the respondents who

provided the results of a COVID-19 test were considered for
further analysis.

We included COVID-19–positive responders who satisfied
the following inclusion criteria: both the start and end dates
of the symptomatic period (mo/d) for their “first positive
test” or “most recent test” were reported, the start date was
before the end date, the available smart bed data included at
least 3 sleep sessions during the symptomatic period, and the
smart bed data included at least 3 sleep sessions outside the
symptomatic period.
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The symptomatic period was assessed based on participant
responses to 2 survey items. The first item asked participants
to indicate when they initially experienced symptoms and
when those symptoms became most severe. The second item
asked when their symptoms began to subside. Specifically,
participants provided three dates: the onset of symptoms, the
onset of the most severe symptoms, and the beginning of
symptom resolution. COVID-19 test results obtained prior to
the survey period (August 2020 to November 2020) were
included in the analysis, with the testing period spanning
March 2020 to November 2020.

We included COVID-19–negative responders who
satisfied the following inclusion criteria: the test date (mo/d)
was reported, there was no symptomatic period, the smart bed
data included at least 3 sleep sessions in the COVID-19 test
interval of ± 7 days, and the data included at least 3 sleep
sessions outside of the test interval.

Participant cohort comparisons were made using Cohen
d effect size. Mann-Whitney and Fisher exact tests were
performed to analyze the differences between groups.

Model Development
Figure 1A–D represents the overview of our approach, which
includes the use of ballistocardiography-enabled measure-
ment of motion, position changes, breathing, and small
movements within the body, such as those generated by
the ejection of blood with every heartbeat [30]. The data
were organized into sleep sessions, each corresponding to
1 night of sleep. For each sleep session, we obtained the
following metrics: total sleep duration, sleep quality, restful
sleep duration, time to fall asleep, mean breathing rate, mean
heart rate, and mean motion level (Figure 1C).

Each sleep session in either the COVID-19–positive or
COVID-19–negative group included start and end dates. The
end date was used to define the date to which a sleep session
corresponds. Multiple sleep sessions with the same end date
were merged as follows: values for breathing rate, heart rate,
and motion were averaged; values for sleep duration, restful
sleep duration, and time to fall asleep were summed; and the
sleep quality of the combined sleep session was obtained by
weighted (ie, according to sleep duration) average of the sleep
quality of individual sessions. Each variable was centered
by subtracting the median and dividing by the interquartile
range. Such normalization was found to slightly improve the
classification performance compared to the standard scaling.

We developed our detection model in 2 stages. First,
a gradient-boosted, decision-tree [34] “symptom detection
model” was created to classify each sleep session as
symptomatic or not (Figure 1D). Second, an “ILI-symptom
progression model” was built on the symptom detection
model to include the temporal dimension of the symptoms
and to estimate the probability of experiencing ILI symptoms
(Figure 1D).

Symptom Detection Model
The symptom detection model used self-reported data as a
reference to classify each sleep session as symptomatic or not,

using the range of symptomatic days provided by the survey
respondents who reported a positive COVID-19 diagnosis.

Since the model detected periods of sleep metrics
consistent with other ILIs, there were a few unlabeled
positives in the validation data that were not specific
to COVID-19. Thus, any prolonged ILI episode was an
unlabeled positive in the data. As our dataset did not have
negative ground truth labels (ie, ranges of dates labeled
as healthy), we followed the approach in [35] and trained
a propensity-weighted estimator. To create the symptom
detection model, an initial estimator based on a gradient
boosted decision tree [34] was used to predict the probability
that a point belonging to the positive class had been assigned
a positive label. Then, a second estimator was trained to
classify the data into positive and negative classes using
the labeling weights produced by the first estimator. These
2 estimators were iteratively trained with the Expectation
Maximization algorithm until convergence [35].

The symptom detection model was used as the base
model to produce the propensity score of a sleep session
to be labeled as symptomatic. The hyperparameters were
tuned using stratified, five-fold cross-validation to maximize
a modified F1-score [36], which can be estimated using
positive labels alone. The modified F1-score is defined as
F1=TPR2/(1-NR).

TPR is the true positive rate, and NR is the negative rate of
the predictions on the whole dataset. This formula prioriti-
zes sensitivity by squaring TPR and penalizes models that
over-predict negatives. Unlike the traditional F1-score, this
metric does not rely on precision and recall, as the unrelia-
bility of negative ground truth labels could distort precision
estimates.
ILI-Symptom Progression Model
The “symptom detection model” was augmented with a
second-level “ILI-symptom progression model” to estimate
the probability of each sleep session to be symptomatic
or not by leveraging the temporal dimension of the study
(Figure 1). We used a GMHMM [37] because of its ability
to generalize to multidimensional continuous observations
and represent particular stages of several illnesses, enabling
granular progression tracking.

At a given time, an individual could be in one of the
two hidden states: ‘ill’ or ‘healthy.’ The estimated probability
of the symptoms from the first-level model was taken as
the observed emissions in the GMHMM. To detect illness,
we calculated the posterior probabilities of the hidden states,
which can be thought of as a smoothing filter.

The GMHMM parameters (ie, prior, transition, and
emission probabilities) were also tuned to maximize the
modified F1-score [36]. The simulated annealing optimizer
from Python’s SciPy library [38] was used for this purpose.
The input scores from the symptom detection model were
calculated using a leave-one-out cross-validation approach.
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Ethical Considerations
This research was conducted in accordance with US federal
guidelines (Common Rule) regulating the protection of
human participants in biomedical and behavioral research.
The protocol describing this research (#P2020/03001 NEIRB
17-1323071-1) was approved by the WCG New England
Institutional Review Board (IRB). Participants were users
of the Sleep Number smart bed. Data were collected daily.
Informed consent was obtained from all participants using the
Sleep IQ app (Sleep Number Corporation) on the partici-
pant’s smartphone, computer, or other electronic device of
their choice. Participants gave access to nightly physiologi-
cal measurements, which were electronically stored in the
cloud after being anonymized. Participants completed an

IRB-approved survey between August 2020 and November
2020. Participants did not receive any form of compensation
for participation in this research. All collected data were
anonymized before analysis, and no individual participant
could be identified from the data. No images or supplemen-
tary materials contain identifiable participant information.

Results
More than 9000 (N=9370) Sleep Number bed users (“partici-
pants”) responded to an IRB-approved survey from August
2020 to November 2020. Of the 9370 participants who
completed the survey, 3546 (37.8%) reported results of a
COVID-19 test (Figure 2).

Figure 2. The final study cohort was composed of participants who reported a COVID-19 test result and met the inclusion criteria.

The final cohort used in subsequent analyses was composed
of 1725 participants with a known COVID-19 test outcome
between March 2020 and November 2020 (Figure 2). The
study cohort had a mean age of 49.5 (SD 13) years; 47.5%
(820/1725) of the participants were male and had a mean BMI
of 30.2 (SD 6.9) kg/m2. The cohort’s ethnic composition was

83.5% (1441/1725) White, 4.5% (165/3576) Black, 5.86%
(101/1725) Hispanic, and 2.09% (36/1725) Asian (Table 1).
In addition, 9.6% (166/1725) of the cohort smoked, 16.2%
(279/1725) had asthma, 10.1% (174/1725) had diabetes, and
3.4% (58/1725) had cardiovascular disease.
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Table 1. Participant demographics and comorbidities.

Characteristics

Survey respondents with
COVID-19 test result
(n=3546)

Cohort that met
inclusion criteria
(n=1725) P valuea,b

COVID-19–positive
cohort (n=122)

COVID-19–negative
cohort (n=1603) P valuea,c

Demographics
  Age (years), mean (SD) 48.0 (12.9) 49.5 (13) <.001 45.6 (11.9) 49.8 (13.1) <.001
  Male, n (%) 1541 (43.5) 820 (47.5) .006 49 (40.2) 771 (48.1) .11
  BMI (kg/m2), mean (SD) 30.5 (7.1) 30.2 (6.9) .07 30.4 (7.4) 30.2 (6.9) .38
Ethnicity, n (%)
  White 2850 (80.4) 1441 (83.5) .001 100 (82) 1341 (83.7) .61
  Black 165 (4.65) 77 (4.46) .78 3 (2.46) 74 (4.62) .36
  Hispanic 215 (6.06) 101 (5.86) .76 13 (10.7) 88 (5.49) .03
  Asian 69 (1.95) 36 (2.09) .66 3 (2.46) 33 (2.06) .74
  Other 247 (6.97) 70 (4.06) <.001 3 (2.46) 67 (4.18) .48
Comorbidities, n (%)
  Smoker 352 (9.9) 166 (9.6) .77 8 (6.6) 158 (9.9) .27
  Asthma 591 (16.7) 279 (16.2) .66 22 (18) 257 (16) .53
  Diabetes 343 (9.7) 174 (10.1) .66 10 (8.2) 164 (10.2) .54
  CVDd 127 (3.6) 58 (3.4) .75 3 (2.5) 55 (3.4) .79

aMann–Whitney U test (1-sided) was used to compare distributions of age and BMI. Fisher exact test (2-sided) was used to compare the rates for
gender and comorbidities.
bParticipants with COVID-19 (n=3546) test versus those meeting the inclusion criteria (n=1725).
cCOVID-19–postive cohort (n=122) versus COVID-19–negative cohort (n=1603)
dCVD: cardiovascular disease.

Of this cohort, 7.1% (122/1725) reported a positive test result
for COVID-19. There were 2 significant differences between
the COVID-19–positive and COVID-19–negative groups in
terms of demographic and comorbidity measures. (1) Age: the
COVID-19–positive group was significantly younger than the
COVID-19–negative group (mean age 45.6, SD 11.9 years vs
49.8, SD 13.1 years; Cohen d=0.33; P<.001). (2) Percent of
Hispanics: the COVID-19–positive group had a significantly
higher percent of Hispanic individuals than the COVID-19–
negative group (13/122, 10.7% vs 88/1603, 5.49%).

There were significant differences in the demographics of
the total population of survey respondents and respondents
who met the inclusion criteria age (mean age 48, SD 12.9

years vs 49.5, SD 13 years; Cohen d=0.11; P<.001), gender
(male 43.5 % vs female 49.2 %; P<.01), and percent of White
individuals (83.5 % vs 80.4%; P=.001).

For the COVID-19–positive cohort, the symptomatic
window median was 10 days and the mean was 13.7 days.
In total, 1674 person-days for the symptomatic period and
18 negative sleep sessions were used to build the symptom
detection and ILI-symptom progression models.

The estimated parameters of the 2-state GMHMM model
resulted in the prior probabilities and transition probabilities
reported in Figure 3.
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Figure 3. Gaussian Mixture Hidden Markov State transition model states and transition probability. PDF: probability density function.

The combined performance of the 2-model system was
evaluated as follows. First, we calculated true positive rates
for the reported symptomatic days and the negative rates for

the unlabeled days as a function of the probability (of being in
the illness state) threshold=0.5 (Figure 4A; true positive rate:
0.47; true negative rate: 0.86; false positive rate: 0.14).

Figure 4. Evaluation of model performance. Symptom detection rates were calculated for (A) individual observed days or (B) participants, as a
function of the probability threshold.

Next, we aggregated the results per participant and, as was
done in the study by Krueger et al [20], recorded a successful
detection if at least 1 day within the reported symptomatic
interval was classified as positive (Figure 4B; true positive
rate: 0.70; true negative rate: 0.75; false positive rate: 0.25). If
a day or multiple days outside the participant’s self-reported

symptomatic period are detected as positive by the model, the
participant is categorized as negative. This approach ensures
that model predictions outside the symptomatic period do not
influence the classification of a participant’s overall status.

For the negative cohort, the 2-week interval around the
date of the COVID-19 test administration was analyzed in
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the same manner as for the positive cohort. During this
interval, 25% (401/1603) of the negative individuals had at
least 1 day detected as positive by the model. Specifically,
401 of 1603 (25%) negative individuals were identified with
at least 1 day of positive detection within the 2-week period.
Conversely, 1202 of 1603 (75%) negative individuals were
correctly classified as negative.

Using the 0.5 threshold on the probability, symptoms were
detected in 104 of the 122 positive cases. The remaining 18
cases were categorized into 3 groups: (1) missing data before
or during the symptomatic range (n=2); (2) the reported
symptomatic range was abnormally short (n=2); or (3) the

presence of mild symptoms was not detected by the model
(n=14). Conversely, symptoms may have been detected in the
negative cases due to abnormal sleep patterns not associated
with a COVID-19 diagnosis, or COVID-19 tests may have
been conducted too early or too late to detect a positive result
(ie, a false-negative result).

To assess the temporal performance of our model, we
calculated the detection delay (ie, the difference between
the predicted first day of symptoms and the reported one).
Using the 0.5 threshold, we obtained the median delay of
2 days, with 75% of the cases detected by the fifth day
(Figure 5).

Figure 5. Distribution of the detected symptom onset day relative to the reported onset day.

The threshold on the probability of being in the illness
state was used as a parameter to build a receiving operating
characteristic (ROC) curve at a day-level (Figure 6A) and
at a participant level (Figure 6B). The estimated area under

the ROC curve is 0.70 and 0.80, respectively. The latter,
according to the interpretation in [39], indicates that our
model may have diagnostic use.

Figure 6. Receiving operating characteristic curve. True-positive and false-positive rates were calculated for (A) individual observed days or (B)
participants as a function of the probability threshold. ROC: receiver operating characteristic.
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Discussion
Principal Findings
This study demonstrates the potential value of smart bed
technology for early detection and longitudinal monitoring
of influenza-like illnesses, with a focus on COVID-19, using
unobtrusively collected real-world sleep and physiological
data.

By leveraging a 2-stage predictive modeling approach that
classifies sleep sessions and tracks symptom progression,
we were able to accurately detect the onset and duration
of symptoms in most individuals with a positive COVID-19
diagnosis from a large, naturalistic cohort of smart bed users.
The model’s high true positive rate underscores the potential
of passive, continuous biometric monitoring for supporting
timely health interventions and for providing reassurance
to users about evolving illness trajectories. Notably, our
approach requires only routine bed use rather than the
consistent wearing of a device, facilitating high adherence
even during periods of illness.
Comparison to Prior Work
Several studies have demonstrated the use of smart devices
to track or predict COVID-19 symptoms [9-18]. However,
these typically require consistent use of wearable devices that
may prove difficult during symptomatic periods. In contrast,
our method passively gathers physiological and sleep data
without requiring extra effort from the user.

We have previously demonstrated the ability of a
smart bed, using ballistocardiography, to detect ILIs [28].
This system has been validated against the gold standard,
polysomnography, to provide reliable longitudinal sleep
metrics and only requires that the user sleep in their bed
consistently [30].

To our knowledge, this is the first study that considers
real-world, longitudinal data collected during sleep that was
unobtrusively and noninvasively acquired from a smart bed
to track and detect COVID-19 symptoms. Our predictive
model was built in 2 stages. First, survey data were used
to classify participants into groups by self-report of negative
or positive COVID-19 test results. These results were used
in the symptom detection model to estimate the probability
that a sleep session should be labeled “ill.” Second, the
GMHMM ILI-symptom progression model was used to refine
the probability estimation by incorporating the temporal
dimension.

Our data analytics approach and subsequent classification
model successfully detected the presence of symptoms and
the duration of symptoms with a high true positive rate.
As was previously demonstrated [28,29], the ability of our
system to capture these endpoints is not limited to COVID-19
and can be broadly applicable to other respiratory illnesses.
Future Directions
The sleep metrics measured with a smart bed platform are a
unique source of longitudinal data, collected in a real-world

and unobtrusive manner [30]. In the future, this system may
serve as an asset in predicting and tracking the development
of symptoms associated with a wide variety of respiratory
illnesses.

A potential avenue for extending the utility of smart bed
technology involves providing participants with actiona-
ble feedback about detected health anomalies, such as
COVID-19–related symptoms. Recent research has demon-
strated the feasibility of alert-based systems to prompt
diagnostic testing in decentralized settings, combining
self-reported symptoms and wearable physiological data to
identify respiratory infections [40].

To better establish specificity for COVID-19 and related
illnesses, future research should incorporate additional control
groups representing other respiratory infections, such as
influenza, SARS, and MERS.
Limitations
There are several limitations to this study. First, the study
cohort consisted entirely of Sleep Number customers, and this
cohort may not be representative of the general population in
terms of demographics or socioeconomic factors.

Second, a subset of the COVID-19–positive participants
did not consistently sleep on their smart bed during the
duration of their illness, indicating that as illness arises,
smart device usage may change. Decreases in the smart bed
usage were likely due to COVID-19 guidelines that sugges-
ted sleep isolation to mitigate the spread of illness among
members of a household. Furthermore, as changes in sleep
metrics are associated with general immune responses, the
observed changes could represent several illnesses, respira-
tory or otherwise [10,41].

Third, several unlabeled positives representing other
potential ILIs or undiagnosed COVID-19 infections were
used in model validation. Hence, our “true negative rate”
is biased and is more appropriately called “negative rate,”
as is conventional in positive-unlabeled machine learning.
Furthermore, it is possible that negative test results could
have been obtained when COVID-19 testing was conducted
outside of the window in which a positive result would have
been detected.

Fourth, the study did not rely on objective data
alone; instead, retrospective recall was required to iden-
tify COVID-19–positive symptom periods. The latter may
introduce recall bias, particularly regarding the accuracy of
reported illness periods. The 2-stage model used in this
research refines the model predictions, which can mitigate
the bias to some extent, but its influence cannot be entirely
eliminated.

Fifth, the specificity of our approach for COVID-19
remains to be validated, as other illnesses —such as
influenza, SARS, and MERS—exhibit similar symptomatol-
ogy. To test the specificity of COVID-19 symptom detec-
tion, future research should incorporate a control group
with respiratory infections exhibiting similar symptoms to
COVID-19. Furthermore, while our model accounts for
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COVID-19–related symptoms, it does not explicitly address
the influence of external factors, such as stress, anxiety, or
other health conditions, which are known to affect sleep
metrics (eg, sleep duration and fragmentation) [42]. These
factors could introduce variability in the observed sleep
patterns, potentially influencing the model’s predictions.
Future studies should consider collecting and incorporating
data on mental health, comorbidities, and other relevant
factors to better isolate the effects of COVID-19 on sleep
metrics and improve the robustness of the approach.
Conclusions
This study demonstrates the feasibility of using smart bed–
derived, longitudinal sleep and physiological data to detect

and monitor self-reported symptoms of COVID-19. Our
2-stage modeling approach identified deviations in sleep
duration, heart rate, and breathing rate during illness periods,
correctly detecting symptoms in 104 out of 122 COVID-19–
positive cases. The model achieved an area under the receiver
operating characteristic curve value of 0.80 at the participant
level, supporting the use of passive, in-bed monitoring for
illness detection in naturalistic settings.
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