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Abstract

Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement
of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis,
prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of
specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care. For example, an echocardiogram
is a type of laboratory test that is extremely important and not easily accessible. The increasing demand for echocardiograms
underscores the imperative for more efficient scheduling protocols. Despite this pressing need, limited research has been conducted
in this area.

Objective: The study aims to develop an interpretable machine learning model for determining the urgency of patients requiring
echocardiograms, thereby aiding in the prioritization of scheduling procedures. Furthermore, this study aims to glean insights
into the pivotal attributes influencing the prioritization of echocardiogram appointments, leveraging the high interpretability of
the machine learning model.

Methods: Empirical and predictive analyses have been conducted to assess the urgency of patients based on a large real-world
echocardiogram appointment dataset (ie, 34,293 appointments) sourced from electronic health records encompassing administrative
information, referral diagnosis, and underlying patient conditions. We used a state-of-the-art interpretable machine learning
algorithm, the optimal sparse decision tree (OSDT), renowned for its high accuracy and interpretability, to investigate the attributes
pertinent to echocardiogram appointments.

Results: The method demonstrated satisfactory performance (F1-score=36.18% with an improvement of 1.7% and
F2-score=28.18% with an improvement of 0.79% by the best-performing baseline model) in comparison to the best-performing
baseline model. Moreover, due to its high interpretability, the results provide valuable medical insights regarding the identification
of urgent patients for tests through the extraction of decision rules from the OSDT model.

Conclusions: The method demonstrated state-of-the-art predictive performance, affirming its effectiveness. Furthermore, we
validate the decision rules derived from the OSDT model by comparing them with established medical knowledge. These
interpretable results (eg, attribute importance and decision rules from the OSDT model) underscore the potential of our approach
in prioritizing patient urgency for echocardiogram appointments and can be extended to prioritize other laboratory test appointments
using electronic health record data.

(JMIR AI 2025;4:e64188) doi: 10.2196/64188
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Introduction

Background
In the present medical landscape, the intricate interplay between
innovative techniques has expanded the horizons of medical
knowledge and opened avenues for unprecedented precision in
patient care. The increasingly sophisticated laboratory tests play
a crucial role in this transformative process. Born out of
meticulous research and honed by the rigors of scientific
scrutiny, these tests provide clinicians with a multifaceted toolkit
to decipher the intricacies of illnesses, capturing the nuances of
each condition, guiding medical professionals toward
evidence-based interventions, and empowering medical
professionals to tailor treatments with personalized precision.

However, a pivotal factor to take into consideration is the limited
availability of certain state-of-the-art laboratory tests, as they
often involve intricate equipment and elaborate protocols. This
is evident from their expensive nature, the scarcity of skilled
medical professionals capable of operating these laboratories,
and the limited accessibility across different regions or during
specific time frames [1]. As a result, the transformative potential
of these laboratory tests is mitigated by the practical challenges
they pose in terms of affordability [2]. The potential significant
advantages of laboratory tests, coupled with their limited
availability, render them a scarce resource, resulting in many
patients having to endure wait times for access to laboratory
tests. Consequently, predicting and prioritizing which patients
require testing has emerged as an important research problem.

The rise of health IT and the subsequent influx of electronic
health record (EHR) data, combined with the power of machine
learning, offers new opportunities to revolutionize the
prioritization of medical laboratory tests [3]. By delving into
vast amounts of historical patient information, machine learning
algorithms can discern intricate patterns and correlations that
might otherwise elude human observation. The predictive
outcomes generated by machine learning algorithms can
contribute to refining testing protocols, enabling medical
practitioners to make data-driven decisions regarding the
prioritization and scheduling of laboratory tests based on patient
information. In this study, we aim to elucidate methods for
evaluating patients’ urgency for tests, seeking to refine the
allocation of scarce laboratory tests by harnessing the power of
machine learning and analyzing historical EHRs. Specifically,
we aim to contribute by applying an optimal sparse decision
tree (OSDT) to a new domain—predicting the urgency of
medical laboratory tests, using echocardiograms as a case study.
Based on our literature review, OSDT stands out as one of the
most suitable methods for achieving both optimal performance
and interpretability in predicting the urgency of patients
requiring echocardiograms. Our ultimate objective is to ensure
prompt access for patients with the most critical needs.

Related Work

Echocardiogram and Patient Prioritization Techniques
An echocardiogram is one the most cost-effective means for
screening cardiac anatomy, uses ultrasound to evaluate the
cardiac structures, and provides critical information for medical

providers [4]. It functions as a crucial precursor to a detailed
diagnosis, capable of screening cardiac anatomy and providing
essential information for assessing cardiovascular conditions
such as murmurs, stenosis, and regurgitation. Additionally, it
plays a crucial role in diagnosing valvular morphology and
uncovering the root causes of valve diseases [5]. A
comprehensive echocardiographic assessment can provide both
diagnostic and prognostic information, thus facilitating risk
stratification and establishing baseline data for future evaluations
[5].

The echocardiogram, although immensely valuable, is not
always easily attainable due to the increasing demand for the
test. For example, there has been an observed increase in the
prevalence of rheumatic heart disease, which stands as the most
predominant form of valvular heart disease and impacts
approximately 41 million individuals in developing countries
[6]. In recent years, there has been a notable escalation in the
demand for pediatric cardiology services, leading to documented
workloads that have exhibited a substantial upsurge of up to
51% over the past decades [7]. Furthermore, there has been an
increase in the prevalence of children with asymptomatic
murmurs who necessitate evaluation through echocardiogram
[8]. The increasing demands pose challenges to echocardiogram
laboratories in resource management, requiring medical
institutions to establish more effective scheduling protocols to
prioritize patients in critical need of echocardiogram lab
appointments.

Patient prioritization techniques can be broadly classified into
scoring systems and machine learning classification–based
systems [9]. Scoring systems, particularly those using regression
techniques, have gained prominence for their ability to allocate
medical resources. These systems heavily rely on the expertise
of medical professionals to assign priority scores to patients.
Examples include the Salisbury priority scoring system, allowing
surgeons to assign relative priorities, and the Italian waiting
time prioritization system, which reallocates outpatient referrals
based on clinical priorities prescribed by general practitioners
[9]. These methods, however, exhibit various limitations. First,
there may be inherent bias (eg, subjective judgments obtained
through experience by medical professionals) as these
approaches often necessitate input from medical specialists’
judgments. A machine learning and data-driven method can
serve as a complement to these types of systems. Second, these
methods might be tailored for a particular patient prioritization
task (eg, surgery or referral), and demand a high level of
specialized medical knowledge for their design, making them
difficult to generalize to other tasks [10]. Third, certain methods
lack transparent decision rules for assessing the significance of
input attributes, thereby posing challenges for their practical
applications [11]. Machine learning classification-based methods
typically rely on a large amount of patients’ information (eg,
EHRs) to autonomously discern patterns and generate
predictions. This process aids in patient prioritization and avoids
limitations associated with scoring systems [12]. The existing
methods, however, fail to transform the prediction process and
outcomes into clear and executable rules, limiting the practical
application of these approaches [9]. Moreover, existing studies
predominantly center around 5 clinical areas, including cataract
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surgery, general surgical procedures, hip and knee replacements,
magnetic resonance imaging scanning, and children’s mental
health using specific predictive attributes and expert systems
[13]. There is a crucial need for new methods that apply more
broadly to general laboratory test prioritization.

To summarize, our literature review underscores the need for
new methods of prioritizing patients, which leverage machine
learning and data-driven techniques to complement existing
methods, ensure transparency, and have the potential to be
generalized to various patient prioritization tasks. Consequently,
using extensive patient historical EHRs combined with an
interpretable machine learning approach emerges as a potential
solution to address these gaps.

Leveraging Machine Learning for Optimizing the Use
of Scarce Laboratories Tests
When a large number of patient EHRs, which contain numerous
hidden patterns, are available, integrating machine learning into
health care practices emerges as a potential solution to address
pressing issues such as the continual demand for medical
services outpacing available resources. Specifically, machine
learning, with its capacity to analyze vast data and discern
intricate patterns, empowers health care professionals to make
data-driven decisions regarding the allocation of laboratory
tests. By developing predictive models using historical EHRs,
machine learning models can identify individuals who are more
likely to benefit from specific tests, ensuring that scarce
resources are allocated where they can yield the greatest impact.
Furthermore, such methods ensure critical cases receive prompt
attention, leading to expedited diagnoses and interventions [14].
Moreover, the prediction results can potentially streamline the
testing process by reducing unnecessary tests [15].

The integration of machine learning techniques to optimize the
allocation of limited medical tests and laboratory resources has
attracted considerable research attention. Research by Elitzur
et al [16] delves into the use of prediction models to allocate
medical tests efficiently. The study uses historical patient data
to develop models that identify the most suitable candidates for
specific tests, thereby enhancing resource allocation and
streamlining the testing process. In a similar vein, Marescotti
et al [17] investigate the orchestration of laboratory workflows
through machine learning-driven prioritization. By considering
factors such as clinical urgency and resource availability, their
work demonstrates how machine learning algorithms can ensure
timely and effective laboratory test processing, contributing to
both improved patient care and optimized resource use.
Similarly, Zhang et al [18] estimate the probability of requiring
mechanical ventilation for in-hospital patients and contribute
to the literature by identifying which patients require medical
devices (ie, critical medical resources) more urgently.

However, while the potential benefits of machine learning in
optimizing resource allocation are evident, challenges remain.
A recent study underscores the need for further research and
development in the area of machine learning models’
interpretability and fairness, ensuring that data-driven decisions
in health care maintain transparency [19]. The research gap
drives us to use an interpretable and efficient machine learning
method for laboratory tests and patient optimization.

Interpretable Machine Learning
Medical research is often at the forefront of technological
innovation, with machine learning algorithms being harnessed
to analyze vast datasets, predict disease outcomes, and assist in
clinical decision-making. However, as these algorithms become
increasingly sophisticated, they tend to function as “black
boxes,” where the reasoning behind their predictions remains
obscured. This opacity not only raises concerns about
trustworthiness but also impedes the adoption and acceptance
of these tools by medical professionals [19].

In medical research, the concept of interpretability holds
profound significance. The intricate interplay between
cutting-edge technology and human well-being underscores the
critical need to not only generate accurate predictions but also
to understand the underlying rationale behind those predictions.
The complexity of medical data, coupled with the potential
life-altering consequences of decisions made based on data and
machine learning models, demands a heightened level of
transparency and comprehensibility requirements [20].

The interpretability of machine learning models empowers
health care providers to understand the factors that led to a
specific decision, enabling them to fine-tune treatment strategies
according to their medical judgment and the patient’s unique
circumstances. Consequently, there has been a surge in post
hoc techniques for elucidating black box machine learning
models in a manner interpretable by humans. The most
prominent techniques among these include local, model-agnostic
methods that aim to explain individual predictions of a given
black box classifier, such as local interpretable model-agnostic
Explanation and Shapley additive explanation [21]. Due to their
high generalizability, post hoc methods have been used to
explain a wide array of machine learning models across various
domains. However, previous research has indicated that there
are common limitations associated with these post hoc
techniques, including local interpretability, sensitivity to
perturbations, and difficulties in choosing interpretable surrogate
models [21].

In health care, arguably, a more appropriate research direction
for using interpretable machine learning is tree-based models
because much of the data related to patient prioritization is
structured data (eg, tabular EHRs). Tree-based machine learning
models can perform comparably to complex models (eg, deep
learning models), especially after thorough preprocessing of
tabular data [22]. In contrast to post hoc explainable machine
learning techniques, tree-based models are logical models that
consist of statements involving logical operations, providing
clear and interpretable decision rules [22]. This interpretability
is highly valuable in health care, as it allows medical
professionals to not only make accurate predictions but also
understand the underlying factors driving those predictions,
enhancing transparency and trust in the decision-making process.

Since our research aims to use historical EHR data for patient
prioritization, it is crucial to acknowledge another notable
characteristic of patient prioritization-related information: the
prevalence of numerous categorical variables (eg, patient
demographic information such as gender and age groups).
Furthermore, the outcomes of patient prioritization are also
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expressed as categorical variables. For example, preventive
interventions often involve categorical decisions, such as
determining which individuals should undergo selective or
indicated interventions or identifying those most likely to benefit
from specific treatments [23]. In such scenarios, an efficient
tree-based approach tailored to categorical variables is highly
valuable. In this study, we focus on a cutting-edge decision tree
algorithm–OSDT [24].

A decision tree features a hierarchical structure that is composed
of a root node, branches, internal nodes, and leaf nodes in a tree
format. Each path from the root node to the leaf node illustrates
a rule to partition the data and leads to the final classification.
The tree-based method presents a clear pattern for the
decision-making process; thus, it is considered a transparent
and highly interpretable model [25]. The results of the tree-based
models are extremely useful for medical decision-making [26],
and the performance of decision tree classifiers is verified by
researchers on medical data [27]. Nevertheless, concerns have
been raised regarding the suboptimality of decision tree
algorithms [24,28]. To address this issue, OSDT has been
introduced, aiming to ensure optimal solutions for binary
variables in a computationally efficient manner [24].

The OSDT algorithm addresses various limitations observed in
prior tree-based methods. Unlike previous approaches that often
focused on finding the optimal tree within a fixed number of
nodes or limited topology, OSDT tackles these shortcomings
by identifying optimal trees through the use of a regularized
loss function. This loss function strikes a balance between
accuracy and the number of leaves, thereby enhancing the
efficiency of the decision tree model. Furthermore, OSDT
improves computational efficiency and interpretability by
incorporating a series of analytical bounds that effectively
reduce the search space while still identifying the optimal tree.
By implementing these bounds, the algorithm streamlines the
search process, leading to expedited identification of the optimal
decision tree structure. Moreover, the OSDT algorithm has
undergone mathematical validation, demonstrating its efficacy
in constructing optimal trees for structured tabular datasets with
attributes having binary values. It establishes its effectiveness
in addressing binary classification problems. The algorithm is
designed to uphold commendable levels of accuracy and is
anticipated to meet the demands of medical prediction tasks
with stringent interpretability requirements.

Methods

Study Design
In this study, we conducted empirical and predictive analyses
using echocardiogram data extracted from EHRs at a large
multispecialty hospital and medical facility. The dataset included
administrative details, referral diagnoses, and patient conditions.
To explore attributes relevant to echocardiogram prioritization,
we used the OSDT algorithm due to its high accuracy and
interpretability. We aim to enhance the scheduling of
echocardiogram laboratory appointments by enabling the
prioritization of patients with urgent needs based on our model’s
predictions. To be noted, our proposed method is not intended

to replace human expertise but to complement it, offering
valuable insights that guide practitioners toward informed and
patient-centric choices.

Ethical Considerations
The Mayo Clinic Institutional Review Board, based on the
authors' submission notes and in accordance with the Code of
Federal Regulations, 45 CFR 46.102, deemed that this research
did not require IRB review.

Data Collection and Selection
The dataset comprises real-world data from one of the top
medical centers in the United States. The data were collected
over a 1-year period in 2019, including 34,293 echocardiogram
appointments. It consisted of 64 dummy-coded categorical
attributes, encompassing various aspects such as patient
demographics, medical history, clinical settings (eg, inpatient
or outpatient status), past procedures, future scheduled
procedures, and diagnose indicators for
echocardiogram-justifying signs (eg, heart murmurs, shortness
of breath, or chest pain) extracted from the clinical notes and
referrals in the EHRs (Table 1).

The dataset exhibited a notable class imbalance issue,
particularly evident in the examination of the
“MadeBeforeEcho” attribute. This attribute delineates whether
the downstream appointment following the echocardiogram
occurs before the scheduling date of the echocardiogram
appointment (not the actual appointment date). Within the “Y”
category, the distribution revealed 84% nonurgent cases and
16% urgent cases. Conversely, in the “N” category, the
distribution portrayed 58% nonurgent cases and 42% urgent
cases. This observation underscored a substantial prevalence of
nonurgent cases within the “MadeBeforeEcho” attribute.
Furthermore, a similar pattern of imbalance is discerned when
analyzing attributes such as “ReferredType” and “SurgeryYN.”
These attributes also exhibit a significant majority of cases
concentrated within 1 category, indicating the need for careful
consideration of class distribution in subsequent predictions.

The response variable is determined by calculating the number
of days between the date the echocardiogram appointment was
generated in the system and the actual appointment date.
According to medical policy, appointments are classified as
urgent (ie, the response variable) if the number of days is 2 or
less, and nonurgent otherwise.

It is important to note that the features categorized under the
“Future Scheduled Process” were derived based on the date the
echocardiogram appointment is generated in the system, rather
than the actual appointment date (Figure 1). This approach
ensures that the model uses only the information available up
to the point of echocardiogram appointment generation, without
incorporating any data beyond this cutoff.

Of note, our dataset is a tabular dataset with attributes and
response variables having binary values. Therefore, OSDT is
highly suitable for serving this dataset, assisting us in making
predictions for patient prioritization.
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Table 1. Dataset and attribute statisticsa.

Summary statistics, n (%)DescriptionCategory and variable

UrgentNonurgent

Demographics

Age (years)

478 (6.41)1929 (7.18)—b0-18

1930 (25.90)6766 (25.19)—19-55

1342 (18.01)4954 (18.45)—56-65

1896 (25.44)6784 (25.26)—66-75

1775 (23.82)6398 (23.82)—Older than 75

Sex

3529 (47.55)11,829 (44.09)—Female

3892 (52.45)15,002 (55.91)—Male

Patient geolocation

2376 (31.96)9973 (37.14)—In_State

4301 (57.85)14,332 (53.37)—Out_of_State

758 (10.20)2550 (9.50)—Town

Clinical settings

ReferralType

606 (8.15)1156 (4.30)—External

6829 (91.85)25,699 (95.70)—Internal

The specialty that patient referred byReferredBy

1162 (15.63)8188 (30.49)—Cardiovascular medicine

142 (1.91)436 (1.62)—Family medicine

4 (0.05)145 (0.54)—Hospital medicine

591 (7.95)978 (3.64)—Internal medicine

359 (4.83)1096 (4.08)—Obstetrics and gynecology

401 (5.39)2302 (8.57)—Pediatric and adolescent medicine

4776 (64.24)13,710 (51.05)—Other

Referral originReferredFrom

0 (0.00)2 (0.01)—Arizona campus

0 (0.00)1 (0.00)—Florida campus

38 (0.51)154 (0.57)—Mayo Clinic health system

4463 (60.03)17,495 (65.15)—Rochester campus

2934 (39.46)9203 (34.27)—Other

Referred typeReferredType

4585 (61.52)18,706 (69.66)—Outpatient

2868 (38.48)8149 (30.34)—Other

Future scheduled process

The number of days between the date the
echocardiogram appointment was generated
in the system and the surgery date

Diff_surgery_after

461 (6.20)1449 (5.40)—0-1

492 (6.62)1607 (5.98)—2-5
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Summary statistics, n (%)DescriptionCategory and variable

UrgentNonurgent

606 (8.15)1143 (4.26)—6-15

1494 (20.09)4715 (17.56)—16 and greater

4382 (58.94)17,941 (66.81)—None

Whether the next downstream appointment
after echocardiogram is made before the
date the echocardiogram appointment was
generated in the system or not

MadeBeforeEcho

4660 (62.53)23,845 (88.79)—Yes

2793 (37.47)3010 (11.21)—No

The department in which the appointment
happened after the date the echocardiogram
appointment was generated in the system

NextDepartment

1749 (23.47)12,012 (44.73)—Cardiovascular medicine

5704 (76.53)14,843 (55.27)Departments other than cardiovascular
medicine

Non-cardiovascular medicine

The number of days from the date the
echocardiogram appointment was generated
in the system to its following appointment

NextLength

1608 (21.63)4531 (16.87)—0-1

2018 (27.14)3301 (12.29)—1-5

618 (8.31)1,014 (3.78)—Greater than 5

3191 (42.92)18,009 (67.06)—None

Type of echocardiogram visitProcedure

362 (4.87)848 (3.16)—TEEc

6803 (91.50)23,293 (86.74)—TTEd

270 (3.63)2714 (10.11)—Other

Past procedures

Whether the patient had a cardiovascular
surgery within 6 months prior to the date
the echocardiogram appointment was gener-
ated in the system

SurgeryYN

264 (3.54)1708 (6.36)—Yes

7189 (96.46)25,147 (93.64)—No

Whether the patient had a surgery within 3
months after the date the echocardiogram
appointment was generated in the system

SurgeryYN_After

3053 (40.96)8914 (33.19)—Yes

4400 (59.04)17,941 (66.81)—No

Medical history

50 (0.67)115 (0.43)Alcohol abuseAlcohol

605 (8.12)962 (3.58)AnemiaAnemia

33 (0.44)87 (0.32)Blood lossBloodLoss

484 (6.49)1884 (7.02)—CHFe

274 (3.68)446 (1.66)Coagulation deficiencyCoagulopathy

192 (2.58)439 (1.63)Major depressive disorderDepression

230 (3.09)610 (2.27)—DMf
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Summary statistics, n (%)DescriptionCategory and variable

UrgentNonurgent

129 (1.73)317 (1.18)—DMcxg

19 (0.25)86 (0.32)Drug abuseDrugs

617 (8.28)1013 (3.77)Fluid and electrolyte disordersFluidsLytes

1 (0.01)0 (0.00)—HIV

786 (10.55)2201 (8.20)—Hypertension

277 (3.72)777 (2.89)HypothyroidismHypothyroid

197 (2.64)429 (1.60)—Liver

347 (4.66)464 (1.73)Lymph system cancerLymphoma

222 (2.98)251 (0.93)—Metastatic cancer

291 (3.90)581 (2.16)Neurological disordersNeuroOther

339 (4.55)980 (3.65)—Obesity

15 (0.20)58 (0.22)—Paralysis

153 (2.05)298 (1.11)Pulmonary circulation disordersPHTNh

53 (0.71)126 (0.47)Mental disorder characterized by a discon-
nection from reality

Psychoses

20 (0.27)41 (0.15)Chronic peptic ulcerPUDi

273 (3.66)650 (2.42)Chronic pulmonary diseasePulmonary

234 (3.14)965 (3.59)—PVDj

331 (4.44)950 (3.54)Renal failureRenal

150 (2.01)254 (0.95)Rheumatoid arthritis or collagen vascularRheumatic

380 (5.10)722 (2.69)Solid tumorTumor

573 (7.69)3367 (12.54)Valvular diseaseValvular

237 (3.18)248 (0.92)Weight lossWeightLoss

Diagnoses

25 (0.34)18 (0.07)MSSAk bacteremia, sepsisA

40 (0.54)47 (0.18)MRSAl, staph bacteremia, slaph, fungemia,
pseudomonas, candidemia, MRSA bac-
teremia

B

554 (7.43)1428 (5.32)Leukemia, AMLm, CMLn, lymphoma,

AMVo, myeloma

C

193 (2.59)561 (2.09)Diseases of the blood and blood-forming
organs and certain disorders involving the
immune mechanism

D

408 (5.74)1714 (6.38)Endocrine, nutritional and metabolic dis-
eases

E

46 (0.62)49 (0.18)Behavioral and neurodevelopmental disor-
ders

F

273 (3.66)590 (2.20)Muscular dystrophyG

28 (0.38)60 (0.22)Diseases of the eye and adnexa or disease
of the ear and mastoid process

H

4096 (54.96)11,302 (42.09)Heart failure, coronary artery, cardiac arrest,

STEMIp, stroke, cardia, hypertension, endo-

carditis, NSTEMIq, PEAr arrest, AFibs,
pulmonary embolism, pulmonary hyperten-
sion, and vegetation

I
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Summary statistics, n (%)DescriptionCategory and variable

UrgentNonurgent

392 (5.26)477 (1.78)Resp failure, respiratory, and pulmonaryJ

130 (1.74)357 (1.33)Liver and cirrhosisK

33 (0.44)36 (0.13)Diseases of the skin and subcutaneous tissueL

280 (3.76)503 (1.87)Diseases of the musculoskeletal system and
connective tissue

M

119 (1.60)397 (1.48)Diseases of the genitourinary systemN

57 (0.76)235 (0.88)Pre-eclampsia, preeclampsiaO

4 (0.05)12 (0.04)Certain conditions originating in the perina-
tal period

P

309 (4.15)2811 (10.47)Ehlers, coarc, PDAt, and congenitalQ

2811 (37.72)4111 (15.31)Murmur, hypoxemia, shortness, SOBu,
breath, shock, dyspnea, chest pain, troponin,
syncope, electrocardiogram, extremity,
mass, and swelling, edema

R

21 (0.28)100 (0.37)Injury, poisoning and certain other conse-
quences of external causes

S

1129 (15.15)5966 (22.22)Chemo, preoperative, pre-op, prenatal,
pregnancy, prior to, BMI, surgery, and
transplant

Z

aAll the features used in this study are complete for each patient, with no missing values. The diagnoses are derived from patients’ ICD-9 codes, and
the medical history is extracted from electronic health record notes using the medical center’s built-in natural language processing tools.
bNot applicable.
cTEE: transesophageal echocardiogram.
dTTE: transthoracic echocardiogram.
eCHF: congestive heart failure.
fDM: diabetes without chronic complications.
gDMcx: diabetes with chronic complications.
hPHTN: pulmonary hypertension.
iPUD: peptic ulcer disease.
jPVD: peripheral vascular disease.
kMSSA: methicillin-sensitive Staphylococcus aureus.
lMRSA: methicillin-resistant Staphylococcus aureus.
mAML: acute myeloid leukemia.
nCML: chronic myeloid leukemia.
oAMV: avian myeloblastosis virus.
pSTEMI: ST-elevation myocardial infarction.
qNSTEMI: non–ST-elevation myocardial infarction.
rPEA: pulseless electrical activity.
sAFib: atrial fibrillation.
tPDA: patent ductus arteriosus.
uSOB: shortness of breath.
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Figure 1. Timeline and process of echocardiogram appointment scheduling. Using MadeBeforeEcho as an example.

Problem Formulation: Urgency Prediction Using
OSDT

With data , where are M binary

attributes and are the response variable, we model
an OSDT tree d with a collection of H distinct leaves d =
(p1,p2,...,pH). The objective function in this study integrates the
misclassification error with a sparsity penalty imposed on the
number of leaf nodes, denoted as R(d,x,y). R(d,x,y) = l(d,x,y) +
λHd, where l(d,x,y) represents the misclassification error of the
tree, which is computed as the fraction of training data with
incorrectly predicted labels. In addition, Hd represents the
number of leaves in tree d. To regularize the model and
discourage larger trees, a regularization term λHd is introduced,
where λ is a hyperparameter controlling the strength of the
penalty. A higher value of λ corresponds to a stronger penalty
on the size of the tree. This implies that the tree is more likely
to be shallower when achieving optimality.

By using OSDT, we aim to improve the overall performance
of the classification task while simultaneously upholding a
significant level of interpretability, thereby facilitating a
comprehensive understanding of the underlying patterns and
factors influencing the classification outcomes.

Results

Overview
In this section, we evaluated the proposed method against
state-of-the-art machine learning models. We then highlighted
attribute importance and provided clear interpretations of derived
results within specific patient cohorts for transparency and
clarity.

Performance Evaluation
We demonstrated the performance of our OSDT model by
comparing it to commonly used machine learning models as
baselines, including naive Bayes, generalized linear model, fast
large margin, logistic regression, neural network, vanilla
decision tree, random forest, gradient boosted trees, and support
vector machine. The evaluation metrics used for the binary
classification are accuracy, precision, recall, F1-score, and
F2-score. Accuracy is a metric that quantifies the overall
correctness of a machine learning model. It represented the
proportion of correct predictions made by the model across all
categories or classes. Precision and recall, on the other hand,
measured the model’s ability to accurately predict a specific
category or class. Precision focused on the proportion of true
positive predictions relative to all positive predictions made by
the model. Recall, also known as sensitivity, gauged the model’s
capability to correctly detect instances of a specific category.
It quantified the proportion of true positive predictions relative
to all actual positive instances present in the data. The F1-score
has been widely used in the context of imbalanced classification
problems and serves as a prominent metric. It is computed as
the harmonic mean of the precision and recall scores, providing
a balanced assessment of the model’s performance by
considering both precision and recall simultaneously. The
F2-score assigns greater weight to recall than precision, proving
beneficial when the consequences of false negatives (ie, missed
positive cases where patients are in urgent condition but remain
unidentified by the model) outweigh those of false positives (ie,
incorrectly identified positive cases). All metrics mentioned
exhibited a range of values between 0 and 1, whereby a higher
value indicated superior performance.

Compared with various baselines, the performance of the OSDT
model achieved the highest accuracy, recall, F1-score, and
F2-score (Table 2). The performance reported is based on 5-fold
cross-validation. These results indicated the predictive capability
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of the OSDT model in our research context, demonstrating the overall performance and effectiveness of the OSDT model.

Table 2. OSDTa performance comparisons with baselinesb.

F2-scorec (%), mean
(SD)

F1-score (%), mean
(SD)

Recall (%), mean
(SD)

Precision (%),
mean (SD)

Accuracy (%), mean
(SD)

Algorithm

4.13 (1.02)6.41 (1.09)3.34 (0.59)81.3 (7.11)78.86 (0.24)Naïve Bayes

7.27 (0.93)11.01 (1.03)5.93 (0.69)78.05 (5.00)79.23 (0.22)Generalized linear model

20.86 (2.17)28.21 (1.7)17.76 (1.4)68.94 (2.57)80.26 (0.47)Fast large margin

7.55 (0.78)11.41 (1.49)6.16 (0.86)77.68 (4.26)79.26 (0.22)Logistic regression

14.66 (0.56)21.26 (0.66)12.14 (0.39)85.59 (4.59)80.49 (0.29)Deep learning

25.96 (3.15)33.53 (4.5)22.45 (4.1)69.18 (4.5)80.69 (0.2)Decision tree

8.96 (2.67)13.42 (0.57)7.34 (0.31)78.19 (5.54)79.45 (0.18)Random forest

17.85 (1.95)25.18 (2.25)14.94 (1.55)80.8 (2.96)80.64 (0.29)Gradient boosted trees

27.39 (1.95)34.48 (4.02)24.06 (3.4)61.42 (5.57)80.3 (0.84)SVMd

28.18 (0.55)36.18 (0.66)24.56 (0.59)68.75 (1.7)81.21 (0.20)OSDT (ours)

aOSDT: optimal sparse decision tree.
bOSDT is an algorithm that makes decisions based on direct constraints rather than generating probability scores. As a result, metrics like the receiver
operating characteristic curve, precision and recall curve, and area under curve are not applicable for this method.Although the CIs for SVM and OSDT
overlap, it is noteworthy that SVM exhibits a significantly larger SD. This indicates that OSDT is more robust in this scenario, delivering a more stable
and reliable performance despite the overlapping intervals.

c ; β=2.
dSVM: support vector machine.

Interpreting Prediction Results
OSDT, as a tree-based model, possesses the notable advantage
of providing interpretable prediction results. We conducted an
analysis of the decision trees generated using the entire dataset
as well as specific patient cohorts. The objective is to extract
the most influential rules that demonstrate both high accuracy
and coverage, thereby aiming to uncover the underlying factors
that drive the urgent decision of echocardiogram appointments.

We first identified several key categories and attributes that
significantly influenced the urgency of patients’echocardiogram
appointments (Table 3). First, the most important categories
included “future scheduled process,” pertaining to clinic
scheduling policies, and “diagnosis,” indicative of patients’
health conditions. Second, within the top 12 important attributes,
a cluster of attributes related to future scheduled processes
emerged as the most prominent. These attributes encompassed
scenarios if the next downstream appointment following the
echocardiogram was scheduled prior to the echocardiogram
appointment (ie, “MadeBeforeEcho”), instances where the next
appointment did not pertain to the cardiovascular department
(ie, “NextDepartment”), cases where no subsequent appointment
was scheduled after the echocardiogram appointment (ie,
“NextLength_None”), and situations where the time gap
between the echo appointment and the subsequent one was less
than a day (“NextLength_1”). The absence of a downstream
appointment before the echocardiogram could be attributed to
the clinic's practice of tailoring subsequent appointments based
on the results of the echocardiogram. Consequently, it became
imperative for medical providers to accord priority to the
echocardiogram appointments of these patients, as the results

would furnish vital evidence for guiding appropriate follow-up
care and future steps. Third, attributes related to diagnoses
assumed the second tier of importance, particularly whether
patients exhibited respiratory and cardiac symptoms (ie, “R”)
or had documented cardiovascular conditions (ie, “I”). Patients
diagnosed with heart-related issues, such as heart murmurs,
shortness of breath, and chest pain, typically require expedited
access to echocardiography results to determine the next course
of action. Fourth, clinical setting attributes and demographic
information are also important to patient prioritization. In the
context of inpatients, health care providers tended to assign
earlier echocardiogram appointment slots as part of a strategy
to reduce the length of hospital stays. Additionally, when
prioritizing patients with heart conditions, individuals referred
by cardiologists received preferential treatment in terms of
scheduling. Furthermore, the medical facility providing the data
adopted a proactive approach by expediting echocardiogram
appointments for out-of-state patients, aiming to minimize their
duration of stay. This proactive stance facilitated timely
evaluation and management, thereby contributing to a more
efficient allocation of resources and an enhanced patient
experience. Among medical history attributes, the presence of
fluid and electrolyte disorders (ie, “FluidsLytes”) emerged
within the top 12, which underscored the strong correlation
between fluid and electrolyte disorders and heart failure, further
emphasizing its relevance in patient prioritization [29].

These results underscore the significance of admission and
policy-related information in determining the urgency of
echocardiogram appointments. They reflected the complexities
of the scheduling process and highlighted the need for tailored
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appointment allocation strategies based on patients’ referral
status and downstream appointment requirements.

We subsequently focus on a specific patient cohort for further
analysis. The “MadeBeforeEcho” attribute clearly emerged as
exceptionally significant among the dataset’s attributes. It was
noteworthy to highlight that, based on the data, there were no
urgent cases when the “MadeBeforeEcho” variable was marked
as “N.” Consequently, we conducted an investigation
specifically focusing on patients whose subsequent downstream
appointment was scheduled before the date the echocardiogram
appointment was generated in the system. This subset of the
patient cohort served as an illustrative example of how decision
trees could provide a high degree of interpretability in the
context of patient prioritization (Figure 2). Upon scrutiny of the

subdecision tree for this cohort depicted, several noteworthy
observations emerged. Primarily, it became evident that the
most crucial attribute for this cohort is “R,” signifying whether
the patient presents with respiratory and cardiac symptoms,
which served as the root node of the subtree. The pathway
leading to categorizing a patient case as urgent depended on
multiple conditions: the patient exhibited respiratory and cardiac
symptoms, had an appointment scheduled within the cardiology
department, hailed from out of state, and had a subsequent
appointment scheduled following the echocardiogram. In
contrast, patients without respiratory and cardiac symptoms
tended toward classification as nonurgent. This tendency toward
nonurgency was particularly pronounced in cases lacking a
scheduled appointment subsequent to the echocardiogram.

Table 3. Attribute importance and category importancea.

Attribute importanceMeaningsCategory and attribute

Future scheduled process (importance=0.0369)

0.0279Whether the next downstream appointment after echocardiogram is
made before the date the echocardiogram appointment was generated
in the system or not.

MadeBeforeEcho

0.0049The department in which the appointment happened after the date
the echocardiogram appointment was generated in the system.

NextDepartment

0.0035No following appointment scheduled after the date the echocardio-
gram appointment was generated in the system.

NextLength_None

0.0006The number of days from the date the echocardiogram appointment
was generated in the system to its following appointment is less than
1 day.

NextLength_1

Diagnoses (importance=0.0154)

0.0147If have murmur, hypoxemia, shortness, SOBb, breath, shock, dysp-
nea, chest pain, troponin, syncope, electrocardiogram, extremity,
mass, swelling, and edema.

R

0.0007If have heart failure, coronary artery, cardiac arrest, STEMIc, stroke,

cardia, hypertension, endocarditis, NSTEMId, PEAe arrest, AFibf,
pulmonary embolism, pulmonary hypertension, and vegetation.

I

Demographic (importance=0.0369)

0.0029Patient is from out of state.Geo_Out of State

0.0013Patient is from the local town.Geo_Town

0.0011Age between 19 and 55 years.AGE_19-55

Clinical settings (importance=0.0053)

0.0047Referred type-inpatient or outpatient.ReferredType

0.0006The specialty that patient referred by is cardiovascular disease de-
partment.

ReferredBy_CV

0.0021If have fluid and electrolyte disordersFluidsLytes (medical history; impor-
tance=0.0021)

aThe relative importance scores of the attribute category and individual attributes are determined by the Gini index of the optimal sparse decision tree.
The feature importance values are relative importance values and do not have a fixed absolute range. We presented only the most important features.
bSOB: shortness of breath.
cSTEMI: ST-elevation myocardial infarction.
dNSTEMI: non–ST-elevation myocardial infarction.
ePEA: pulseless electrical activity.
fAFib: atrial fibrillation.
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Figure 2. The OSDT for patients whose next downstream appointment after the echocardiogram is scheduled before the date the echocardiogram
appointment was generated in the system. OSDT: optimal sparse decision tree. λ=0.0008; accuracy: 83.69%.

Analyses on Diverse Patient Cohorts
In order to enhance the validity of the decision trees and gain
more valuable medical insights, we conducted more analyses
on smaller patient cohorts. Specifically, we focus on patients
who have no next downstream appointment after
echocardiogram and are categorized as inpatients. Furthermore,
we narrowed down the patient cohort based on specific medical
history and presented a compilation of rules extracted from the
decision tree (Table 4).

A decision rule was defined as the pathway from the root of a

decision tree to a leaf node . The accuracy and
coverage of a decision rule served as critical metrics for
evaluating its effectiveness and applicability. Accuracy, denoting
the capacity of a decision rule to effectively forecast the outcome
of interest, was quantified as the proportion of records that fulfill
both the rule’s precondition and its consequent within the

precondition. This metric was computed as ,
where “number of Correct Predictions” denoted the count of
instances where the decision rule accurately anticipated the
desired outcome and “Total number of Instances” represented
the entire dataset or the set of instances under consideration,
which elucidated how accuracy measures the precision of a
decision rule in making predictions based on its specified
conditions and its congruence with actual outcomes within the
dataset. Coverage, on the other hand, measured the proportion
of cases or individuals to which the decision rule could be

applied. It could be calculated as . It
signified the generalizability and practical scope of the rule in
real-world scenarios. A decision rule with high coverage
indicates its ability to be applied to a wide range of cases or
individuals, thereby increasing its usefulness in practice.

In the context of patients with congestive heart failure (CHF),
anemia played a significant role in determining the urgency of
echocardiogram appointments (Table 4). Anemia could have
detrimental effects on cardiac function through various
mechanisms [29]. First, it induces cardiac stress by increasing
heart rate and stroke volume. Additionally, anemia could lead
to reduced renal blood flow and fluid retention, adding further
strain to the heart. Prolonged anemia, regardless of its underlying
cause, could contribute to the development of left ventricular
hypertrophy, which exacerbates CHF by promoting cardiac cell
death through apoptosis. Notably, patients with anemic CHF
often exhibited resistance to CHF medications, and numerous
studies consistently demonstrated that these individuals have a
higher mortality rate compared to patients with non-anemic
CHF [30]. Anemia also played a critical role in patients with
coagulopathy, as it exacerbated bleeding, which in turn further
worsens coagulopathy [30].

For patients with hypothyroidism, fluid and electrolyte disorders
served as strong indicators. Hypothyroidism, a prevalent
endocrine disorder, was associated with the development of
congestive heart failure. Electrolyte disturbances were
commonly observed in patients with chronic heart failure [31].
Echocardiogram has been a suitable modality for guiding fluid
resuscitation in critically ill individuals. It allowed for the
evaluation of fluid responsiveness based on several parameters,
such as the left ventricle, aortic outflow, inferior vena cava, and
right ventricle [32].

The impact of alcohol consumption on cardiovascular health
was multifaceted. Extensive research has demonstrated that the
consumption of alcohol at levels surpassing approximately 1 to
2 drinks per day was associated with hypertension [28]. This
condition adversely affects the elasticity of arteries, leading to
diminished blood and oxygen flow to the heart and consequently
contributing to the onset of heart disease [33]. These
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pathophysiological changes increase the risk of heart disease.
Consequently, patients with a history of alcohol abuse and
concomitant hypertension might require an urgent
echocardiogram to assess the potential cardiac implications
arising from these interconnected conditions.

Patients diagnosed with valvular heart conditions would fall
into the urgent category if they also exhibited cardiovascular
issues and a history of congestive heart failure. These attributes
collectively signaled the presence of potentially serious cardiac
problems, indicating a compelling need for an echocardiogram
to obtain detailed cardiac information and facilitate accurate
diagnoses. In the case of patients grappling with depression,
their urgency classification as “urgent” was contingent upon
the presence of co-occurring health issues. Extensive research
has established a substantial influence of depression on the
outcomes of concurrent medical conditions. Consequently, when
depression coincided with other health problems, it necessitated
an “urgent” classification, acknowledging its significant impact
on overall health outcomes [34]. Regarding patients with
obesity, an “urgent” classification applied if they additionally
exhibited fluid and electrolyte disorders. Research findings have

illuminated a connection between overweight or obesity and
specific physiological factors, such as lower reactance and
hypertonicity. Furthermore, individuals with overweight and
those with obesity with lower reactance tended to demonstrate
significantly elevated serum sodium levels compared to
individuals with a normal weight. These associations
underscored the importance of promptly addressing the medical
needs of patients with obesity with fluid and electrolyte
disorders, warranting an “urgent” classification for their cases
[35].

Overall, the decision rules extracted from our analyses aligned
closely with medical knowledge, providing reliable insights for
identifying urgent echocardiogram appointments for patients.
The congruence between the rules and medical understanding
not only validated the effectiveness of our model but also
highlighted the consistent application of medical principles in
the decision-making process. This focused analysis contributed
to a better understanding of the OSDT model’s validity and
offered valuable medical perspectives to enhance the
identification of urgent patients’echocardiogram appointments.

Table 4. Decision rules for specific patient cohorts.

Rule coverage (%)Rule accuracy (%)Rules for a patient to be classified as urgentCohort

14.20100The department in which the appointment happened after the echocardiogram ap-
pointment was generated in the system=non-cardiovascular disease, AGE<75,
anemia=yes

CHFa

53.0399Anemia=YesCoagulopathy

32.91100Fluid and electrolyte disorders=yes, Whether the patient had a cardiovascular
surgery within six months prior to the echocardiogram appointment=no

Hypothyroid

43.75100Hypertension=yesAlcohol

6.36100I=1(has cardiovascular conditions), CHF=yesValvular

24.49100Z=1 (has factors influencing health status and contact with health service)Depression

23.75100Geo!=Town, E=0 (has no nutritional and metabolic diseases), fluid and electrolyte
disorders=yes

Obesity

aCHF: congestive heart failure.

Discussion

Overview
The primary objective of our study is to forge an effective
tree-based classification machine learning model geared toward
prioritizing the allocation of echocardiogram appointments for
patients with a heightened need for timely diagnostics. Our
long-term goal is to streamline the scheduling process, ensuring
that patients’ medical requirements are promptly addressed,
thereby minimizing delays and optimizing their health care
experience. Moreover, our study aspired to delve deeper into
the intricate attributes that contribute to the urgency of
echocardiogram lab appointments. Recognizing the intricate
interplay of medical, logistical, and patient-specific variables,
we sought to unravel the complex rules and dynamics that
govern appointment prioritization. By harnessing the inherent
interpretability of our model, we aim to uncover hidden insights
and relationships within a large amount of EHR data, shedding

light on the critical determinants that underscore the need for
rapid scheduling. The implications of our study extended beyond
the realm of predictive modeling. We aimed to empower health
care professionals with a powerful tool that not only optimizes
resource allocation but also enriches their decision-making
process.

Principal Results
The findings demonstrate promising results by accurately
predicting the urgency of echocardiogram appointments and
providing valuable insights into the critical guidelines applicable
to specific patient cohorts. In summary, the study emphasizes
two key points: (1) among the various attributes examined, it
is observed that admission-related attributes exert a significant
influence on the level of urgency for patients’ echocardiogram
appointments; and (2) the urgency of scheduling echocardiogram
appointments can be influenced by the presence of comorbidities
that exacerbate patients’ conditions. In the case of congestive
heart failure, anemia emerges as a significant attribute,
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highlighting its relevance in contributing to the urgency of
echocardiogram appointments. Similarly, coagulopathy is
identified as an important attribute for patients with congestive
heart failure, further emphasizing the need for prompt
assessment. For patients with hypothyroidism, the presence of
fluid and electrolyte disorders serves as a concerning indicator,
warranting the prioritization of an echocardiogram. Additionally,
hypertension is found to be a critical medical knowledge for
patients with a history of alcohol abuse, underscoring the
urgency of echocardiogram in this population.

Our work is unique in applying an advanced binary decision
tree model that offers inherent interpretability, avoiding the
limitations of post hoc techniques like local interpretable
model-agnostic Explanation and Shapley additive explanation,
such as local interpretability constraints, sensitivity to
perturbations, and difficulties in selecting appropriate surrogate
models. We extract interpretable rules grounded in medical
knowledge, making this the first study to introduce tree-based
interpretable machine learning for patient prioritization and the
stratification of medical test urgency. Furthermore, the
tree-based model allows us to derive rules that are easily
understandable to medical professionals. These rules can be
assessed for alignment with existing medical knowledge and
applied in real-world practice by health care providers.

Limitations
The research has several limitations that could be addressed in
future work. First, the accuracy of the prediction model hinges
on the quality and completeness of available data; incomplete
or missing data may compromise the reliability of predictions.
Furthermore, it is essential to recognize that the effectiveness
of the model may vary when applied to diverse patient
populations or health care settings. This variation can be
attributed to the unique attributes and patterns present in the
training data, which significantly impact the model’s
performance. Moreover, the predictions rely on the elapsed days

between the appointment scheduling date and the appointment
date. Nonurgent patients may inadvertently be grouped with
urgent cases due to cancellations and rescheduling of
echocardiogram appointments. While this offers a broad
indication of urgency, it may overlook critical factors that
influence appointment priority. Integrating essential clinical or
contextual details, such as the patient’s medical history,
symptom severity, or health care resource availability, into the
model could provide more comprehensive insights.

Conclusions
This research adapts the OSDT algorithm to assess the urgency
of patients in need of echocardiograms. The OSDT model
demonstrates better performance over alternative machine
learning models, highlighting its predictive accuracy and
effectiveness. Furthermore, it identifies key attributes and rules
governing the prioritization of echocardiogram appointments.

The analysis of decision trees generated by the OSDT model
reveals the significance of admission- and policy-related
attributes, such as downstream appointment scheduling and
patient referral status, in determining appointment urgency.
Moreover, the analyses of specific patient cohorts provide
medical insights into the role of comorbidities, such as anemia
in patients with CHF and coagulopathy, and fluid and electrolyte
disorders in patients with hypothyroidism. These insights align
with established medical knowledge and enhance the
identification of urgent echocardiogram appointments.

In summary, this study facilitates the development of effective
scheduling protocols for echocardiogram appointments by
harnessing machine learning techniques and integrating medical
insights. This approach enhances the overall efficiency and
effectiveness of echocardiogram services, ultimately benefiting
patient care. The findings can also be generalized to inform the
establishment of efficient scheduling protocols and the
promotion of equitable access to various other medical
laboratory tests.
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