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Abstract
Background: Despite significant time spent on billing, family physicians routinely make errors and miss billing opportunities.
In other disciplines, machine learning models have predicted Current Procedural Terminology codes with high accuracy.
Objective: Our objective was to derive machine learning models capable of predicting diagnostic and billing codes from notes
recorded in the electronic medical record.
Methods: We conducted a retrospective algorithm development and validation study involving an academic family medicine
practice. Visits between July 1, 2015, and June 30, 2020, containing a physician-authored note and an invoice in the electronic
medical record were eligible for inclusion. We trained 2 deep learning models and compared their predictions to codes
submitted for reimbursement. We calculated accuracy, recall, precision, F1-score, and area under the receiver operating
characteristic curve.
Results: Of the 245,045 visits eligible for inclusion, 198,802 (81%) were included in model development. Accuracy was
99.8% and 99.5% for the diagnostic and billing code models, respectively. Recall was 49.4% and 70.3% for the diagnostic and
billing code models, respectively. Precision was 55.3% and 76.7% for the diagnostic and billing code models, respectively. The
area under the receiver operating characteristic curve was 0.983 for the diagnostic code model and 0.993 for the billing code
model.
Conclusions: We developed models capable of predicting diagnostic and billing codes from electronic notes following
visits to a family medicine practice. The billing code model outperformed the diagnostic code model in terms of recall and
precision, likely due to fewer codes being predicted. Work is underway to further enhance model performance and assess the
generalizability of these models to other family medicine practices.
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Introduction
Previous research has revealed that family physicians spend
nearly 50% of their day on electronic medical records
(EMRs) and that most of this time is spent on adminis-
trative tasks, including documentation of notes and billing

[1]. Physicians in the United States and Canada spend an
average of 3.4 hours and 2.2 hours per week, respectively,
writing, reviewing, submitting, and disputing claims with
significant financial losses [2,3]. Tseng et al [4] estima-
ted total professional billing costs for a typical primary
care physician at nearly US $100,000 using time-driven
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activity-based costing. In addition to billing costs, attending
and resident family physicians routinely make significant
errors and miss opportunities in the context of billing [5,6].

While reasons for these errors and missed opportunities are
multifactorial, experts have focused on a lack of education as
a primary driver [7,8]. However, the literature demonstrates
that even when robust practice management curricula are
introduced, billing performance does not improve signifi-
cantly [9]. Moreover, experienced attending family physicians
report challenges with complex billing tasks, suggesting that
accumulated experience does not enhance comfort [10].

Given limitations in education and training as quality
improvement interventions, other system-focused strategies
are warranted [11]. One potential solution is the use of
artificial intelligence to predict diagnostic and billing codes
from notes. Kim et al [12] demonstrated 87% accuracy of
their machine learning model to predict Current Procedural
Terminology (CPT) codes for spine surgery from operative
dictations. Another study demonstrated 98% accuracy of a
neural network in assigning CPT codes to pathology reports
[13].

Little is known about whether similar approaches would
work in family medicine, where presenting problems and
assessments are highly diverse. Our primary objective was to
assess the accuracy of machine learning models in predicting
diagnostic and billing codes from the notes recorded in EMRs
for visits to family physicians. Based on similar studies,
we hypothesized that both the diagnostic and billing code
models would generate predictions with at least 90% accuracy
[12-14].

Methods
Design and Setting
We conducted a retrospective model development and
validation study at a large academic Family Health Team
(FHT) in Ontario, Canada, with approximately 50,000 visits
per year. The FHT is in a more urban setting with a patient
census of approximately 21,000 rostered to 26 attending
physicians. Approximately 55-60 first-year resident physi-
cians rotate through annually.

Faculty physicians at this site are primarily compen-
sated through capitation payments but also submit invoi-
ces for individual visits as part of the province’s Family
Health Organization funding model. A single-payer system
predominates, with most invoices submitted to the provin-
cial health insurance plan for reimbursement. A minority of
invoices are submitted to other insurance plans, including
the Workplace Safety and Insurance Board or a third party
(eg, Blue Cross) or directly to patients. In addition to faculty
and residents, locum physicians provide clinical coverage and
submit invoices for individual visits.

Following a patient visit, physicians document their
note in an EMR often in the SOAP (subjective, objective,
assessment, plan) format. To submit an invoice, physicians
must select 1 or more diagnostic codes and 1 or more

billing codes. Invoices are compiled electronically in the
EMR, reviewed by FHT billing personnel, and subsequently
submitted to the provincial health insurance plan for payment
every month.

Oscar is the EMR used in this study, and it contains
a combination of structured and unstructured data organ-
ized into modules. Structured fields include demographics,
billing (invoice number, diagnostic codes, billing codes, and
billing history), preventative interventions, disease registry,
laboratory results, measurements, consultations, allergies,
medications, risk factors, and family history. Unstructured
fields include social history, medical history, and free text
chart notes.
Ethical Considerations
This study received local research ethics board approval
(FMED-6780‐20) from Queen’s University Health Sciences
Research Ethics Board. The approval covered secondary
analyses of these data without additional consent. Physicians
were given an opportunity to censor specific patients or opt
out of participation. Following the opt-out process, data of
the included patients were exported as a flat file and stored
on a secure server meeting local privacy requirements. Data
were subsequently anonymized and deidentified during the
preprocessing stage.
Participants and Sampling
Between July 1, 2015, and June 30, 2020, 245,045 visits
containing a documented note and an invoice submitted to the
provincial health insurance plan for payment were eligible for
inclusion. The included data comprised invoices containing
diagnostic and billing codes and information about the status
of reimbursement, corresponding visit information including
the length of appointment, the date of birth of the patient,
the patient’s gender, and the physician’s free text note for the
visit. We excluded visits that had invoices that were not paid
or were deleted.
Data Preprocessing
We first transformed data into a Pandas Dataframe for
additional preprocessing, including deidentification, linkage
of appointments with relevant features, feature scaling, and
clinical text processing.

Deidentification
Data were initially in an identifiable form but were ano-
nymized using an automated PERL-based deidentification
software package designed for free-text medical records [15].
The software uses a combination of lexical look-up tables,
regular expressions, and simple heuristics to locate traditional
personal health information, including common names and
date variations [15]. This information was then tokenized and
removed.
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Linking of Appointments With Relevant
Features
In Oscar, appointments are associated with both billing and
diagnostic codes and contain the length of time for the visit.
We linked appointments as an entity with the following data:

1. Demographic data for the patient, including age at the
time of the appointment and gender.

2. Free text chart notes from the relevant table: Oscar does
not relate a single note entity to an appointment. Notes
were linked with their corresponding appointment by
an exact match of dates. The signed and verified note
by the attending physician was matched in cases of
multiple notes from 1 session.

3. Historical diagnostic codes listed 6 months preceding
the appointment date: these codes were recorded, and
the frequency of the codes was summed.

Feature Scaling for Structured Data
To facilitate the use of neural networks with a gradient
descent approach, we scaled our data to achieve values
between 0 and 1. We used different feature scaling for
different fields: (1) MinMax scaler from Scikit-learn for age
and appointment duration [16]; (2) binary encoding for male
and female; and (3) MultiLabelBinarizer for one-hot encoding
of historical diagnostic codes [16].

Clinical Text Processing
We applied the following preprocessing steps to overcome
common challenges encountered with clinical text, including

domain-specific language, spelling mistakes, and redundant
phrases [17]:

1. Stop words: we removed stop words (eg, “a,” “the,”
“is”) from the text using the list contained in the NLTK
package in Python [18].

2. Oscar-specific domain language: clinical notes signed
by physicians include a phrase “SIGNED AND
VERIFIED BY,” so regex was applied to remove this
phrase from the text.

3. Deidentification tokens: the deidentification tool
replaces all personally identifiable information with
specific tokens. We removed these tokens from the text.

4. Spelling mistakes: we corrected potential spelling errors
by applying the Symmetric Delete spelling correction
algorithm (SymSpell) with the MEDLINE unigram
dictionary, which includes over 28 million unique
terms.

5. Punctuation: we removed punctuation from the text.
6. Vectorization: we vectorized the text into a sequence

of numbers in the term frequency–inverse document
frequency format [19].

Model Training and Testing
We used Tensorflow and Keras to construct one model each
for the prediction of diagnostic codes and billing codes. Each
model uses the same model architecture with the following
layers. A graphical representation of the model architecture is
presented in Figure 1.
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Figure 1. Graphical representation of model architecture. ReLU: rectified linear unit.

One input layer for the vectorized note and 1 input layer
are assigned for each structured data feature including age,
gender, previous diagnostic codes, and appointment duration.
For text classification, we used a submodel architecture called
fasttext [20]. For structured data classification, we used a
simple, fully connected, single-level Dense layer followed

by a Dropout layer [21]. Weights were randomly set in the
inputs. We then concatenated the text classification output
layer and each structured data output layer and applied
multiple layers of a Dense network followed by a Dropout
layer with a rectified linear unit (ReLU) activation function.
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The final output layer contains a sigmoid activation function
and returns multilabel outputs.
Analysis
We divided data for model development into training, testing,
and validation sets, using 70% (139,161/198,802) of notes for
training and 30% (59,641/198,802) for testing and validation.

In the testing set, the diagnostic code model assigned 1
of 459 unique diagnostic codes while the billing code model
assigned 1 of 157 unique billing codes. These codes are based
on the Ontario Health Insurance Plan Schedule of Benefits
for family medicine [22]. Each model initially returned a
prediction score for each code ranging from 0 to 1. The
prediction threshold to transform scores into labels (ie, the
most likely diagnostic and billing code for the note) was
selected by optimizing for the F1-score. The diagnostic and
billing codes predicted by the deep learning models were
compared to the codes selected by the clinician or updated by
the FHT’s billing personnel that were ultimately billed to the
health insurance plan.

Given the size of both datasets, we were unable to
manually review and validate the diagnostic and billing
codes of notes. However, the family medicine practice in our
study benefits from having dedicated administrative staff who
review invoices monthly and correct errors prior to submis-
sion for reimbursement.

Several metrics of model performance, including accuracy
(correct predictions divided by total predictions), recall or
sensitivity (true positives/[true positives+true negatives]),
precision or positive predictive value (true positives/[true
positives+false positives]), F1-score (2*true positives/[2*true
positives+false positives+false negatives]), and area under
the receiver operating characteristic curve, were calculated
after testing using bootstrapping. We report 95% confidence
intervals. Given the multiclass nature of diagnostic and billing
code prediction and anticipated class imbalances, we report
microaverages as a default unless otherwise specified. We
generated performance metrics using sklearn in Python.

Results
Of the 245,045 visits eligible for inclusion, 198,802 (81%)
were included in model derivation, representing 32,425
unique patients. Three physicians opted out of participa-
tion in the study. Collectively, there were 448 unique note
authors (faculty, physicians, resident physicians, or nurses).
For training, 139,161 notes were used, while 29,820 and
29,821 notes were used for testing and validation, respec-
tively. The mean length of notes was 195 (SD 102) words in
the training, testing, and validation sets. The training, testing,
and validation sets are compared in Table 1.

Table 1. Comparison of the training, testing, and validation datasets in model development.

Training (n=139,161)
Testing
(n=29,820)

Validation
(n=29,821)

Ages, n (%)
  Patients aged 0-17 years 76,539 (55) 16,341 (54.8) 16,431 (55.1)
  Patients aged 18-65 years 40,078 (28.8) 8707 (29.2) 8678 (29.1)
  Patients aged >65 years 22,405 (16.1) 4771 (16) 4771 (16)
Sex, n (%)
  Male patients 85,027 (61.1) 18,160 (60.9) 18,370 (61.6)
  Female patients 54,134 (38.9) 11,660 (39.1) 11,451 (38.4)
Notes, mean (SD)
  Note length (number of words) 194.7 (102.2) 195.0 (102.0) 194.7 (101.4)
  Number of diagnostic codes per appointment 1.3 (0.6) 1.3 (0.6) 1.3 (0.6)
  Number of billing codes per appointment 1.0 (0.1) 1.0 (0.1) 1.0 (0.1)
Codes, n (%)
  799 16,268 (11.7) 3426 (11.5) 3477 (11.7)
  300 7779 (5.6) 1706 (5.7) 1706 (5.7)
  916 6708 (4.8) 1440 (4.8) 1428 (4.8)
  250 6666 (4.8) 1381 (4.6) 1425 (4.8)
  401 5747 (4.1) 1223 (4.1) 1217 (4.1)
  A007A 90,803 (65.2) 19,601 (65.7) 19,470 (65.3)
  A001A 7139 (5.1) 1521 (5.1) 1563 (5.2)
  G590A 6596 (4.7) 1378 (4.6) 1396 (4.7)
  K005A 5887 (4.2) 1279 (4.3) 1235 (4.1)
  G010A 4745 (3.4) 972 (3.3) 1041 (3.5)

The overall accuracy of the diagnostic and billing code
models were 99.8% (95% CI 99.79%‐99.80%) and 99.5%

(95% CI 99.57%‐99.60%), respectively. The recall (sensitiv-
ity) was 49.4% (95% CI 49.07%‐51.77%) for the diagnostic
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code model and 70.3% (95% CI 68.68%‐72.17%) for the
billing code model. The precision (positive predictive value)
was 55.3% (95% CI 54.31%‐55.79%) for the diagnostic code
model and 76.7% (95% CI 72.29%‐74.58%) for the billing
code model. The F1-scores were 52.2% (95% CI 51.56%‐
52.16%) and 73.4% (95% CI 72.29%‐74.58%) for the

diagnostic and billing code models, respectively. Measures
of model performance are reported in Table 2. The area under
the receiver operating characteristic curves for the diagnos-
tic and billing code models are shown in Figures 2 and 3,
respectively. The precision-recall curves are shown in Figures
4 and 5, respectively.

Table 2. Measures of performance for the diagnostic and billing code models.
Diagnostic code model (95% CI) Billing code model (95% CI)

Accuracy, % 99.8 (99.79‐99.80) 99.5 (99.5‐99.60)
Recall, % 49.4 (49.07‐51.77) 70.3 (68.68‐72.17)
Precision, % 55.3 (54.31‐55.79) 76.7 (72.29‐74.58)
F1-score, % 52.2 (51.56‐52.16) 73.4 (72.29‐74.58)
AUCa 0.983 (0.9833‐0.9863) 0.993 (0.9921‐0.9943)

aAUC: area under the receiver operating characteristic curve.

Figure 2. Area under the ROC curve for the diagnostic code model. ROC: receiver operating characteristic.
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Figure 3. Area under the ROC curve for the billing code model. ROC: receiver operating characteristic.

Figure 4. Precision-recall (PR) curve for the diagnostic code model.
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Figure 5. Precision-recall (PR) curve for the billing code model.

In the testing set, code 799 (“symptoms, signs and ill-defined
conditions”) was the most commonly appearing diagnos-
tic code (n=3425) followed by code 300 (“mental disor-
ders – neuroses and personality disorders”; n=1707) and
then code 916 (“well baby care”; n=1439). Code A007
(“intermediate assessment or well baby care”) was the most

billed code (n=19,601). Code A001 (“minor assessment”)
was the second most billed code (n=1520), followed by
code G590A (“immunization – influenza agent”; n=1783).
The top 10 most common diagnostic and billing codes and
corresponding model performances are listed in Table 3.

Table 3. Prevalence and model prediction performance for the top 10 diagnostic and billing codes in the testing set.
Description Support, n Precision, % Recall, % F1-score, %

Diagnostic code
  799 Symptoms, signs and ill-defined

conditions
3425 78.3 63.5 70.1

  300 Mental disorders – neuroses and
personality disorders

1707 59.2 70.2 64.3

  916 Well baby care 1439 83.9 92.2 87.8
  250 Diabetes mellitus including complications 1382 73.7 82.8 78.0
  401 Hypertension, essential 1222 62.4 68.2 65.2
  650 Delivery – normal; pregnancy –

uncomplicated; complications of
pregnancy, childbirth and the puerperium
– normal pregnancy

1206 86.2 92.8 89.4

  847 Neck strain/sprain 856 51.1 57.5 54.1
  311 Depressive or other non-psychotic

disorder (not classified elsewhere)
790 53.6 53.4 53.5

  844 Strains, sprains, and other trauma – knee,
leg

685 51.4 65.7 57.7

  787 Abdominal – pain, masses 639 45.4 47.0 46.2
Billing code
  A007A Intermediate assessment or well baby care 19,601 85.7 89.6 87.6
  A001A Minor assessment 1520 45.1 46.5 45.8
  G590A Immunization – influenza agent 1378 91.1 63.9 75.1
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Description Support, n Precision, % Recall, % F1-score, %

  K005A Primary mental health care – individual
care

1278 49.2 71.5 58.3

  G010A One or more parts of above without
microscopy

972 58.5 63.2 60.8

  K030A Diabetic management assessment 920 66.8 84.4 74.6
  P004A Minor prenatal assessment 810 80.9 93.0 86.5
  E430A Pap (Papanicolaou) smear tray fee when

performed outside of hospital
681 75.2 85.9 80.2

  Q015A Newborn care episodic fee 609 65.4 74.2 69.5
  G365A Pap (Papanicolaou) smear - periodic 583 69.9 90.1 78.7

Discussion
Principal Results
To our knowledge, this study is the first to report the
development and internal validation of machine learning
models for the prediction of diagnostic and billing codes in
family medicine. While the models were highly accurate in
terms of predictions, their recall and precision were much
lower. These differences in performance are characteristic
of multiclassification problems where high rates of overall
accuracy are driven by higher classification of true nega-
tives than identification of true positives. In the context
of diagnostic and billing codes, however, correctly generat-
ing the relevant codes is much more useful than excluding
irrelevant or inappropriate codes.

Unsurprisingly, the billing code model outperformed the
diagnostic code model likely due to fewer codes being
predicted. The lower precision and F1-score of the diagnos-
tic code model suggest that the model struggles to correctly
identify and classify true positive cases. There are a few
possible explanations for this finding. First, the dataset was
imbalanced with most diagnostic labels relating to ill-defined
conditions (code 799), mental disorders (code 300), well baby
care (code 916), and diabetes mellitus (code 250). Perform-
ance for these codes was noticeably better than for the overall
dataset with recall ranging from 63%‐92% and precision
ranging from 59%‐84%. Second, misclassification was also
possible. Patients of the academic FHT where the study was
conducted are known to be medically comorbid and socially
complex. Consequently, encounter notes may yield several
diagnostic labels; however, only 1 code may be selected for
the visit.

Part of the challenge in selecting a diagnostic label for
these encounters is observed among the top performing
diagnostic codes. Although code 799 (“symptoms, signs and
ill-defined conditions”) was the most frequent code in the
dataset, recall was higher for several other codes, includ-
ing codes 650 (“delivery – normal; pregnancy – uncom-
plicated; complications of pregnancy, childbirth and the
puerperium – normal pregnancy”), 916 (“well baby care”)
and 250 (“diabetes mellitus including complications”). These
differences in performance are likely due to challenges in
making sense of nonspecific symptoms in the case of code

799 as opposed to pregnancy (code 650) for a patient seeking
antenatal care or a patient following up for diabetes (code
250).

We anticipated that the billing code model would perform
better at predicting codes that were more frequently selec-
ted. The highest recall was for P004A, the billing code for
minor prenatal assessment. Patients are seen several times
during their pregnancy leading to the accumulation of these
codes in historical invoices. Along with straightforward visit
documentation, we suspect the model was able to predict the
P004A code more fluently.
Limitations
While our study is the first to derive and validate models
to predict diagnostic and billing codes in family medicine,
our results should be interpreted with caution. Our data were
drawn from 1 academic FHT located in a single province
and our models have not yet been externally validated. As a
result, our findings may not be generalizable to other family
medicine settings (eg, community or nonacademic) or other
jurisdictions.

We observed heterogeneity in the performance of the
model in classifying diagnostic and billing codes. Due to
the size of the dataset, limited resources, and administra-
tive constraints, we were unable to perform more detailed
analyses relating to the interpretability and explainability for
the diagnostic and billing code predictions. Such analy-
ses may have uncovered factors influencing the model’s
performance for each code and remain an important target
for future work.

One factor that likely influenced performance is clinical
note quality [23]. Generally, longer notes provide more
information with the corollary being that more information
tends to yield better predictions. However, longer notes
may also contain more copied information, which may
negatively impact natural language processing performance
[23]. Similarly, previous work has shown differences in the
documentation practices of trainee and attending physicians
[24]. The notes of trainee physicians tend to be longer and
more complete while attending physicians are most interested
in the assessment and plan section of notes [24-26]. Critically,
quality of documentation is challenging to assess, especially
in family medicine settings where no validated tools exist.
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Comparison With Prior Work
Our findings are generally consistent with the results of
previous studies. Using the open-source Medical Informa-
tion Mart for Intensive Care III (MIMIC-III) database,
various groups have developed machine learning models
for the prediction of diagnostic (International Classification
of Diseases, Ninth Revision [ICD-9]) codes from discharge
summaries achieving micro F1-scores between 57.5‐58.9
[27]. Performance discrepancies between our diagnostic code
model and the models in these studies may be attributed to
differences between encounter notes and discharge summa-
ries. The latter tend to be more comprehensive in capturing
details regarding a patient’s initial presentation, their course
and management in the hospital, and follow-up plans after
discharge. These sections provide ample substrate on which
to base predictions.

In the context of billing, Ye [13] developed a 3-layer
neural network to predict CPT codes based on the diagno-
sis header and diagnosis recorded in pathology reports and
achieved accuracy of 97.5%. However, their model only
predicted 5 codes using text with a median length of 12
words. In contrast, Burns et al [14] developed a neural
network to predict 232 CPT codes from procedural text with
a mean word count of 10 words per text and achieved 82.1%
accuracy. On average, notes in our study were approximately
10 times larger than those in the study by Burns et al,
with a comparable number of billing codes and much higher
accuracy [14].
Implications
Despite the challenges associated with billing, including
missed revenue opportunities and errors, the performance

of our models suggest that more work is needed before
machine-learned solutions for diagnostic and billing code
prediction can be deployed in practice. Such work includes
external validation with other academic and community
family medicine clinics, prospective validation to compare
performance with physicians, and the testing of generative
pretrained transformer architectures.

Once completed, there are different ways these models
could be embedded within existing billing workflows. Models
could be integrated with existing EMRs providing diagnos-
tic and billing code predictions to end-users in real-time.
Physicians could review predictions before finalizing codes
for submission. Alternatively, physicians could bill visits as
they currently do with the model surfacing its predictions
for encounters for which a code was missed or an error
was made. Additionally, the model could be combined with
rule-based approaches to reduce common errors.
Conclusions
Our study is the first to describe the development and
validation of machine learning models for the prediction
of diagnostic and billing codes in family medicine. Model
performance was heterogeneous and requires further analysis
to uncover the factors associated with the prediction of
specific diagnostic and billing codes. In addition to address-
ing model explainability, future work will incorporate
additional structured data, consider the impacts of note
characteristics and authorship on model performance, and
explore validation in other family medicine settings.
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