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Abstract

Background: Disease-modifying therapies ameliorate disease severity of sickle cell disease (SCD), but hematopoietic cell
transplantation (HCT), and more recently, autologous gene therapy are the only treatments that have curative potential for
SCD. While registry-based studies provide population-level estimates, they do not address the uncertainty regarding individual
outcomes of HCT. Computational machine learning (ML) has the potential to identify generalizable predictive patterns and
quantify uncertainty in estimates, thereby improving clinical decision-making. There is no existing ML model for SCD, and
ML models for HCT for other diseases focus on single outcomes rather than all relevant outcomes.

Objective: This study aims to address the existing knowledge gap by developing and validating an individualized ML
prediction model SPRIGHT (Sickle Cell Predicting Outcomes of Hematopoietic Cell Transplantation), incorporating multiple
relevant pre-HCT features to make predictions of key post-HCT clinical outcomes.

Methods: We applied a supervised random forest ML model to clinical parameters in a deidentified Center for International
Blood and Marrow Transplant Research (CIBMTR) dataset of 1641 patients who underwent HCT between 1991 and 2021
and were followed for a median of 42.5 (IQR 52.5;range 0.3-312.9) months. We applied forward and reverse feature selection
methods to optimize a set of predictive variables. To counter the imbalance bias toward predicting positive outcomes due to
the small number of negative outcomes, we constructed a training dataset, taking each outcome as variable of interest, and
performed 2-times repeated 10-fold cross-validation. SPRIGHT is a web-based individualized prediction tool accessible by
smartphone, tablet, or personal computer. It incorporates predictive variables of age, age group, Karnofsky or Lansky score,
comorbidity index, recipient cytomegalovirus seropositivity, history of acute chest syndrome, need for exchange transfusion,
occurrence and frequency of vaso-occlusive crisis (VOC) before HCT, and either a published or custom chemotherapy or
radiation conditioning, serotherapy, and graft-versus-host disease prophylaxis. SPRIGHT makes individualized predictions of
overall survival (OS), event-free survival, graft failure, acute graft-versus-host disease (AGVHD), chronic graft-versus-host
disease (CGVHD), and occurrence of VOC or stroke post-HCT.

Results: The model's ability to distinguish between positive and negative classes, that is, discrimination, was evaluated using
the area under the curve, accuracy, and balanced accuracy. Discrimination met or exceeded published predictive benchmarks
with area under the curve for OS (0.7925), event-free survival (0.7900), graft failure (0.8024), acute graft-versus-host disease
(0.6793), chronic graft-versus-host disease (0.7320), and VOC post-HCT (0.8779). SPRIGHT revealed good calibration with a
slope of 0.87-0.96, with small negative intercepts (—0.01 to 0.03), for 4 out of the 5 outcomes. However, OS exhibits nonideal
calibration, which may be reflective of the overall high OS in all subgroups.

Conclusions: A web-based ML prediction tool incorporating multiple clinically relevant variables predicts key clinical
outcomes with a high level of discrimination and calibration and has potential in shared decision-making
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Introduction

The complications of sickle cell disease (SCD) can be
prevented or ameliorated by disease-modifying therapies
[1], but hematopoietic cell transplantation (HCT), and more
recently, gene therapy remain the only therapeutic options
with curative intent [2-12]. Population-level studies dem-
onstrate the association of outcomes of HCT with age,
type of donor, type of conditioning, and graft-versus-host
disease (GVHD) prophylaxis [5,6], but do not address
the uncertainty regarding individualized outcomes of HCT.
Such uncertainty contributes to the decisional dilemma and
is a barrier to shared decision-making. An individualized
prediction model that incorporates all predictive variables and
provides individualized estimates of key outcomes of HCT
of interest to patients and their physicians has the poten-
tial to inform shared decision-making [13-15]. Brazauskas
et al [16] have proposed a predictive model based on the
age of the recipient and the type of donor. However, their
model does not incorporate other clinically relevant patient,
HCT, and disease characteristics and does not include all
key outcomes. Computational machine learning (ML) has the
potential to determine generalizable predictive patterns and
quantify uncertainty, but published ML predictive models
for HCT are limited to predicting single clinical outcomes
[17-30]. To address the knowledge gap, we developed and
described the initial validation of SPRIGHT (Sickle Cell
Predicting Outcomes of Hematopoietic Cell Transplantation),
an individualized ML prediction model for outcomes of HCT
for SCD, incorporating multiple relevant features to make
predictions of key clinical outcomes.

Methods

Dataset

We developed SPRIGHT using an anonymized HCT for
the SCD dataset [31] derived from data submitted to the
Center for International Bone Marrow Transplant Research
(CIBMTR) registry on children and adults undergoing HCT
for SCD between 1991 and 2021 in the United States. The
dataset was obtained through the NHLBI (National Heart
Lung and Blood Institute) Biologic Specimen and Data
Repository Information Coordinating Center (BIOLINCC)
[32].

The CIBMTR maintains a research database to serve as a
comprehensive data source that can be used to study cellular
therapies, including HCT. All US transplant centers are
required to submit outcomes data on all allogeneic transplants
when either the stem cell donation or the transplant occurs
within the United States. CIBMTR assigns patients to either a
Transplant Essential Data (TED) track, which collects core
transplant data, or a Comprehensive Report Form (CRF)
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track that captures detailed disease- and treatment-related
data [31]. Assignment to each track is based on submis-
sion of the initial pretransplantation TED 2000032419 form
and uses a weighted randomization algorithm designed to
produce a cohort representative of current clinical practice.
All centers submit a Pre-HCT TED Form (Form 2400) for
each allogeneic (related or unrelated) HCT.

Of 1641 patients undergoing HCT for SCD between
1991 and 2021, on whom data were submitted to CIBMTR,
detailed CRFs were submitted on 763 patients. Of the patients
in the dataset, 84% (1377/1641) had undergone HCT after
2007. We performed the imputation of missing data using
MissForest, an ML data imputation algorithm that operates on
random forest (RF).

Feature Selection

We identified overall survival (OS), event-free survival
(EES), graft failure (GF), acute graft-versus-host disease
(AGVHD), and chronic graft-versus-host disease (CGVHD)
as key outcomes. We used wrapper methods of backward
feature elimination (BFE) and forward sequential selection
(FSS) to select and optimize the input variables [33,34]. The
BFE procedure begins with a complete set of features and
a chosen ML model. The model is trained, and the impor-
tance of each feature is evaluated based on the model’s
coefficients or feature importance scores, and then the least
important feature is discarded, and the model is retrained
on the remaining features. This process is repeated until a
predetermined number of features is reached or until further
removal of features leads to a significant decrease in model
performance. Using FSS, we incrementally built a feature set
starting with an empty model, sequentially adding a feature
that most improves the model performance at each step,
as evaluated through a predefined metric like cross-valida-
tion score. We continued this stepwise addition until new
features no longer significantly enhanced the model or a
specified number of features was reached. We have included
the detailed descriptive statistics and missingness for each
of the selected features and outcomes of interest in Table
S3 in Multimedia Appendix 1 and Table S4 in Multimedia
Appendix 2

Model Design

The model was designed by subsampling the majority class
to create subtraining datasets, followed by pooling and
thresholding to obtain the final prediction [35]. We deter-
mined the discriminative performance of the model, which
refers to how well the predictions can separate between
2 groups of participants, that is, those with or without an
outcome. Discrimination was quantified by the concordance
(c) statistic (index), which for binary outcomes, is equiva-
lent to the area under the curve (AUC). We also assessed
accuracy, that is, the percentage of correct predictions out
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of all predictions correct or incorrect in the model. We also
assessed balanced accuracy, which is an accuracy adjusted
for imbalance and is derived by averaging sensitivity and
specificity, so that each class’s importance is equal. We
compared RF, extreme gradient boosting, logistic regression,
Naive Bayes, AdaBoost, and support vector classification
algorithms (Table 1). The HCT for SCD dataset spans
children and adults undergoing HCT between 1991 and
2021. During this time, there have been many changes
in conditioning regimens and improvements in supportive
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care. Gluckman et al [6] reported that EFS was higher in
patients who underwent HCT in or after 2007 as compared to
those who underwent HCT in or before 2006 (HR [haz-
ard ratio] 0.95, CI 0.90-0.99; P=.01). To determine if the
model performed consistently across eras, we tested model
performance in patients with the year of HCT <2007 versus
HCT >2007. We also tested model performance across age
at HCT <10, <18, and >18 years, respectively, including
outcomes at 1- and 3-year post-HCT (Table 2).

Table 1. Model performance: comparison of area under the curve of different algorithms for each outcome.

Outcome of interest

Model EFS? osP GF° AGVHD! CGVHD®
Random forest entire dataset 0.7900 0.7925 0.8024 0.6793 0.7320
XGBoostf 0.7754 0.7785 0.7948 0.6731 0.7230
Logistic regression 0.7464 0.7835 0.7578 0.6925 0.7019
Naive Bayes 0.6930 0.7111 0.7107 0.6386 0.6384
Adaboost 0.7452 0.7806 0.7561 0.6934 0.7005
Support vector classifier 0.7357 0.7810 0.7561 0.6841 0.7061

4EFS: event-free survival.

b0S: overall survival.

CGF: graft failure.

dAGVHD: acute graft-versus-host disease.

°CGVHD: chronic graft-versus-host disease.

fXGBoost: extreme gradient boosting.

Table 2. Model performance: Comparison of area under the curve across different paradigms and data time periods.

Outcome of interest

Paradigm EFS? os GF° AGVHD!  CGVHD®
All data 0.790 0.793 0.802 0.679 0.732
Post 2007 data 0.787 0.775 0.783 0.702 0.729
1 Year outcome analysis on post 2007 data 0.801 0.788 0.807 0.741 0.705
3 Year outcome analysis on post 2007 0.792 0.771 0.82 0.730 0.721

9EFS: event-free survival.

b0S: overall survival.

°GF: graft failure.

dAGVHD: acute graft-versus-host disease.
®CGVHD: chronic graft-versus-host disease.

The accuracy of risk estimates, relating to the agreement
between the estimated and observed number of events,
is called “calibration [36,37].” Calibration is crucial in
predictive algorithms because it ensures the accuracy of risk
estimates, which directly affects clinical decision-making and
patient expectations. Poor calibration can lead to system-
atic overestimation or underestimation of risk, resulting in
false expectations and potentially harmful decisions [36]. We
performed causal isotonic calibration, a novel nonparametric
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method for calibrating predictors of heterogeneous treatment
effect [37]. We performed a 5-fold internal cross-validation
on the training set to determine the optimal calibration. The
resultant calibration model was then applied to the predic-
tions during evaluation. To adjust for the bias caused due to
undersampling, we recalibrate the probabilities according to
the method by Pozollo et al [38]. We evaluated the calibra-
tion curve, slope, and intercept across different outcomes of
interest in the post-2007 data (Table 3).
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Table 3. Calibration analysis: slope and intercept across different outcomes of interest for post-2007 data.

Calibration property

Outcome of interest Slope Intercept
EFS? 093 -0.02
osP 0.75 -0.07
GF°¢ 0.9 -0.02
AGVHD! 0.96 -0.03
CGVHD® 0.87 -0.01

4EFS: event-free survival.

b0S: overall survival.

CGF: graft failure.

dAGVHD: acute graft-versus-host disease.
®CGVHD: chronic graft-versus-host disease.

To understand the contributions of each feature to the
predictive model, we use the Shapley additive explanations
(SHAP) scores (Multimedia Appendices 3—7). SHAP scores
are based on game theory’s Shapley values, quantifying
each feature’s marginal contribution to individual predictions.
They are calculated by measuring how each feature affects
the model output when included or excluded from all possible
feature combinations.

The Problem of Imbalance

The outcomes data for HCT for SCD is imbalanced, with
very few negative outcomes. This imbalance has the potential
to lead to a prediction bias, where an uncorrected model
default may be skewed toward predicting positive outcomes.
To address the problem of imbalance, we constructed a
training dataset taking each outcome as variable of interest.
We included randomly sampled positive outcomes, typically
1.5-3 times the total instances of the variable of interest.
To address the issue of class imbalance, we used a 2-
step approach involving bootstrapping and consensus-based
decision-making. Initially, we generated 20 bootstrapped
datasets by undersampling the majority class to achieve a
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(2-3):1 ratio with the minority class. These datasets served
as the training sets for our predictive models, ensuring a
balanced representation of classes during model training.
Once the models were trained, each was then tested on a
consistent test dataset to obtain a series of predictions. These
individual predictions were subsequently pooled across all
models. A final prediction model for each test instance was
determined based on a consensus threshold. If the majority of
the models exceeded a predetermined threshold agreed on a
particular class, that class was assigned as the outcome for the
instance. We ran the test dataset and used a RF algorithm on
a 2-times repeated 10-fold cross-validation to demonstrate our
model’s versatility and response to unknown data (Figure 1).
We assigned value 1 for a negative outcome prediction and
—1 for a positive outcome prediction and found the average
sum across the 20 trials for each element.

Throughout the paper, we are guided by the CREMLS
(Consolidated Reporting of Machine Learning Studies)
guidelines [39], to ensure transparency and rigor in reporting.
We have attached a completed author CREMLS checklist.
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Figure 1. Data partitioning, imputation, cross-validation, and item optimization A) Dataset preprocessing, imputation, and feature selection. (B)
Model finalization and test of predictive performance. BFE: backward feature elimination; FSS: forward sequential selection.
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Ethical Considerations

The Institutional Review Board at Yale University deter-
mined on March 3, 2033, that this study did not consti-

tute human participants research per IRB protocol number
2000032419.

Results

Feature Selection and Optimization

Of the 160 variables in the dataset, we selected 31 poten-
tially clinically relevant predictive variables. Through FSS
and BFE processes, we selected a final set of 17 predictive
variables grouped into 3 categories. Patient Data variables
included age at transplant, age group at transplant, sex,
Karnofsky or Lansky score, HCT-comorbidity index, and
recipient CMV serostatus. SCD variables included Number of
ACS syndromes within 2 years pre-HCT, Required exchange
transfusion, Vaso-occlusive crisis needing hospitalization in 2
years pre-HCT, and Hospitalization frequency for vaso-occlu-
sive crises. Transplant Data variables included Donor type,
Graft type, Conditioning intensity, Conditioning regimen,
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Serotherapy (ATG or Alemtuzumab), GVHD prophylaxis,
and Donor-recipient HLA matching.

Evaluation Outcomes and Model
Performance

Discrimination in predictive performance is evaluated using
accuracy, the percentage of correct predictions out of all
predictions, balanced accuracy, the average sensitivity and
specificity, and each class’s importance is equal, and AUC,
the measure of a model’s true positive rate against a false
positive rate, indicates the ability to differentiate classes.
AUC is the metric used in published literature. The RF
model achieved the highest predictive AUC (Table 1)
across multiple clinical outcomes. We measure our model’s
performance using the benchmark established in the literature.
To determine the statistical validity, we implemented the
method proposed by Bouckaert and Frank [40]. We first
performed 2x10 repeated cross-validation and obtained the
performance of each of the models for each fold. We then
applied Nadeau and Bengio’s [41] correction, which accounts
for training set overlap in the variance estimation, to check
whether the mean AUC of the RF is greater than the mean
AUC of the other models across folds. The differences in the
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mean AUC were statistically significant for EFS, OS, GF,
AGVHD, and CGVHD (P<.05). We performed hyperpara-
meter tuning using grid search cross-validation for the RF
model. The ideal hyperparameters are described in Table 4.
AUC, accuracy, and balanced accuracy equaled or exceeded
the benchmarks of the ML predictive tools in the published
literature [16,42]. The RF model has been previously reported
to have the best AUC in predicting survival following HCT
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[24]. Brazauskas et al [16] published benchmark AUC for
EFS of 0.72, and Taheriyan et al [42] reported benchmarks
AUC 0.82 for AGVHD post-HCT. Accuracy and balanced
accuracy were excellent for EFS (0.76, 0.69), OS (0.82, 0.68),
GF (0.8, 0.71), vaso-occlusive pain post-HCT (0.9, 0.78),
stroke post-HCT (0.92, 0.65), acute GVHD (0.71, 0.60),
CGVHD (0.72,0.63).

Table 4. Final tuned hyperparameters of the random forest model for each outcome.

Random forest hyperparameters

Outcome of interest Max depth Min samples split Min samples leaf Criterion CCP_alpha® Max features
EFSP 20 10 16 entropy 0.0 0.7

OS¢ 20 10 8 entropy 0.01 0.125

GFd 20 20 16 entropy 0.0 0.5

AGVHD® 5 20 8 entropy 0.0 0.5

CGVHD! 15 10 8 entropy 0.0 0.5

4CCP_alpha: cost complexity pruning alpha.
YEFS: event-free survival.

€OS: overall survival.

dGF: graft failure.

CAGVHD: acute graft-versus-host disease.
fCGVHD: chronic graft-versus-host disease.

SPRIGHT retained high AUC in subpopulations, including
patients <10, <18, >18 of age in undergoing HCT after 2007,
as well as 1- and 3-year survival analysis (Table 1).

Calibration is the agreement between the estimated and
observed number of events, for major outcomes. A calibration
slope of 1 and an intercept close to zero are associated with
good calibration. SPRIGHT revealed good calibration with
a slope range of 0.87-0.96, with small negative intercepts
(=0.01 to 0.03), for 4 out of the 5 outcomes. However, OS
exhibits nonideal calibration and may be reflective of the
overall high OS in all subgroups (Figure 2).

Feature importance analysis using SHAP values revealed
consistent patterns across all outcomes. Age at transplantation
and donor type emerged as the most influential predictors,
corroborating previous findings by Brazauskas et al [16] and
Eapen et al [5]. Disease severity indicators, most importantly
the frequency of acute chest syndrome episodes in the 2
years preceding HCT, were identified as another critical
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predictor. The frequency of VOC requiring hospitalization
and the need for exchange transfusions also demonstrated
substantial predictive importance. This suggests the utility of
including pretransplant disease characteristics for predicting
outcomes. The comprehensive SHAP analysis, including
feature importance rankings and their relative contributions
to model predictions, is presented in Multimedia Appendices
3-7.

To demonstrate the clinical utility of our model, we
analyzed predictions across 3 distinct hypothetical patient
scenarios. Case-specific patient characteristics and their
corresponding predicted outcomes are detailed in Table
5 Table S3 in Multimedia Appendix 8 respectively.
The model’s predictions aligned with established clinical
observations, showing less favorable outcomes in cases
involving non-HLA identical donors and in older patients
with more severe disease characteristics, which were
consistent with previous studies [5,16].
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Figure 2. Calibration of SPRIGHT for various outcomes. Calibration curve, slope, and intercept for (A). Event-free survival, (B) graft failure, (C)
acute graft-versus-host disease (GVHD), and (D) chronic GVHD. Overall survival (OS) shows a nonideal calibration slope of 0.75 and intercept of

—0.07 (data not shown) and may be reflective of the overall high OS in all subgroups.
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Table 5. Hypothetical patient profiles with varying age, donor type, and disease severity.
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Data Patient 1 Patient 2 Patient 3
Patient data
Age at transplant (year) 6 6 16
Age group (year) <10 <10 11-17
Sex Male Male Male
KPS or Lansky? score <90 <90 <90
HCTP-Comorbidity index (in range) 0-2 0-2 0-2
Recipient CMV® serostatus Negative Negative Negative
Transplant data
Donor HLAY identical sibling HLA mismatch relative HLA identical sibling
Graft type Bone marrow Bone marrow Bone marrow
Donor-recipient HLA matching 8/8 7/8 8/8
Conditioning intensity Myeloablative Nonmyeloablative Myeloablative
Conditioning regimen Flu/Bu® TBI/Cy/Flu/TTf Flu/Bu
Serotherapy ATGE ATG ATG
GVHDP" prophylaxis CNI+MTX! Post-Cy+Sirox MMF CNI+MTX
SCDX data
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Data Patient 1 Patient 2 Patient 3
Number of ACS! syndromes within 2 year pre-HCT 0 0 2
Require exchange transfusion No No No
VOC™ requiring hospitalization within 2 year pre- No No Yes
HCT
Frequency of hospitalizations for VOC <3 per year <3 per year <3 per year

8KPS: Karnofsky performance status.
PHCT: hematopoietic cell transplantation.
CCMV: cytomegalovirus.

9HLA: human leukocyte antigen.
€Flu/Bu: fludarabine + busulfan.

fTBI/Cy/Flu/TT: total body irradiation + cyclophosphamide + fludarabine + thiotepa.

8ATG: anti-thymocyte globulin.
PGVHD: graft-versus-host disease.
'CNI+MTX: calcineurin inhibitor + methotrexate.

jPost—Cy+Siroi MME: post-transplant cyclophosphamide + sirolimus + mycophenolate mofetil.

kSCD: sickle cell disease.
IACS: acute chest syndrome.
MY QOC: vaso-occlusive crisis.

SPRIGHT User Interface

Age is the only numeric feature that is entered manually.
The rest of the inputs are categorical and are entered by
selecting an option from a drop-down menu. Patient-specific,
disease-specific data, and treatment donor, one of the major
published treatment regimens or a customized conditioning
regimen, conditioning intensity, and GVHD prophylaxis
ATG/Alemtuzumab data can be entered. The tabular output
describes predicted OS, EFS, GF, Death, AGVHD, CGVHD,
VOC, and stroke. The predicted outcomes are also pictori-
ally represented in pie charts. One unique feature is that the
user has the option of selecting a published HCT regimen
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or selecting a custom regimen by combining conditioning,
GVHD prophylaxis, and serotherapy (Figure 3; Table S4 in
Multimedia Appendix 9). This feature decreases keystrokes,
improves ease of use of the app, and facilitates a compara-
tive analysis across donor types and treatment regimens for
different donor types. SPRIGHT can be accessed on any
smartphone, tablet, or personal computer using a shortened
URL or a QR code. The individualized outcomes are also
represented as pie charts displaying individualized estimates
(Figure 3). The pie charts can be downloaded and shared with
the patient or added to the electronic medical record as an
image.

JMIR AI 2025 | vol. 4 164519 1 p. 8
(page number not for citation purposes)


https://ai.jmir.org/2025/1/e64519

JMIR Al

Chandrasekar et al

Figure 3. Clinician user interface of sickle cell predicting outcomes of hematopoietic cell transplantation
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Variable Description  Probability
EFS Event Free Survival 89.3
DEAD Death 21
0s Overall Survival 979
GF Graft Failure 143
VOCPSHI  Vaso Occlusive Pain since HCT 10.8
STROKEHI  Stroke Post HCT 116
AGVHD Acute graft versus host disease, grades |-V~ 8.2
CGVHD Chronic graft-vs-host disease 136
Discussion

Principal Findings

We describe the development and internal validation of
SPRIGHT, which, to the best of our knowledge, is the first
ML individualized prediction tool for HCT for SCD. Eapen
et al [5] identified age, donor type, and conditioning regimen
intensity as critical predictive factors of outcomes of HCT for
SCD. Gluckman et al [6] identified age and year of trans-
plant as critical factors. Younger patients were shown to have
higher EFS. Cappelli et al [43] reported better OS and EFS
and a lower incidence of AGVHD and CGVHD in younger
patients. Together, these registry-based studies generated
important population-level predictive factors of HCT for
SCD. They do not, however, provide a means to combine
patient, transplant, and disease characteristics into a personal-
ized predictive model for outcomes of HCT. The SPRIGHT
prediction model incorporates multiple relevant pre-HCT
predictive factors for the individualized production of key
clinically relevant post-HCT outcomes. The RF algorithm
outperforms the Brazauskas model, other ML algorithms, and
logistic regression in predictive performance. The RF-based
SPRIGHT prediction model has high predictive discrimina-
tion and calibration performance. The excellent discrimina-
tive predictive performance is demonstrated by the high value
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of AUC across all outcomes across all eras, age groups,
and follow-up periods of 1 or 3 years. Going beyond the
commonly reported predictive discrimination with AUC, we
also reported accuracy and balanced accuracy and calibra-
tion measures of calibration curve, slope, and intercept. An
important innovation of SPRIGHT is the option for the end
user to select a published regimen that combines chemo-
therapy or radiation conditioning, serotherapy, and GVHD
prophylaxis. This innovation simplifies the decision-making
process for clinicians and allows them to compare potential
outcomes across different regimens and donor types. Thus,
SPRIGHT helps physicians and patients in discerning the
nuances in efficacy and safety of HCT for the individual
and has the potential to inform and guide shared decision-
making. To mitigate overfitting and validate model perform-
ance, we used 10-fold cross-validation, ensuring robustness
by mimicking multiple tests on independent datasets. This
method approximates the effectiveness of external valida-
tion by exposing the model to various training and valida-
tion splits, thus predicting its behavior on unseen data. We
addressed potential feature collinearity using recursive feature
elimination for feature selection and RFs, which inherently
mitigate correlation effects through random feature subsam-
pling at each tree.
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Limitations

There are several limitations to this study. The SPRIGHT
predictive tool is based on the HCT for the SCD dataset
derived from data reported to CIBMTR. The use of the
CIBMTR dataset allows us to access the entire US experi-
ence reported, but it is also subject to limitations of regis-
try studies, including bias, loss to follow-up, and a lack
of generalizability across era, center volume, and exper-
tise. While SPRIGHT uses multiple predictive variables,
it is limited to those variables collected by CIBMTR. In
2019, Bolanos-Meade et al [44] reported an improved EFS
following mismatched relative donor HCT as compared to
their previous report in 2009 following the escalation of the
dose of total body irradiation from 200 to 400 cGy [6.45].
However, CIBMTR form 2400 and consequently the HCT
for the SCD dataset do not distinguish between patients
who received the 2 dose levels of total body irradiation.
Further, since pain crisis post-HCT is included as a dis-
crete variable in the HCT for the SCD dataset, it is not
possible to discern its timing, frequency, or severity. In
the CIBMTR dataset, an analysis of predictor completeness
reveals that 10/13 TED variables chosen have a completion
rate exceeding 98%. However, only approximately 46.5%
(763/1641) of patients are on the CRF track, with comprehen-
sive disease-specific data available, a category under which
4 of our predictor variables fall. While the missing data
could be a source of bias, the missingness of data was
only a function of whether the institution was designated
as a TED-only or CRF and whether the CIBMTR algorithm
assigned an individual patient to the CRF track. Thus, the
missing data may be missing at random. The model we
used for imputation, MissForest, has been shown to outper-
form all other algorithms in all metrics [4647]. However,
these imputation algorithms can produce severely biased
regression coefficients and require a careful critique of the
missing data mechanism and the interrelationships between
the variables in the data [48]. Overall, we acknowledge
the concerns regarding the lack of details of SCD-related
complications and the completeness of reporting of SCD-rela-
ted clinical outcomes in the CIBMTR dataset. We, however,
also recognize that the CIBMTR registry, with federally
mandated data submission, contains the most complete data
available. We support ongoing efforts to refine the data
collection measures and training of data collection staff. One
of the limitations of our model is the rarity of death events
in the dataset, which limits the precision of calibration for
OS. As a result, the model tends to slightly overestimate
OS risk, particularly in subgroups with fewer events. This
calibration limitation should be considered when interpret-
ing OS predictions. Across all outcomes, despite mitigatory
efforts to combat the inherent bias due to class imbalance, the
bias may not be fully eradicated.

The tool incorporates a set of treatment regimens that have
been carefully selected from peer-reviewed studies, ensur-
ing that they are backed by sufficient clinical data. These
regimens provide reliable and evidence-based predictions.
However, custom combinations that are entered by users
may fall outside of the dataset’s training and may not be
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fully supported by the underlying data. In such cases, it is
essential to rely on clinical expertise and user discretion when
interpreting the predictions.

We recognize a limitation in the registry data due to
inherent selection bias, with limited insight into the clinical
reasoning behind regimen choices. While the data detail the
regimens administered, the underlying clinical judgment is
often not recorded. This limitation is particularly notable in
HCT, where the absence of universally established standards
of care presents additional challenges. Thus, the model and its
results should be interpreted within this context.

Comparison With Prior Work

Brazauskas et al [16] developed a risk score using age
and donor type as discrete variables. They reported that
patients aged <12 years with an HLA-matched sibling donor
were at the lowest risk. Patients aged =13 years with an
HLA-matched sibling donor or aged <12 years with an
HLA-matched unrelated donor were at intermediate risk.
All other groups were at high risk. This simple risk score
has good predictive performance but has certain gaps that
limit its utility in the individualized prediction of outcomes.
Gluckman et al [6] used age as a continuous variable and
observed that for every l-year increment in age, there was
a 9% increase in the HR for treatment failure (graft fail-
ure or death) and a 10% increase in the HR for death.
Thus, the Brazauskas model does not include the potential
predictive value of increasing age from 5 to 13 years.
Further, Brazauskas et al [16] do not incorporate other
patient, disease, and conditioning regimen characteristics in
the prediction model because they considered these factors
to be dynamic and subject to change. The Brazauskas model
limits the predicted post-HCT outcomes to death, OS, and
EFS and does not include other outcomes that are important
to physicians and patients in shared decision-making, such
as AGVHD, CGVHD, recurrent pain crisis, or stroke after
HCT [13,49-51]. SPRIGHT predicts these outcomes with
high predictive performance. Other published ML predictive
models for HCT for other diseases are of limited clinical
relevance in decision-making since they limit themselves to
predicting single outcomes, such as death, overall survival,
disease relapse, GVHD, busulfan exposure, kidney injury, or
reactivation of Epstein-Barr virus [17-30].

In developing SPRIGHT, we addressed the gaps in the
knowledge in individualized prediction of outcomes of HCT.
We included 7 clinically relevant outcomes, including rates
of OS, EFS, GF, death, AGVHD, CGVHD, and VOC. Each
of these 7 clinical outcomes initially required a distinct set
of 10-11 pre-HCT predictive features for optimal perform-
ance, leading to incomplete overlap and potential model
fragmentation. For addressing this, we adopted a unified
approach by selecting a comprehensive set of 17 pre-HCT
patient, HCT, and disease characteristics. By applying robust
feature selection techniques to optimize predictive perform-
ance and improve the model’s overall clinical applicabil-
ity, we demonstrated the predictive value of these features.
Further, patient and disease features inform patient selection
and HCT features inform regimen selection. Thus, these
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additional pre-HCT features are important, clinically relevant
considerations in decision-making.

Future Directions

We present here an initial in-lab validation of the predictive
model. We recognize that the use of a US-based dataset may
limit the generalizability of our findings to other regions or
health care systems due to potential differences in population
characteristics and treatment protocols. For further external
validation across different geographic locations to establish
the model’s generalizability and clinical utility, we propose
to use the European Bone Marrow Transplantation Regis-
try (EBMT) dataset, a completely independent dataset, in
collaboration with European investigators. Of note, Gluckman
et al [6] have previously combined CIBMTR and EBMT
registry data on SCD for analysis and included similar
numbers of children, adults, and donor types from the 2
registries and do not report differences in predictive factors
or outcomes in the 2 registries. We have demonstrated that

Chandrasekar et al

the predictive performance remains equivalent whether we
use the entire dataset or the more recent data after 2007,
which represents 84% (1378/1641) of participants in the
dataset. Acknowledging the evolving nature of supportive
care practices in HCT, we propose further temporal validation
with future years of data being added to this dataset. We also
propose to continue to enhance SPRIGHT by incorporating
expert opinion, adapting to patient health literacy, values, and
preferences, and using patient-friendly data visualization to
support shared decision-making [52-54].

Conclusions

In conclusion, the SPRIGHT prediction model integra-
tes individual-specific patient and disease characteristics,
conditioning regimens, GVHD prophylaxis, and donor
characteristics and predicts key clinical outcomes. It exhibits
superior predictive performance across multiple measures
of discrimination and calibration as compared to logistic
regression and other ensemble ML methods.

Data Availability

The National Institutes of Health (NIH) Hematopoietic Cell Transplantation for Sickle Cell Disease dataset used to develop
the clinical decision tool was obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating
Center (BIOLINCC) [31]. For additional questions on the algorithms used for the decision tool, investigators may contact the
corresponding author by email.
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