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Abstract
Background: Insufficient participant enrollment is a major factor responsible for clinical trial failure.
Objective: We formulated a machine learning (ML)–based framework using clinical laboratory parameters to identify
participants eligible for enrollment in a bioequivalence study.
Methods: We acquired records of 11,592 patients with gastric cancer from the electronic medical records of Kyungpook
National University Hospital in Korea. The ML model was developed using 8 clinical laboratory parameters, including
complete blood count and liver and kidney function tests, along with the dates of acquisition. Two datasets were collected:
(1) a training dataset to design an ML-based candidate selection method and (2) a test dataset to evaluate the performance
of the proposed method. The generalization performance of the ML-based method was confirmed using the F1-score and the
area under the curve (AUC). The proposed model was compared with a random selection method to evaluate its efficacy in
recruiting participants.
Results: The weighted ensemble model achieved strong performance with an F1-score above 0.8 and an AUC value exceed-
ing 0.8, demonstrating its ability to accurately identify valid clinical trial candidates while minimizing misclassification. Its
high sensitivity further enhanced the model’s efficiency in prioritizing patients for screening. In a case study, the proposed
ML model reduced the workload by 57%, efficiently identifying 150 valid patients from a pool of 209, compared to the 485
patients required by random selection.
Conclusions: The proposed ML-based framework using clinical laboratory parameters can be used to identify patients eligible
for a clinical trial, enabling faster participant enrollment.
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Introduction
Inadequate participant recruitment may lead to failure in
a clinical trial, ultimately delaying new drug development
and increasing costs [1-7]. Tasks comprising the recruit-
ment process, such as prescreening, consent, screening, and
communication between the participant and the study staff
for the clinical trial, are inevitably labor intensive [2,3,8-10].
For instance, researchers manually review large volumes of
electronic medical records (EMRs) during the prescreening
process to identify potential candidates. Despite advances
in the methodologies for each process in clinical trials, a
systematic approach for enhancing the efficacy of participant
enrollment is lacking.

Artificial intelligence (AI) has various applications in
every section of the industry, and a machine learning (ML)–
based optimal design of clinical trials has entered the sphere
of pharmaceuticals [11]. Several AI techniques for identi-
fying, screening, and enrolling appropriate participants for
clinical trials have been introduced, and some have been
employed commercially [1,4,8].

Corporates such as Mendel, Deep 6 AI, and Antidote
have developed and provided AI solutions for clinical
trial recruitment [12-16]. These commercial services use
massive data such as demographics, laboratory, imaging, and
multiomics data to facilitate faster recruitment and provide
full-service recruitment [14,15]. Jin et al [17] reported that
a result from a user study using large language model
framework, TrialGPT, to support patient matching resulted
in a 42.6% decrease in the screening time [18]. Another
AI approach is clinical trial digital twin technology [18-21].
Digital twin technology creates virtual patients that replicate
individual characteristics, enabling the prediction of clinical
responses [18,19,21]. By utilizing digital twins, the required
sample sizes for clinical trials can be reduced [18,19,21].
These informatics-based tools are expected to improve
recruitment efficiency, directly influencing the success rate
of clinical trials [1,4,5].

Eligibility criteria specify the qualification of participants
in clinical trials, and this component comprises structured
information, including diagnoses and laboratory results, and
unstructured information, such as clinical free text. Previous
AI studies have primarily focused on developing advanced
natural language processing and optical character recognition
techniques for extracting unstructured data [2,3,6,8-10]. As
AI technology is rapidly changing, most research and services
have developed AI tools using both structured and unstruc-
tured data [12,14-16,22]. However, complicated preprocesses
(eg, annotation), discrepancies between EMR systems and
databases of institutions (eg, noninteroperable algorithms),
and high costs limit their application. Moreover, highly
sophisticated eligibility criteria can render the generalization
of algorithms challenging.

In contrast, clinical laboratory test data and typical
structured data can be readily incorporated into an EMR-uti-
lizing algorithm, given that these data are comparatively more
objective than other unstructured data [23,24]. Mohammad et

al [11] have suggested that disclosing the pretest probability
of a specific test result can be clinically meaningful for some
laboratory tests.

In bioequivalence studies of drugs, clinical laboratory tests
such as hematology and blood chemistry tests are included
as eligibility criteria. Participants considered suitable by the
investigator based on laboratory results are allowed to take
part in the bioequivalence study. Therefore, prescreening
through clinical laboratory tests is considered to be effective
in quickly selecting potential candidates.

Accordingly, we formulated an ML-based framework to
identify participants using the clinical laboratory test values
of candidates. In this study, we chose to compare the
ML-based method with a random selection method, which
we considered representative of the common practice in
clinical settings where patient lists are screened sequentially.
Collectively, the objective of this study was to develop
a simple and rapidly applicable ML algorithm that could
assist in participant identification for bioequivalence study
enrollment.

Methods
Study Design
In total, records of 11,592 patients with gastric cancer were
acquired from the EMRs of Kyungpook National Univer-
sity Hospital in Korea from 2011 to 2019. Clinical lab-
oratory parameters (including complete blood count and
liver and kidney function tests) and acquisition dates were
acquired to develop the ML-based model to predict relevant
laboratory data of patients on a future date. The labora-
tory parameters selected were those used in the eligibility
criteria for bioequivalence testing of anticancer drugs in
patients with gastric cancer. We developed the model using
8 basic and straightforward parameters such as complete
blood count (hemoglobin, neutrophil count, platelet count),
liver function tests (total bilirubin, aspartate aminotransferase,
alanine aminotransferase, alkaline phosphatase), and kidney
function tests (creatinine), which are minimal tests capable
of assessing health status. These parameters enable a simple
and efficient preliminary assessment of potential screening
candidates.

“Label 1” was assigned when the candidate’s clinical
laboratory data fell within the valid range, while “label 0”
indicated data outside the valid range (Table 1). A patient
was considered a valid candidate for a clinical trial only if all
predicted laboratory data met the eligibility criteria. To design
an ML-based candidate selection method, the dataset was
divided into training and test sets; data collected from 2011
to 2018 were used for training, while data from 2019 were
reserved for testing (Table 1). This time-based split ensured
a fair evaluation of the model’s performance by avoiding
any temporal overlap, thereby reflecting real-world scenarios
where future data (test data) would not be available during
model training. Additionally, this approach allowed us to
assess the model’s ability to generalize unseen data while
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accounting for potential temporal effects, such as advances in
medical technology or shifts in population health trends. By

adopting this methodology, we aimed to provide a realistic
evaluation of the model’s performance in clinical settings.

Table 1. Distribution of training and test sets based on the validity of parameters.
Laboratory parameters Valid range (label 1) Training data points (2011 to 2018), n Test data points (2019), n

Total Label 0 Label 1 Total Label 0 Label 1
Hemoglobin 13-18 g/dL 92,790 18,259 74,531 11,664 1652 10,012
Neutrophil count 40-74 % 68,622 39,210 29,412 7703 4212 3491
Platelet count 130-400 1000/µL 83,031 63,435 19,596 10,025 7258 2767
Bilirubin 0-1.2 mg/dL 68,313 56,017 12,296 8921 7060 1861
ASTa 0-40 U/L 9235 7405 1830 964 710 254
ALTb 40-41 U/L 9157 7704 1453 961 768 193
ALPc 40-129 U/L 8712 7020 1692 884 737 147
Creatinine 0.7-1.2 mg/dL 69,467 40,053 29,414 8890 3525 5365

aAST: aspartate aminotransferase.
bALT: alanine aminotransferase.
cALP: alkaline phosphatase.

Ethical Considerations
This study was approved by the Kyungpook National
University Hospital Institutional Review Board (KNUH
2020-04-023), and a waiver of consent was authorized. All
research was performed in accordance with the guidelines of
the Declaration of Helsinki, and only deidentified data were
used and analyzed in our retrospective study.
Data Preprocessing
We attempted to resolve the issues of aperiodicity and
imbalance in the training dataset by applying the combina-
tion method and principal component analysis (PCA). First,
to analyze the trend of laboratory data changes, at least
3 sequential data points of laboratory data and acquisition
dates were required. However, given the nonperiodical patient
visits to the hospital, the intervals between each data point
were inconsistent. To compensate for the aperiodicity of
the data, the distribution of data points was increased by
computing a simple combination method as follows:

C(n, k) = P n,  kk! = n!n − k !k!  (1)

where P indicates the permutation function, n is the
number of data points, and k is the number of selec-
ted sequential data points (4 in this study). Therefore, 4
sequential data points with 8 values, comprising 6 initial

values to analyze the trend of data changes and 2 values
as target data to verify the analysis model, were generated
as one data group. For example, if a patient had 10 labora-
tory data points, 210 data groups, including 8 values, were
augmented. Each laboratory data value was normalized by the
minimum and maximum values of data distribution, and the
acquisition date values are represented by |acquisition date
− a screening date| / N, where N is a normalization factor.
Finally, each data group was encoded by considering whether
the last 2 values were within the valid range. Table S1 in
Multimedia Appendix 1 presents the number of training data
points obtained using the combination method.

The augmented training dataset was intuitively visualized
by applying the first principal component, as shown in
Figure 1. Although Equation 1 helps resolve aperiodicity, the
problem of nonuniform distribution in the dataset persisted
in both valid and invalid classes. Thus, to compensate for
the nonuniform distribution of training data groups, we
normalized the imbalanced data into 100,000 even training
data points of each laboratory parameter by dividing the
data distribution into 100 regions and randomly extracting
5000 data points from each region (Figure 1). Moreover,
we attempted to correct the data imbalance by selecting the
same number of data points for each label class. Table S2 in
Multimedia Appendix 1 lists the numbers of training and test
datasets.
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Figure 1. Training dataset selection procedure. PCA: principal component analysis; PC1: first principal component.

ML-Based Selection Method
There are various models in ML, and the performance of each
model can vary greatly depending on how the elements of
the process, such as data preprocessing, feature engineering,
model selection, hyperparameter tuning, and ensembling, are
configured. Therefore, specialized knowledge and experience
are required, making it difficult for nonexperts to use the
same skills as experts. To solve this problem, automated ML
(AutoML) simplifies and automates the mentioned complex
processes, so that nonexperts can easily use ML and expect
the same performance as experts.

AutoGluon-Tabular is an AutoML and an open-source
library developed by Amazon Web Services [25]. Fig-
ure 2 shows the architecture in this study that utilizes
it. The input data is applied with various ML models
(KNeighbors, random forest, Extra Trees, Light Gradient-
Boosting Machine [LightGBM], Extreme Gradient Boost-
ing [XGBoost], CatBoost, and NeuralNet) and a stacked
ensemble technology that combines them, and the output is
the probability value that predicts whether the patient is valid.

Figure 2. The best model architecture designed by AutoGluon-Tabular. LightGBM: Light Gradient-Boosting Machine; XGBoost: Extreme Gradient
Boosting.

Results
The present study consisted of two parts: (1) the generaliza-
tion performance of the ML-based model was confirmed with
various evaluation metrics, including accuracy, sensitivity,
specificity, precision, F1-score, and area under the curve
(AUC); and (2) the proposed model was compared using a

random selection method to evaluate its efficacy in participant
recruitment.

The training results for each model were evaluated as
F1-scores (Table 2). The weighted ensemble model resulted
in the highest average F1-score of 0.91 (SD 0.076). The
weighted ensemble model exhibited the best performance in
terms of precision and recall. Among the same ML models,
detailed models were classified according to parameters such
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as the size and calculation method. As shown in Table 2, we
observed that the F1-score for the weighted ensemble model
was over 0.8 during the training process, indicating strong
performance. An F1-score above 0.8 is generally consid-
ered strong, as it reflects a good balance between precision
and recall, which is crucial in clinical applications where
both false positives and false negatives can have significant
consequences. Precision measures how many of the predicted
valid candidates are truly valid, while recall reflects how
many of the actual valid candidates were correctly identified
by the model. A high F1-score ensures that the model is
not only accurate in predicting valid candidates but also
minimizes the risk of misclassifying candidates who could
otherwise be eligible for clinical trials.

We evaluated the performance of the classification task of
the ML algorithm (Table 3). The receiver operating char-
acteristic curves for each clinical parameter are shown in
Figure S1 in Multimedia Appendix 1. In Table 3, the overall
AUC value exceeded 0.8, demonstrating high performance.
An AUC value exceeding 0.8 is considered high, indicat-
ing that the model has a strong ability to discriminate
between valid and invalid candidates. The AUC measures the
model’s ability to distinguish between eligible and noneligi-
ble patients, and an AUC value closer to 1 signifies excel-
lent performance. This is particularly important in clinical
settings, where the model’s ability to prioritize the right
candidates can improve the efficiency and accuracy of the
screening process. What we found particularly noteworthy in
the results shown in Table 3 was the high sensitivity. A higher
sensitivity means that the probability of correctly identifying
patients who fall within the valid range is increased. We can
prioritize patients with a higher probability of being in the
valid range based on model predictions, and by sequentially
conducting additional tests, quickly screen for an appropriate
and statistically significant sample size for clinical trials,
ultimately contributing to a more efficient and successful
trial.

For the application test, we evaluated the effectiveness
of the proposed model for identifying eligible patients from
the test dataset. First, assuming prescreening dates from
December 1, 2019, to December 31, 2019, laboratory data
were collected from 2019. One test dataset was constructed
by retrieving the last 3 laboratory data points per patient
during the period. Table 4 presents the number of clinical trial
participants used for the application test. In the actual hospital
EMR, no alkaline phosphatase test data were available for

patients with gastric cancer during this period. Cases were
classified according to their valid ratio to the total. We
designated the parameters as case 1 when the number of valid
data was <50%, case 2 when it ranged between 50% and
60%, and case 3 when it was >60%.

Figure 3 shows the number of valid and invalid patients
by probability from 0 to 1. The number of invalid patients
by probability was first drawn as a histogram, and then the
valid patients were drawn on top of it by accumulating them.
As can be seen in the results, there were fewer valid patients
and more invalid patients on the side where the predicted
probability was close to 0, while there were more valid
patients and fewer invalid patients on the side where the
probability was close to 1. Through this, we can see that the
results predicted by ML are reliable, and it is advantageous
to select patients with high probability values for patient
screening.

Finally, valid candidates were identified by extracting
patients in the order of highest predicted probability from the
proposed model, and the results were compared with random
findings. Figure 4 shows the results concerning the identifi-
cation of valid patients for clinical trials. For example, in
the case of hemoglobin, we aimed to identify 150 clini-
cally suitable patients out of 673 total patients, where 203
patients met the eligibility criteria. As shown in Figure 4,
our proposed model identified 150 valid patients by screening
only 209 high-probability candidates. In contrast, a random
selection process required screening 485 patients to find
150 valid patients. This demonstrates an approximate 57%
reduction in workload.

Figure 5 shows a comparison of clinical trial participants
in the order of probability of the proposed model and random
method. Compared with the random selection method, more
valid patients were distributed at the top of the proposed
result, and more invalid patients were distributed at the
bottom. When selecting patients for clinical trials, if the
patients sorted by the proposed method are assigned from the
top, it is possible to determine suitable target patients faster
than with the random method.

Overall, the proposed ML model identified valid partic-
ipants for clinical trials faster than the random selection
method. In particular, as seen in the case of hemoglobin and
creatinine, in case 1 and case 2, that is, when the valid rate
was <60%, the proposed model identified valid participants
considerably faster.

Table 2. The training results of the classification task evaluated by the F1-score.
Model F1-scores

Hemoglobin
Neutrophil
count

Platelet
count Bilirubin ASTa ALTb ALPc Creatinine

Weighted ensemble 0.8816 0.7980 0.8537 0.9011 0.9894 0.9874 0.9943 0.8412
LightGBMd 0.8475 0.7790 0.7309 0.8724 0.9814 0.9823 0.9912 0.7589
LightGBM Large 0.8755 0.6695 0.7482 0.8980 0.9894 0.9874 0.9943 0.7642
LightGBM XT 0.7809 0.6559 0.7184 0.7483 0.9088 0.7931 0.9361 0.7535
RandomForest Gini 0.8680 0.7866 0.8524 0.8740 0.9776 0.9784 0.9891 0.8372
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Model F1-scores

Hemoglobin
Neutrophil
count

Platelet
count Bilirubin ASTa ALTb ALPc Creatinine

RandomForest Entr 0.8708 0.7861 0.8525 0.8735 0.9783 0.9780 0.9888 0.8397
ExtraTrees Gini 0.8684 0.7808 0.8472 0.8719 0.9765 0.9776 0.9853 0.8327
ExtraTrees Entr 0.8686 0.7791 0.8461 0.8695 0.9776 0.9777 0.9849 0.8318
XGBooste 0.7610 0.6776 0.7281 0.7920 0.9254 0.9099 0.9476 0.7628
CatBoost 0.6941 0.6479 0.7214 0.7517 0.8266 0.8548 0.8875 0.7547
NeuralNet MXNet 0.7750 0.6883 0.7715 0.7867 0.9024 0.9161 0.9245 0.7778
NeuralNet FastAI 0.7435 0.6842 0.7493 0.7621 0.8373 0.8167 0.8791 0.6969
KNeighbors Dist 0.7973 0.6704 0.7692 0.6932 0.9030 0.9116 0.7530 0.5864
KNeighbors Unif 0.7906 0.6612 0.7639 0.6921 0.8880 0.8942 0.7512 0.5928

aAST: aspartate aminotransferase.
bALT: alanine aminotransferase.
cALP: alkaline phosphatase.
dLightGBM: Light Gradient-Boosting Machine.
eXGBoost: Extreme Gradient Boosting.

Table 3. Performance test results.
Clinical parameter Accuracy Sensitivity Specificity Precision F1-score AUCa

Hemoglobin 0.664 0.950 0.617 0.290 0.445 0.915
Neutrophil count 0.756 0.909 0.573 0.719 0.803 0.797
Platelet count 0.851 0.906 0.706 0.890 0.898 0.893
Bilirubin 0.847 0.915 0.588 0.894 0.904 0.826
ASTb 0.767 0.832 0.583 0.848 0.840 0.789
ALTc 0.850 0.887 0.705 0.923 0.904 0.864
ALPd 0.889 0.954 0.565 0.917 0.935 0.836
Creatinine 0.792 0.818 0.775 0.705 0.757 0.867

aAUC: area under the curve.
bAST: aspartate aminotransferase.
cALT: alanine aminotransferase.
dALP: alkaline phosphatase.

Table 4. Number of clinical trial participants for application test.
Clinical parameters Test set for application test

Total participants, n Valid participants, n
Invalid participants,
n Valid rate (%) Case number

Hemoglobin 673 203 470 30.16 1
Neutrophil count 525 404 121 76.95 3
Platelet count 670 553 117 82.54 3
Bilirubin 644 566 78 87.89 3
ASTa 100 82 18 82 3
ALTb 100 87 13 87 3
ALPc 0 0 0 —d —
Creatinine 684 356 328 52.05 2

aAST: aspartate aminotransferase.
bALT: alanine aminotransferase.
cALP: alkaline phosphatase.
dNot available.
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Figure 3. Probability histogram stacked with invalid and valid number of patients (x-axis: probability predicted to be valid; y-axis: number of
patients). ALT: alanine aminotransferase; AST: aspartate aminotransferase.
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Figure 4. Accumulative results of valid participant identification for clinical trials (x-axis: number of predicted data; y-axis: number of valid data).
ALT: alanine aminotransferase; AST: aspartate aminotransferase.
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Figure 5. Comparison of clinical trial participants in the order of probability of the proposed model (proposed) and random (random). ALT: alanine
aminotransferase; AST: aspartate aminotransferase.

Discussion
Principal Findings
We developed an ML-based framework to support the
prescreening of clinical research using clinical laboratory
tests to reduce the workload of reviewing structured data of
eligibility criteria. We developed a protypical but practical
framework using clinical laboratory data and achieved high
accuracy and a 57% workload reduction compared to random
selection when identifying 150 valid patients. Based on our
results, we expect that the framework will potentially reduce
investigators’ burden and shorten the recruitment period by
assisting with conventional manual prescreening.

Prescreening involves the process of selecting candidates
for screening, a cumbersome manual task that requires a
heavy burden of research personnel at this stage [2,3,8-10].
The most efficient known method for determining eligibil-
ity criteria–matching candidates is as follows: candidates
are randomly prioritized by research staff, and one staff
member is selected to review and narrow the potential list
for screening. Although several AI-based tools for assisting
the recruitment of participants have been introduced, there
are a few tools to support prescreening [1], and relevant
studies using only structured information, such as laboratory
results, are limited. Recently developed AI-based recruit-
ment services offer a significant advantage in performing
precise and rapid clinical trial participant matching by

incorporating both structured and unstructured data. However,
these services can be costly to implement. In contrast, our
study suggests a practical alternative to more comprehensive
but potentially cost-prohibitive AI-based recruitment services
by showing that efficient prescreening can be conducted
using laboratory data alone. This approach provides a more
accessible and cost-effective method for individual research-
ers to apply in their bioequivalence studies.

Considering the framework of this study, the primary
contribution is the establishment of a ranked list of poten-
tial participants for trial enrollment in an intuitive manner.
A simple list of potential candidates can be valuable in
informing the decision to review additional eligibility criteria,
thereby alleviating the burden of manual prescreening and
preventing underestimation due to manual review. Advan-
tages of the framework include simple and time-saving
characteristics, the requirement for only a few laboratory data
among numerous EMR data, and effortless implementation
through AutoGluon-Tabular. The utilization of programs such
as AutoGluon-Tabular makes it easy for beginners to employ
ML. In addition, ML with techniques tuned for performance
improvement can be utilized by experts with minimal time
and effort, making our approach more accessible.

We speculate that the irregularity of patient visiting
schedules and the imbalance of the clinical laboratory
parameters remain major driving limitations in the present
ML-based framework. To overcome these defects, we
carefully designed the algorithm using the PCA method
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(Table S2 in Multimedia Appendix 1 and Figure 1). However,
further research is required to refine the solutions to combat
aperiodicity and imbalanced data.

The proposed system can be integrated into clinical
trial recruitment workflows as a decision-support tool for
the prescreening process. Currently, prescreening candidates
for clinical trials often involves manually reviewing large
volumes of patient data to determine eligibility. By automat-
ing the selection process, our system can generate a ranked
list of potential participants based on clinical laboratory
parameters, allowing research staff to focus their manual
review efforts on high-priority candidates. This integration
could be achieved by embedding the system into existing
EMR systems. The framework can process patient data
directly from the EMR, analyze the eligibility criteria, and
provide a prioritized candidate list in real time. Additionally,
the ranked list can be updated dynamically as new patient
data becomes available, ensuring that the recruitment process
is both efficient and adaptive to changing conditions.

The clinical data used in this study were collected
from a specific institution (Kyungpook National University
Hospital) and from patients with a specific condition, which
may limit the generalizability of the findings. Therefore,
further diversification of the data and additional validation
are necessary. Moreover, in terms of ethics, AI models
should not replace human judgment in the clinical trial
participant selection process, but rather serve as an assis-
tive tool for initial screening. In addition to the limitations
of generalizability due to the data source, integrating this
system into clinical workflows may encounter challenges
such as compatibility with diverse EMR platforms, requir-
ing standardized data formats and robust interoperability.
Training research staff to effectively use the system and
ensuring transparency in AI decision-making processes will
be critical for fostering trust and adoption. Moreover, ethical
and regulatory compliance regarding patient data usage must
be carefully managed to address privacy concerns and uphold
clinical trial standards

Our future work will focus on improving the generaliza-
tion of the framework. First, we plan to apply this method to
screen patients for bioequivalence studies involving cancers
other than gastric cancer. Bioequivalence studies of anti-
cancer drugs are mostly conducted on patients under follow-
up after curative treatment and are performed to demonstrate
the equivalence of bioavailability. Therefore, compared to
clinical trials aimed at evaluating efficacy, the eligibility
criteria are not quite complicated. Additionally, the presence
of similar criteria makes the framework developed in this
study likely to be easily generalizable.

Second, while researchers typically utilize both structured
and unstructured data in the screening process, this study is
limited to the use of structured data. However, we expect
that screening with an ML-based framework, followed by
incorporating unstructured data, could help reduce the overall
workload. We aim to enhance the framework to integrate
unstructured data for a more comprehensive screening
process. Third, we recognize the importance of comparing
our approach to existing methods, and plan to include such
comparisons in future research. In this study, we targeted
structured information from patients; considering unstruc-
tured and structured information may therefore enhance the
generalization of the framework, covering comprehensive
eligibility criteria. In addition, we plan to conduct a pro-
spective study to compare the proposed framework with
conventional methods. Collectively, we anticipate that the
framework will cover a wide disease spectrum and expand its
applicability to clinical trials from other institutions.
Conclusion
We proposed an AI support framework utilizing struc-
tured information on eligibility criteria to select appropriate
candidates for clinical trial enrollment. This method could
accelerate the efficiency of prescreening processes and can be
applied to various clinical trials.
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