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Abstract
Background: Spirometry can be performed in an office setting or remotely using portable spirometers. Although basic
spirometry is used for diagnosis of obstructive lung disease, clinically relevant information such as restriction, hyperinflation,
and air trapping require additional testing, such as body plethysmography, which is not as readily available. We hypothesize
that spirometry data contains information that can allow estimation of static lung volumes in certain circumstances by
leveraging machine learning techniques.
Objective: The aim of the study was to develop artificial intelligence-based algorithms for estimating lung volumes and
capacities using spirometry measures.
Methods: This study obtained spirometry and lung volume measurements from the Mayo Clinic pulmonary function test
database for patient visits between February 19, 2001, and December 16, 2022. Preprocessing was performed, and various
machine learning algorithms were applied, including a generalized linear model with regularization, random forests, extremely
randomized trees, gradient-boosted trees, and XGBoost for both classification and regression cohorts.
Results: A total of 121,498 pulmonary function tests were used in this study, with 85,017 allotted for exploratory data analysis
and model development (ie, training dataset) and 36,481 tests reserved for model evaluation (ie, testing dataset). The median
age of the cohort was 64.7 years (IQR 18‐119.6), with a balanced distribution between genders, consisting 48.2% (n=58,607)
female and 51.8% (n=62,889) male patients. The classification models showed a robust performance overall, with relatively
low root mean square error and mean absolute error values observed across all predicted lung volumes. Across all lung volume
categories, the models demonstrated strong discriminatory capacity, as indicated by the high area under the receiver operating
characteristic curve values ranging from 0.85 to 0.99 in the training set and 0.81 to 0.98 in the testing set.
Conclusions: Overall, the models demonstrate robust performance across lung volume measurements, underscoring their
potential utility in clinical practice for accurate diagnosis and prognosis of respiratory conditions, particularly in settings where
access to body plethysmography or other lung volume measurement modalities is limited.
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Introduction
Pulmonary function testing (PFT) provides physiological
measurements of the respiratory system across multiple
dimensions, typically classified into (1) spirometry, which
measures air flow, lung volumes, and capacities during a
expiratory forced vital capacity (FVC) maneuver; (2) static
lung volumes; and (3) gas exchange parameters such as the
diffusing capacity for carbon monoxide and oxygen satura-
tions [1]. PFTs are critical for the diagnosis and prognosti-
cation of respiratory disorders, and provide a noninvasive
method for measuring and monitoring the degree of respira-
tory impairment [2]. They are recommended for the ini-
tial evaluation of patients with chronic dyspnea and other
respiratory symptoms, as well as for individuals at risk of
respiratory complications due to transplant or surgery [3,4].

Basic spirometry remains the most widely used compo-
nent of PFT, largely due to its size and portability, allow-
ing it to be performed in clinic office settings or remotely
at home with adequate training. However, spirometry, by
definition is an expiratory FVC maneuver that focuses on
assessing airflow limitations and does not directly measure
static lung volumes, which can be integral to understanding
many respiratory conditions [4]. Accurate determination of
static lung volumes traditionally necessitates more complex
and resource-intensive techniques such as body plethysmog-
raphy or gas dilution methods, with body plethysmography
serving as the current gold standard [3,5,6]. However, these
methods, while precise, may not always be readily accessible,
cost-effective, or suitable for routine clinical practice outside
a specialized pulmonary function laboratory.

Advancements in artificial intelligence (AI) techniques
have introduced new avenues in health care, offering the
potential to derive comprehensive insights from existing data,
including patterns not easily recognizable through human
interpretation or standard statistical modeling. A prior study
by Beverin et al [7] examined the prediction of total lung
capacity from spirometry using three tree-based machine
learning (ML) models, achieving a mean squared error
of 560.1 mL. They further developed models to classify
restrictive ventilatory impairment, achieving a sensitivity and
specificity of 83% and 92%, respectively. However, they
did not explore prediction of the complete lung volume
assessments. Predicting functional residual capacity status,
for example, could facilitate the prevention of atelectasis
during anesthesia [8]. Another study by Evankovich et al
[9] developed a regression model in patients with chronic
obstructive pulmonary disease (COPD) to predict residual
volume and its elevation status, achieving an area under
the receiver operating characteristic curve (ROC) of 0.95
for predicting residual volume above 175%. However, these
models lack applicability beyond the COPD cohort [9].
Given this context, we hypothesized that ML models could
predict static lung volumes using spirometry alone across
a diverse cohort of lung conditions. Such an approach
could reduce the need for identifying those who would
benefit most from formal lung volume assessments. In this
study, we applied ML approaches to develop and validate

an algorithm for estimating lung volumes and capacities
from standard spirometry. We further examined the model
performance among subsets of physiologic derangements
such as obstructive and restrictive ventilatory disorders.

Methods
Cohort Selection
This study was approved by the Institutional Review Board
(20‐009821) with a waiver of consent. The dataset curated for
this study was obtained from the Mayo Clinic PFT data-
base, which houses PFT data from two distinct US regions
(Midwest and Southeast), with records from February 19,
2001, to December 16, 2022. The PFTs performed on the
same day—with paired spirometry and lung volume data,
without the use of methacholine or a bronchodilator—were
identified. Individuals under 18 years of age and patients
who opted out of authorizing their data for research use
were excluded from the analysis. All lung volume measure-
ments were performed using body plethysmography. For
models trained to classify normal versus abnormal lung
volume measures, an additional requirement was applied to
ensure nonmissing demographics within the boundaries of
the Global Lung Initiative GLI2021 lung volume estimation
equations [10]. If an individual underwent multiple PFTs,
only their most recent PFT measurement comprising both
lung volumes and spirometry was used. The following lung
volume measures were selected for prediction: expiratory
reserve volume (ERV), functional residual capacity (FRC),
residual volume (RV), total lung capacity (TLC), the ratio
of RV to TLC as a percentage (RV/TLC), and vital capacity
(VC).
Preprocessing
Following the initial database query, the dataset was
augmented with reference lung function measures for both
spirometry and lung volume measures, including the lower
limit of normal function (LLN), the upper limit of normal
function (ULN), and the expected volume. These values were
generated using a custom package built according to the
Global Lung Initiative pulmonary function testing reference
equation publications [1,11,12]. The LLN and ULN values
were used to assign “normal” (within the LLN/ULN range) or
“abnormal” (below LLN or above ULN) status to reformulate
the lung volume regression problem into a classification task.

Both the regression and classification data sets were
split into independent training and testing subsets using
a randomized 70/30 split before any downstream explora-
tory analysis or model development. Features provided to
the models included forced expiratory volume in the first
second of exhalation (FEV1), forced vital capacity (FVC),
the ratio of FEV1 and FVC (FEV1/FVC), peak expiratory
flow, estimated maximum vital capacity, age, gender, height,
weight, and race (White, African American, Northeast Asian,
Southeast Asian, and Other).
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Model Selection and Evaluation
A randomized grid search was performed using various
ML algorithms, including a generalized linear model
with regularization, distributed random forests, extremely
randomized trees, gradient-boosted trees, and XGBoost.
Models were tuned using appropriate parameter grids via
five-fold cross-validation on the training dataset to pro-
vide estimates of performance summarized using applica-
ble metrics, including root mean squared error (RMSE) for
regression and area under the receiver operating characteris-
tic curve (ROC-AUC) for classification [13]. Final tuning
parameters were selected from the candidate model with
the highest cross-validation performance (lowest RMSE for
regression, highest ROC-AUC for classification), which was
ranked highest among all explored configurations. The model
was then refitted to the full training data set using the chosen
hyperparameters before evaluation on the testing dataset
(Multimedia Appendix 1). For the classification models, the
probability threshold was selected to maximize the Youden
index on the training data set.

The regression model performance was evaluated visually
using prediction scatter plots and summary metrics, including
RMSE, mean absolute error (MAE), mean signed difference,
mean percentage error (MPE), mean absolute percentage error
(MAPE), and the correlation-based coefficient of determina-
tion [14]. The classification model was evaluated with the
area under the receiver-operating-characteristic curve (AUC),
accuracy , sensitivity (SENS), specificity, positive predictive
value, negative predictive value (NPV), precision, recall,
positive likelihood ratio (LRT+), negative likelihood ratio
(LRT-), odds ratio, and F1-score. All modeling was per-
formed using the H2O AutoML cluster (version 3.44.0.3)
[15]. Further details regarding the grid search process,
parameter tuning, and model implementation are available in
the H2O official documentation [15] (Multimedia Appendix
2).

In the cohort summary tables, categorical data were
displayed as counts and percentages, while continuous data

were displayed as medians and ranges. Standardized mean
differences were computed to identify significant differen-
ces in variables between the training and testing datasets,
with insignificant differences defined as a value <0.1. The
regression and classification models were applied to the
specific PFT patterns (normal, obstructed, restricted, and
mixed pattern) defined by the American Thoracic Society
(ATS) [10]. All analyses were performed using R software
(version 4.2.2; R Foundation for Statistical Computing) on a
Google Cloud Platform virtual machine.
Ethical Considerations
This study was approved by the Mayo Clinic Institutional
Review board (22-009471) and was determined to be exempt
(45 CFR 46.104d, Category 4). All data was deidentified
for this study, and no compensation was provided to the
participants

Results
A total of 121,498 PFTs were used in this study, with
85,017 allocated for exploratory data analysis and model
development and 36,481 tests reserved for model evalua-
tion. The median age across the cohort was 64.7 years
(IQR 18‐119.6), with a nearly balanced gender distribution
between genders, with 48.2% (n=58,607) female patients and
51.8% (n=62,889) male patients. The cohort was predom-
inantly White (n= 114,388, 94.1%), followed by African
American patients (n=4,656, 3.8%). Of particular importance,
the distribution of baseline PFT measures—both spirome-
try and lung volumes—showed no differences between the
training and testing datasets. Standardized mean differences,
indicating the degree of difference between the training and
testing sets, were minimal across all variables, suggesting
a well-balanced model development and testing cohorts. A
complete breakdown is provided in Table 1.

Table 1. Cohort summary.

Variables
Training dataset
(n=85,015)

Testing dataset
(n=36,481) Total (N=121,496)

Standardized
difference

Age (years), median (IQR) 64.7 (18.0-119.6) 64.7 (18.0-101.0) 64.7 (18.0-119.6) .005
Gender, n (%) .004
  Female 40,964 (48.2) 17,643 (48.4) 58,607 (48.2)
  Male 44,051 (51.8) 18,838 (51.6) 62,889 (51.8)
Race, n (%) .01
  White 80,048 (94.2) 34,340 (94.1) 114,388 (94.1)
  African American 3223 (3.8) 1433 (3.9) 4656 (3.8)
  Southeast Asian 508 (0.6) 213 (0.6) 721 (0.6)
  Northeast Asian 64 (0.1) 27 (0.1) 91 (0.1)
  Other 1172 (1.4) 468 (1.3) 1640 (1.3)
Height (m), median (IQR) 1.7 (0.5-2.2) 1.7 (0.2-2.0) 1.7 (0.2-2.2) .001
Weight (kg), median (IQR) 82.8 (7.8-253.4) 82.9 (12.9-400.0) 82.8 (7.8, 400.0) .001
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Variables
Training dataset
(n=85,015)

Testing dataset
(n=36,481) Total (N=121,496)

Standardized
difference

ATSa Pattern, n (%) .007
  Normal 33,150 (41.2) 14,346 (41.6) 47,496 (41.3)
  Obstruction 16,810 (20.9) 7173 (20.8) 23,983 (20.9)
  Restriction 19,856 (24.7) 8482 (24.6) 28,338 (24.7)
  Mixed defect 10,611 (13.2) 4512 (13.1) 15,123 (13.2)
PFTb measures, median (IQR)
   FEV1c 2.0 (0.2-6.8) 2.0 (0.2-6.1) 2.0 (0.2-6.8) .005
   FVCd 2.9 (0.3-8.8) 2.9 (0.5-8.3) 2.9 (0.3-8.8) .004
   FEV1/FVCe 71.6 (16.2-100.0) 71.5 (16.2-100.0) 71.6 (16.2-100.0) .002
   PEFf 6.1 (0.7-18.8) 6.2 (0.6-17.5) 6.2 (0.6-18.8) .001
   VC (Spiro)g 2.9 (0.3-8.8) 2.9 (0.5-8.3) 2.9 (0.3-8.8) .004
   RVh 2.3 (0.0-11.8) 2.3 (0.1-10.4) 2.3 (0.0-11.8) .003
   TLCi 5.5 (0.9-13.9) 5.5 (1.3-13.1) 5.5 (0.9-13.9) .004
   RV/TLCj 43.6 (1.2-90.7) 43.6 (3.4-89.7) 43.6 (1.2-90.7) .002
   FRCk 3.2 (0.5-12.3) 3.2 (0.4-10.8) 3.2 (0.4-12.3) .004
   ERVl 0.8 (0.0-4.4) 0.8 (0.0-4.1) 0.8 (0.0-4.4) .003
   VC (Pleth)m 3.0 (0.3-8.8) 3.0 (0.5-8.4) 3.0 (0.3-8.8) .003

aATS: American Thoracic Society.
bPulmonary function test.
cFEV1: Forced expiratory volume in the first second.
dFVC: Forced vital capacity.
eFEV/FVC: Ratio of FEV1 to FVC (as a percentage).
fPEF: Peak expiratory flow.
gVC (Spiro): Vital capacity measured via spirometry.
hRV: Residual volume.
iTLC: Total lung capacity.
jRV/TLC: Ratio of RV to TLC (as a percentage).
kFRC: Functional residual capacity.
lERV: Expiratory reserve volume.
mVC (Pleth): Vital capacity measured via body plethysmography.

Multimedia Appendix 3 stratifies the same cohort accord-
ing to the ATS classification criteria for pulmonary
function patterns (ie, normal, obstructive, restrictive, and
mixed pattern). This stratification highlights differences in
demographics and pulmonary function measures between
individuals with normal, obstructive, restrictive, or mixed
patterns assigned using spirometry. Predictably, spirometry
measures—including FEV1, FVC, and the FEV1/FVC ratio
—significantly differed between groups (P values<.001), as
did all phenotype-related parameters presented in the table.
Lung Volume Regression
The final models chosen for evaluation were selected based
on the lowest RMSE values and varied minimally in type
across the lung volumes of interest. XGBoost models were
identified as the best approach for predicting all lung volumes
except TLC, for which traditional gradient-boosted trees
showed superior performance.

Model metrics were similar between the training and
testing cohorts, suggesting a reasonable trade-off between

overfitting and underfitting during model training (Table 2).
Findings showed a strong performance overall, with relatively
low RMSE and MAE values observed across all predicted
lung volumes. MPE showed a negative skew across all lung
volumes. However, quantile-quantile plot analyses showed
that predicted values closely followed a theoretical normal
distribution, with slight underprediction and overprediction
of high and low values at the extremes, respectively. Paired
with mean signed differences of zero—also known as the
mean bias error—these evaluations suggest no global bias
in the direction of model predictions. Instead, these skewed
MPE values were the result of extreme values at the tails of
the distribution. A complete breakdown of model perform-
ance metrics is presented in Table 2, with complementary
prediction scatter plots in Figure 1. Further subgroup analysis
with different ATS patterns showed relatively similar results
overall and across all categories in Multimedia Appendix 2).
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Table 2. Regression model performance metrics.
Variables Training dataset Testing dataset

Volume
RMSE
(L)a MAEb

MSD
(L)c

MPE
(%)d

MAPE
(%)e RSQf

RMSE
(L) MAE

MSD
(L)

MPE
(%)

MAPE
(%) RSQ

Expiratory
Reserve
Volume (ERV)

0.31 0.24 0 −40.12 60.28 0.64 0.33 0.25 0.00 −39.10 59.95 0.61

Functional
Residual
Capacity (FRC)

0.56 0.42 0 −2.83 12.93 0.78 0.59 0.44 0.00 −2.91 13.51 0.75

Residual
Volume (RV)

0.54 0.40 0 −4.86 17.29 0.73 0.56 0.41 0.00 −4.92 17.80 0.71

RV / TLC 5.07 3.93 0 −1.61 9.55 0.82 5.20 4.03 0.03 −1.58 9.83 0.81
Total Lung
Capacity (TLC)

0.55 0.41 0 −1.07 7.57 0.87 0.58 0.43 0.00 −1.10 7.92 0.85

Vital Capacity
(VC)

0.15 0.11 0 −0.27 3.73 0.98 0.15 0.11 0.00 −0.33 3.91 0.98

aRoot mean squared error.
bMean absolute error.
cMean signed deviation.
dMean percent error.
eMean absolute percent error.
fR-Squared.

Figure 1. Regression scatter plots of predicted versus true lung volume measures.

Lung Volume Classification
Due to limitations in demographic information (ie, age and
race) required for the calculation of LLN and ULN bounda-
ries, a total of 114,377 PFTs from the regression cohort were
successfully recharacterized for the development of classifica-
tion models, with 34,314 PFTs reserved for model evalua-
tion. A comparison of demographics, spirometry, and lung

volumes between the training and testing data sets can be
seen in Multimedia Appendices 5 and 6. These tables mirror
the factors presented in Table 1, except for the lung volume
classes (normal vs abnormal), which are unique to this subset.

Similar to the regression tasks, the final classification
models selected for downstream evaluation varied minimally
in type across lung volumes and were selected based on the
largest ROC-AUC values. Traditional gradient-boosted trees
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ranked best for classifying lung volume status for FRC and
vital capacity. XGBoost models ranked at the top for all other
lung volume classifications. Across all lung volume catego-
ries, the models demonstrated strong discriminatory capacity,
as indicated by high AUC values ranging from 0.85 to 0.99
in the training dataset and 0.81 to 0.98 in the testing dataset.
High accuracy scores, ranging from 0.74 to 0.93, illustrate the
ability of each model to correctly classify instances overall,
with sensitivity scores ranging from 0.73 to 0.93 in the testing
data set, indicating the effectiveness in identifying positive
cases (ie, lung volume measurements outside the expected
normal range). The high NPVs (ranging from 0.84 to 0.94)
highlight each model’s ability to correctly identify normal
lung volumes. The greater variation in positive predictive
value across the lung volume classes (ranging from 0.35‐
0.94) suggests that some models may struggle to identify
positive cases correctly, relative to the larger population of
normal test findings. Classification performance metrics can
be found in Table 3, with complementary ROC curves in
Figure 2.
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Figure 2. Classification receiver operating characteristic (ROC) curves.

When stratified by PFT patterns, unique strengths, and
weaknesses were observed across subgroups (Multimedia
Appendix 7). These variations can be attributed to the
limitations of the training data, feature space, and models,
while others were driven by the rarity of certain lung
volume abnormalities in specific spirometry-defined patterns.
For instance, in classifying ERV status—arguably the most
challenging lung volume explored in this study—the model
showed consistently high NPVs across all spirometry pattern
types, highlighting general confidence in predicting normal
lung volume status. However, it achieved notably better
sensitivity in the “restriction” and “mixed pattern” subsets
(0.91 and 0.75). Comparing these sensitivities and other
metrics to those in the “normal” and “obstruction” subgroups,
the model seems to struggle to detect positive cases in
patients with normal or obstructive spirometry findings.

Discussion
The development of ML models to predict lung volume
status (normal vs abnormal findings) from spirometry in
over 110,000 patients has yielded highly encouraging results,
displaying remarkable discriminatory power with high AUC
values (0.81‐0.95) across measured lung volumes. Estimates
of FRC, TLC, RV, and the RV/TLC ratio status show strong
sensitivity and specificity. These metrics remain largely
consistent across spirometry-defined pattern subgroups, with
a few exceptions that can generally be attributed to the rarity
of abnormal lung volume measures in certain spirometry
patterns. The ability to predict lung volume measures without
having to perform extensive testing represents a promising
innovation for improving the diagnosis and management of
dyspnea and chronic respiratory diseases, particularly in the
primary care setting [16]. The strong predictive performance

of lung volume measurement underscores the potential of
these models as a transformative tool in respiratory medicine,
offering substantial clinical implications and opportunities for
enhancing patient care.

The performance of the regression models showed a
high correlation between the training and testing datasets,
suggesting that the models were able to effectively cap-
ture the relationship between spirometry-derived features
and measured lung volumes and capacities derived from
body plethysmography. The effectiveness of the models was
evident in their ability to closely approximate lung volumes
with minimal deviation from true values on average. The
RMSE and MAE values are low relative to their respective
lung volume ranges. For instance, the median TLC measure
in the cohort was 5.5 L, with the model attaining an MAE
of 0.43 L and an MAPE of 7.92%. The ability to accurately
estimate the RV/TLC ratio further highlights the potential
of these models in capturing the dynamic interplay between
these volumes, which is particularly relevant in differentiating
between common lung conditions such as COPD, asthma,
and restrictive lung diseases [17-20]. The high R-squared
values observed for TLC (0.87 in the training set and 0.85
in the testing set) underscore the model’s capacity to capture
a significant portion of the variance in TLC measurement.
Similarly, the robust estimation of RV (R-squared of 0.73
in the training set and 0.71 in the testing set) and FRC
(R-squared of 0.78 in the training set and 0.75 in the testing
set) further validates model reliability in estimating lung
volumes crucial for the evaluation of respiratory function.
The model demonstrated a high correlation for vital capacity
(R2=0.98). However, this finding is misleading, as spirome-
try already provides an accurate estimate of vital capacity,
making it trivial to map to a similar value obtained via
body plethysmography, assuming minimal measurement error
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and consistent effort on the part of the patient when exe-
cuting breathing maneuvers. A significant change in TLC
has been reported to be 10% over one year, whereas this
model was able to predict TLC within 7.5% and 550 mL
[10]. No significant changes were reported in FRC or RV
over time. Considering the performance metrics as a whole,
the potential of these models to augment clinical practice
is encouraging, with R-squared values exceeding 0.7 for all
volumes except ERV, which seems to be the most challenging
volume to predict accurately. Estimation of TLC, RV, and
their ratio (RV/TLC) is particularly promising, as the accurate
estimation of the RV/TLC ratio facilitates the identification
of air trapping and hyperinflation, which are key factors
in many patients’ symptomatology [3,17-20]. Moreover, the
reasonable estimation of FRC suggests its potential utility
as an indicator for restrictive lung disease diagnosis and
treatment. This is particularly important as body plethysmog-
raphy directly measures only FRC, which is then used to
calculate the other variables.

Focusing on the estimation of ERV, the notably high
MAPE indicates a relatively subpar overall performance.
Given that ERV has the narrowest range of measured values
(ie, median 0.8 L, (IQR 0-44) L and a large RMSE of
0.31 relative to the ERV range, this elevated MAPE may
be partially influenced by the smaller margin for error [21].
ERV measures the volume of air that an individual can exhale
after completing a normal tidal breath. Pairing this with
spirometry, individuals with a higher ERV may experience
more difficulty with exhalation or exhibit an obstructive
pattern on spirometry with a lower FEV1 measure [22,23].
A higher ERV could be a sign of lung hyperinflation, while
other factors like obesity, pregnancy, and significant ascites
can decrease ERV [22,24]. Lung hyperinflation in obstruc-
ted patients, which is defined as elevated FRC, RV, RV/
TLC, or occasionally ERV, is highly variable in patients and
occurs inconsistently over time [23,25]. This inconsistency,
combined with ERV’s narrow range, makes it challenging to
predict.

Highlighting a more robust model, predictions for the
RV/TLC ratio are strong overall, with AUC values ranging
from 0.8 to 0.86 across all patterns and 0.91 in the full
cohort. Except for normal pattern PFTs, the model consis-
tently achieved sensitivities >0.84, but it struggled to identify
positive cases in normal spirometry tests. While spirometry
alone does not directly measure RV or TLC, FEV1 and FVC
can indirectly reflect changes in lung volumes. In obstructive
lung diseases, a reduction in FEV1/FVC ratio combined with
an increase in the RV/TLC ratio often indicates air trapping
[22-25]. In restrictive diseases, such as pulmonary fibrosis,
spirometry may show decreased FVC with a preserved or
decreased RV/TLC ratio, suggesting reduced air trapping
[22-25]. Given the absence of abnormal FEV1 and FVC
values, normal spirometry patterns would not usually suggest
the existence of an abnormal RV/TLC ratio, potentially
explaining the reduced sensitivity to predicting abnormal
RV/TLC in normal spirometry.

A previous study used a CatBoost model to predict the
TLC from spirometry, yielding good results [7]. The study

reports an MSE of 560.1 mL for TLC and a positive
predictive value for reduced TLC of 8% or 67%, depending
on the model parameters. However, this study only focused
on TLC and did not assess other pulmonary physiologic
parameters obtained through lung volume measurements,
such as FRC and RV. These parameters are necessary as
they are crucial for assessing prognosis in various respiratory
diseases [26-30].

Several studies have highlighted the importance of lung
volume assessments for the diagnosis and prognosis of
respiratory diseases [31]. In routine practice, it can aid
in the early detection, diagnosis, and monitoring of res-
piratory conditions such as COPD, restrictive lung dis-
eases, and neuromuscular disorders affecting respiratory
function [10,32,33]. For instance, lung volume measure-
ments (specifically, FRC and TLC) strongly correlate with
mortality risk among patients with idiopathic pulmonary
fibrosis [27,28,30]. This illustrates that the prediction of lung
volumes from traditional spirometry holds substantial promise
in clinical scenarios where lung volume measurements cannot
be directly performed, such as primary care offices, or
health care facilities in rural areas where the equipment for
measuring lung volumes is not readily accessible. Another
scenario is when a patient is not capable of physically
performing lung volume measurements, which could involve
physical conditions that prevent them or any number of other
limitations that could potentially limit them. Additionally, it
may facilitate personalized treatment plans by providing a
more nuanced understanding of a patient’s lung capacities,
as lung volume measurements are typically performed only
after a patient is determined to have an abnormal spirometry,
unless in specialized centers.

Accurate assessment of lung volumes is pivotal in
diagnosing and monitoring various respiratory conditions,
including COPD, interstitial lung diseases, neuromuscular
disorders, and restrictive lung diseases [4,32]. If lung volume
measurements are not performed, vital capacity is often used
as a surrogate [34,35]. However, there is a significant error
in the application of this method, as a reduced vital capacity
can be seen in restrictive lung disease and obstructive lung
disease with increased residual volume [36]. A restrictive
defect on lung volume measurements has rarely been seen
occurring with normal vital capacity, and approximately 58%
of the time with low vital capacity measurements [36].
Another study showed that when forced vital capacity >100%
predicted in males or >85% predicted in females ruled out
a restrictive pattern on lung volumes [37]. The use of direct
lung volume prediction models, such as those developed in
this study, have a significantly better performance than those
used in these prior studies and could reduce the frequency of
clinical scenarios where lung volumes are unknown.

The AI model’s ability to estimate lung volumes from
readily available spirometry data streamlines these diagnos-
tic procedures. A typical spirometry test may take approx-
imately 30‐45 minutes, while lung volume measurements
add another 15‐30 minutes [38,39]. Replacing or comple-
menting traditional, more resource-intensive lung volume
measurement techniques with the AI model’s predictions
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from spirometry data offers cost-effective alternatives. The
physician fee for spirometry ranges from $29.62 to $150.68,
depending upon the medications used, while measuring
lung volumes adds another $59.98 to the cost [40]. This
approach optimizes healthcare resources, reduces patient
burden associated with additional tests, and potentially
increases the efficiency of healthcare delivery.

The accessibility of spirometry in various healthcare
settings, coupled with the estimation of both lung volumes
via the developed models, opens avenues for telemedicine
applications. Remote monitoring and assessment of spirome-
try are already being performed and could be facilitated and
enhanced with automated decision support systems utilizing
models such as those developed in this study [41-43]. Such
strategies could enable the continuous monitoring of patients
with chronic respiratory conditions that affect lung volumes
[41-43]. This aligns with the evolving landscape of telemedi-
cine, emphasizing its potential in respiratory care.

Despite the remarkable performance of the predictive
models, certain limitations warrant consideration. Model
training and testing relied on datasets with potential bia-
ses in demographic variables, including a majority-White
population (91%) of older adults (median age 64.7) years.
These factors potentially limit the generalizability to diverse
populations, although this model was developed with patients
of all ages from two distinct regions of the United States
(Midwest and Southeast). Further validation across broader
demographic groups from various clinical settings is essential

to establish widespread applicability and reliability. More-
over, continuous refinement and validation of the models
using larger datasets encompassing a broader spectrum of
respiratory conditions and disease severities is imperative.
This iterative process would enhance model performance
while preventing model drift, ensuring its efficacy in diverse
clinical scenarios even as standard clinical practices are
updated or changed.

In conclusion, the development of AI models for predict-
ing lung volumes from spirometry represents an advance-
ment in pulmonary function assessment. The remarkable
sensitivity and specificity offered by the classification models
affect a transformative approach to complement traditional
lung volume measurement techniques. While the regression
models may not attain the same level of performance,
the continuous nature of their estimates provides a unique
addition to supplement and contextualize binary classifica-
tions, potentially elucidating new insights into the remote
monitoring of pulmonary function. If integrated into clinical
practice, these models hold the promise of revolutionizing
respiratory care, enabling more comprehensive and accessi-
ble assessments of lung function, and ultimately improving
patient outcomes. Overall, the models demonstrate robust
performance across lung volume measurements, underscor-
ing their potential utility in clinical practice for accurate
diagnosis and prognosis of respiratory conditions in locations
where access to body plethysmography or other lung volume
measurement modalities is challenging..
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AUC: area under the receiver-operating-characteristic curve
COPD: chronic obstructive pulmonary disease
ERV: expiratory reserve volume
FEV1: forced expiratory volume in the first second of exhalation
FEV1/FVC: ratio of FEV1 and FVC
FRC: functional residual volume
FVC: forced vital capacity
LLN: lower limit of normal
LRT+: positive likelihood ratio
LRT-: negative likelihood ratio
MAE: mean absolute error
MAPE: mean absolute percentage error
ML: machine learning
MPE: mean percentage error
NPV: negative predictive value
PFT: pulmonary function test
PPV: positive predictive value
RMSE: root mean squared error
RV: residual volume
RV/TLC: ratio of residual volume to total lung capacity
SPEC: specificity
TLC: total lung capacity
ULN: upper limit of normal
VC: vital capacity
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