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Abstract

Background: Pharmacoepidemiologic studies, which promote rational drug use and improve health outcomes, often require
Anatomical Therapeutic Chemical Classification System (ATC) drug classification within real-world data (RWD) sources.
Existing classification tools are expensive, brittle, or have restrictive terms of service, and lack context that may inform classification
itself.

Objective: This study sought to establish large language models (LLMs) as an assisting technology in the drug classification
task. This included developing artificial intelligence prompts that reason about drugs using RWD and showing that the resulting
accuracy, efficiency, and effectiveness are favorable to alternative methods.

Methods: A prompt was constructed to classify aspirin as either an analgesic or antithrombotic and evaluated within 12,294
anonymized daily dose strings from a polychronic population residing in the United States and Canada. The patients used a smart
medication dispenser called “spencer” and consented to the use of their data for research. The LLM prompt requested that the
best and next-best second-level ATC code be returned, and grading was performed on a 3-point scale. After success in a pilot
sample of 20, an inference sample of 200 was taken without replacement. Finite population inference was carried out on the
proportion of outputs receiving 1 of the top 2 grades. As a benchmark, Google’s Programmable Search Engine was used to query
the drug name plus “ATC code” followed by regex-based extraction of ATC codes. All imperfect results were reviewed.

Results: The population consisted of 12,294 daily dose strings from 86.26% (2908/3371) patients residing in Canada and 13.73%
(463/3371) residing in the United States. A prompt using the chain-of-thought reasoning was able to distinguish between aspirin’s
analgesic versus antithrombotic therapeutic uses and performed well in the pilot sample. In the inferential sample, 87.5% (175/200)
were graded as perfect, 5% (10/200) had a minor issue, and 7.5% (15/200) had a major issue. The estimate of the proportion of
at least mostly correct classification was 92.5% (185/200, 80% CI 90.1%-94.9%). For the search-based algorithm, 82.5% (165/200)
were deemed acceptable. The chain-of-thought reasoning was most helpful with supplements (eg, folic acid) when high doses
indicated antianemic preparations. The problem formulation of daily dose inputs and multiple ATC outputs was sometimes
incompatible with the drug (eg, pregabalin, calcitriol, and methotrexate).

Conclusions: GPT-4o offers cost-effective drug classification from RWD without violating any terms of service. Using a
chain-of-thought prompting technique, GPT-4o can reason about drug dosages that affect the class. The wide accessibility of
LLMs gives every research team the ability to classify drugs at scale, a key prerequisite of pharmacoepidemiologic research.
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Introduction

Background
Pharmacoepidemiology is a “bridge science” between
epidemiology and clinical pharmacology that has, since its
formative years, encompassed wide-ranging fields such as
epidemiology, pharmacology, medicine, biostatistics, and social
sciences [1]. It is positioned to benefit from advances in an even
wider array of disciplines, including bioinformatics, data
science, machine learning, artificial intelligence (AI), natural
language processing, large language models (LLMs), systems
pharmacology, pharmacogenomics, pharmacometabolomics,
and health informatics [2-7]. These advances are integrated into
pharmacoepidemiologic research to discover ineffective or
unsafe drugs, encourage better prescription decisions, and reduce
unnecessary health care costs [8].

LLMs are assistive tools that process broad ranges of factual
knowledge, opening new avenues for synthesizing information
across diverse fields. Their incorporation into
pharmacoepidemiology holds great potential for redefining how
we can understand the safety, efficacy, and use patterns of
prescribed medications in large patient populations and reduce
unnecessary costs.

Pharmacoepidemiology and the Anatomical
Therapeutic Chemical Classification System
Pharmacoepidemiologic research depends on a concept of drug
class, a classification of drugs regarding mechanism of action,
therapeutic intent, or chemical structure, with the Anatomical
Therapeutic Chemical Classification System (ATC)
classification system considered mandatory [8-11]. Applications
of the ATC methodology according to the World Health
Organization are included in Table 1.

Table 1. Applications of the Anatomical Therapeutic Chemical Classification System (ATC) methodology according to the World Health Organization.

How ATC codes are usedApplication

Used as a national standard for the classification of medicinal products for various
countries

National standard for medicinal products

Provides a common language for describing drugsInternational classification

Drug use statistics using ATC codes are used to improve the quality of drug use in a
population

Health policy

To study trends and patterns in drug usePharmacoepidemiology or drug use research

For linking adverse drug reactions to ATC classesPharmacovigilance

To gain an overview of the availability of drugs and reduce the risk of drug shortagesAssisting procurement agencies and payer organizations

The ATC system classifies active substances (ie, drugs),
including combinations of active ingredients, into groups at 5
different levels. This 5-level structure of the ATC system
enables a hierarchical classification, which supplies broad and
specific categorization of drugs, and helps in different levels of
analysis in pharmacoepidemiologic studies. Using the example
of lisinopril and hydrochlorothiazide, the first level ATC code
is “C” for cardiovascular, the organ or system acted upon, the
second-level ATC code is “C09” for agents acting on the
renin–angiotensin system, and the fifth-level ATC code is
“C09BA03”: lisinopril and diuretics [12,13]. While there is the
basic principle of 1 ATC code for each drug [12], here the
fifth-level ATC code is still ambiguous due to the presence of
an unspecified diuretic.

The ATC system is not suitable for guiding decisions about
reimbursement, pricing, and therapeutic substitution [14], and
thus, real-world data (RWD) typically lack ATC codes, rather
using drug codes that support day-to-day operation and logistical
functions within health care and pharmaceutical systems. This
discrepancy between research needs and RWD structures
presents a significant challenge for pharmacoepidemiologists.

In the United States, most pharmacy management systems and
electronic health record systems use National Drug Codes

(NDCs), which were designed for inventory management and
reimbursement and do not directly identify a drug class [9,15].
In Canada, the analogous system is the Drug Identification
Number (DIN) [16]. In the Netherlands, it is the Z-Index [17].
To conduct pharmacoepidemiologic research with these data
sources, accurate ATC classification of drugs becomes an
essential task to the research process. This necessity for accurate
drug classification underscores the potential value of advanced
computational methods, such as machine learning and natural
language processing, in bridging the gap between diverse drug
coding systems and the standardized ATC classification required
for robust pharmacoepidemiologic analysis.

Tools to Map Prescribed Drugs to ATC Classes
The Center’s ATC/defined daily dose Index web utility includes
a query engine for drug name strings [13]. While there is no
published application programming interface (API) for the
search tool, adding /?name=<drug> to the end of the URL will
execute the search and could set up a web scraping task. Fuzzy
matching is limited to the options of “containing query” and
“starting with query,” which is restrictive in practice. For
example, in either case, the drug string “apo-domperidone”
returns no results while “domperidone” returns 3.
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ATC codes appear in Wikipedia infoboxes which suggest the
use of DBpedia [18]. Querying DBpedia, however, requires
exact resource names, for instance, “dbr:Metformin.” The
DBpedia organization does provide a lookup service [19] for
text queries, like the ATC/defined daily dose Index, but it is
also thrown off by variations in the drug’s name.

When operational drug codes (eg, NDC or DIN) are in the
database, a different suite of tools becomes available. In the
United States, the National Library of Medicine offers a service
around RxNorm, a standardized nomenclature for clinical drugs
[20], which links NDC to fourth-level ATC code [21]. Health
Canada’s Drug Product Database [22] allows joining on the
DIN directly. For countries with languages spoken by fewer
people, the task is more difficult. Researchers in the Netherlands,
for instance, had to resort to multiple data sources and extensive
data cleaning to build their Dutch ATC ontology, and it still
requires manual tasks [23].

DrugBank offers a full-text search built on top of Amazon Web
Services Elasticsearch that can map drug names in various forms
to standard terminology [24,25]. A DrugBank search result
includes the full list of appropriate ATC codes, synonyms,
indications, and more. While DrugBank is offered to the public
and academia for free, commercial use requires a paid license
[26]. The reliance on such commercial products can limit the
accessibility of crucial drug classification tools, potentially
creating disparities in research capabilities between well-funded
and resource-limited institutions.

A commercial option that is inexpensive, yet controversial, is
the use of Google’s Programmable Search Engine via the

Custom Search JavaScript Object Notation (JSON) API [27].
The results contain the data essential to displaying search results
on a website, and while they do not include the entire content
of each site, they contain a “snippet” which often includes key
information of interest. While recent US court decisions indicate
a trend toward more leniency in web scraping of publicly
accessible data, such as hiQ Labs versus LinkedIn [28], Google’s
terms of service explicitly prohibit storing information obtained
from the service in “any nontransitory manner” [29]. This, in
principle, makes possible a claim against the user for breach of
contract, but the actual enforceability of these terms is
questionable [30].

ATC Drug Classification Challenges in a Multiregional
Smart Medication Adherence System
Integration into the medication database of the ATC
classification is critical to ensuring robust
pharmacoepidemiologic research across a wide array of health
care systems. This section demonstrates the challenges and
limitations of the implementation of the ATC classification in
the context of a real-world smart medication dispenser.

Spencer Health Solutions (SHS) is a health technology startup
that manufactures “spencer” [31], a smart medication dispenser
that dispenses strip-packaged oral solid tablets (Figure 1). At
the time of drug refill creation, records are inserted into a
database (maintained by SHS), which includes the scheduled
time of each pouch and information on the drugs it contains. A
separate set of drug records contains drug name, drug code
(NDC for US drugs, DIN for Canadian drugs, and Z-Index for
Dutch drugs), and strength description.

Figure 1. Key components of the spencer smart medication dispenser.

The spencer device shows the potential of smart medication
dispensers to generate RWD that are useful in

pharmacoepidemiologic studies, but there have been difficulties
with relying on operational drug codes to obtain second-level
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ATC codes. First, many of the drugs in the SHS drug database
do not contain valid NDC or DIN codes, especially supplements
such as advanced 4-strain probiotic or webber naturals womens
50 plus most (as they are abbreviated in the database). In
addition, when the daily dose informs the therapeutic subgroup,
NDC and DIN codes are insufficient, since patients often take
multiple pills per day. For example, aspirin at low daily doses
(75-100 mg) is a match to second-level ATC code B01
(antithrombotic agents), whereas aspirin, whereas aspirin at
doses >325 mg maps to N02 (analgesics, a second-level ATC
code), that is, analgesics. Finally, since the original drug
classification exercise, patients began using spencer in the
Netherlands, with Z-index values populating the drug code field
in the European database. Although out of the scope of this
paper, the existing classification pipeline based on 2
region-specific methodologies is unhelpful for this new drug
source. These challenges indicate both the complexity of drug
classification in multiregional systems, and that more
sophisticated, context-aware approaches would be required,
accounting for differences in dosage, formulation, and regional
coding systems.

The limitations seen in the real-world application set a clear
case for the need for a more flexible, comprehensive, and
automated approach to drug classification. Advanced
computational methods, such as machine learning, natural
language processing, and AI, can help address these challenges
by providing more accurate, adaptable classification systems
dealing with diversified drug information across different
regions and contexts of health care.

Drug Classification Using GPT-4o
In recent years, LLMs have shown the ability to perform a broad
array of tasks with minimal task-specific training using textual
prompts with “few-shot” and “chain-of-thought” prompting
techniques [7], enabling the automation of tasks that are
currently difficult and manual. GPT-4o [32], OpenAI’s most
advanced model at the time of writing the initial manuscript,
contains a wealth of information about pharmaceutical drugs

as well as the ATC classification system. In interactive
exploration, GPT-4o was good at reasoning about second-level
ATC level codes from drug inputs that had a variety of input
formats. This feature of flexibility in handling various formats
of input is valuable as sources of drug information are
heterogeneous among different health care systems and across
countries. In addition, a GPT-4o prompt can include additional
information in an efficient and optimized manner about the
daily dose that a patient is taking, which is useful when the dose
may influence the final ATC classification.

The application of LLMs to drug classification presents a novel
approach that could potentially address many of the limitations
of traditional methods of drug classification. In this context, a
large pharmacoepidemiologic knowledge base that uses LLMs
(eg, GPT-4o) is robust in its handling of regional variations,
dose-dependent classification, and data harmonization across
different health care systems. Therefore, LLMs may improve
multiregional pharmacoepidemiologic research capabilities
related to drug classification challenges.

Objectives
This paper sought to establish LLMs as assisting technology in
the drug classification task. This includes developing AI prompts
that reason about drugs using RWD and showing that the
resulting accuracy, efficiency, and effectiveness are comparable
to alternative methods. The developed prompts should be
available immediately to classify drugs under a wide range of
research budgets.

Methods

Patient Population
Drug records of patients were included in this study if they met
the criteria described in Textbox 1.

No raw drug record was sent outside the corporate network as
part of this research. As will be described in the next section,
the data submitted to GPT-4o was an irreversibly anonymized
set of daily drug dose strings.

Textbox 1. Inclusion criteria for drug records in the study.

Inclusion criteria

1. The patient resided in the United States and Canada and belonged to a value-based care management organization.

2. The patient signed the care organization’s consent form and agreed to the Spencer Health Solutions’ end-user license agreement, permitting their
deidentified data to be used for research purposes.

3. A refill was created with a pouch scheduled to be dispensed on or after January 1, 2024, as queried on June 1, 2024.

Anonymization Procedure for Daily Drug Doses
This section describes the anonymized extraction of drug dosing
data from the database. A drug table in the application database
included the drug name, the strength as a text string, and the
quantity of pills (including fractions). The drug names were
sometimes combinations of a manufacturer and a generic name
(eg, “apo-rosuvastatin”) and other times a brand name (eg,
“prolopa 50-12.5”). Other times, the drug name would be as
generic as “acetaminophen.” Dosage strengths were
unstandardized strings such as “50 mg” or “50 MG” and could

include multiple active ingredients (“50/200MG” for carbidopa
levodopa), a unit of time (“300.0 MG/24HR”), and other
variations (while lower case “mg” is more appropriate than
upper case “MG” to represent milligrams, the two are used
interchangeably in this paper).

To construct a set of inputs suitable for OpenAI’s chat
completion API, a string was constructed for each unique drug
and daily dose combination, without any other patient
information. The drug name was processed by only a lower-case
transformation. Drug strength was processed by imputing
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missing strengths as “UNK” and otherwise left unchanged
(strengths of “0” were allowed to pass through). The daily dose
processing was described in Textbox 2.

For example, consider a patient prescribed the drug with the
name “pms-quetiapine” (generic quetiapine fumarate from
manufacturer Pharmascience, Inc) twice per day at 8 AM and
7 PM. At each dispense, 1 pill of strength 200 mg and 2 pills

of strength 25 mg are scheduled. Following the steps described
in Textbox 2, “pms-quetiapine|2 pills of 200 mg, 4 pills of 25
mg” would be the resulting string input. An example with
combination ingredients is 1 pill of “carbidopa/levodopa er” of
strength “25/100 MG” scheduled twice daily, or
“carbidopa/levodopa er|2 pills of 25/100 MG.” These are
anonymized records that cannot be linked back to an individual.

Textbox 2. The processing of the daily dose.

• Pill quantity was summed by patient ID, date, drug name, and drug strength.

• A pill quantity string was defined within the previous dataset using the formula:

• “{quantity} pill” if quantity=1,

• “{quantity} pills” otherwise

• The previous dataset was aggregated over drug strength within patient, date, and drug name by creating a comma-delimited list of multiple
strengths for each drug, taking the form

“{pill quantity string} of {drug strength}.”

• The patient identifier was discarded, and a distinct operation was performed on the drug name and drug strength string.

Developing the Classification AI Prompt
The iterative development of the AI classification prompt used
a single motivating example, the case of aspirin, and the goal
of iterative prompt development was to guide the LLM to
classify low doses as ATC code B01 for antithrombotic use and
higher doses as ATC code N02 for pain relief. Aspirin is a
well-known example of a drug where context matters, and any
bias from this specific motivating example will be apparent in
the results. The creation of the prompt was an iterative exercise
that existed in 2 phases: the initial prompt creation and revision
using the pilot sample. In the inference stage, the prompt was
fixed, and no further changes were made.

During the initial prompt creation phase, 2 techniques that were
available to be used were few-shot learning and chain-of-thought
prompting. After achieving a prompt that worked as desired for
aspirin at different daily dosing levels, 20 drug names and drug
strength strings were randomly sampled from all possibilities
observed in the dataset and served as a pilot sample for the
initial prompt. These were evaluated by expert review by

coauthor IRR-C, with expertise in clinical research, digital
medicine, and regulatory affairs.

The pilot sample was sent to GPT-4o via the OpenAI Batch
API [33] with all parameters set at their defaults except for the
following. Temperature is a parameter that can vary between 0
and 2, where low values (eg, 0.2) result in more consistent
outputs, whereas higher values result in “more creative” results
(eg, 1) [34]. This research used a temperature of 0, as
consistency was a priority. The other nondefault parameter was
“max_tokens,” set to 1000, which represents the maximum
number of tokens that can be generated in the chat completion
[35]. A token is on average three-fourth of a word (100 tokens
is about 75 words) [36], and max_tokens was set below the
highest allowed value of 4096 to avoid the longest explanations
but to still allow for long responses if necessary.

If more than 1 classification was deemed incorrect, the prompt
would be revised before proceeding. The development and
validation of this AI-driven classification system were thus
optimized through an iterative refinement process guided by
expert feedback (Figure 2).
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Figure 2. The methodology used to develop and test Anatomical Therapeutic Chemical Classification System (ATC) classification artificial intelligence
(AI) prompt.

Finite Population Inference
This section details the statistical methodology that was used
in estimating the performance of the GPT-4o model and custom
prompt in second-level ATC classification. The methodology
focused on the finite population of daily dose strings in the SHS
database. Finite population formulas, while not materially
different in this case from their infinite population counterparts,
were used to emphasize that the inference is made to the specific
set of SHS drug prescriptions and not to any larger population.
This approach emphasizes the study’s focus on the internal
validity of the findings. The finite population sampling approach
is model free and has well-understood properties in repeated
sampling [37].

The values that were sampled were numerical grades of 1, 2,
and 3, generated in the following manner. The output from
GPT-4o was graded collaboratively among the authors on a
3-point scale, where a grade of 1 is flawless, a grade of 2 is
more correct than incorrect, and 3 is more incorrect than correct.
While the counts of each grade will be provided, formal
inference to the full population of 12,294 daily dose strings
focused on p, the proportion of at least mostly correct grades
(ie, grades of 1 or 2) in this population. This focused the

presentation of performance on a meaningful criterion while
reducing inferential complexity.

The finite population sampling estimate of p is the sample
proportion of outputs that are at least mostly correct in the
chosen sample of n. The finite population CI is:

Where N is the number of daily drug dose strings in the full
population, n is the sample size, and a is the proportion
corresponding to the approximate (1–a) 100% CI for population
parameter p. This formula accounts for the finiteness of the
population, giving a better estimate of the CI compared with
formulas for infinite populations.

The CI formula was also used to arrive at the sample size. A
margin of 0.02 combined with a population proportion of 0.95
and an 80% confidence leads to a sample size of 189, which
was rounded up to n=200. The lower level of confidence than
the typical 95% was chosen here to lead to a somewhat smaller
sample, and there is precedent in making this trade-off in
medical research contexts where “reasonable certainty” is
acceptable [38].
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Each imperfect output (grades of 2 or 3) was examined
qualitatively and presented to the reader in tabular form. The
errors were then coded into categories, and the frequencies were
displayed visually. For mistakes that were difficult to explain,
the OpenAI interactive “playground” was consulted for
reproducibility.

The Benchmark of Google’s Programmable Search
Engine
When researching a single drug, it is generally easy to find ATC
codes by searching for the drug name in Google Search followed
by “ATC code.” Despite the issues with the automation of this
approach at scale, the drugs from the 200 daily dose strings
were sent to Google’s Custom Search JSON API in the form
“<drug name>ATC Code.” For each drug, a Python program
looped through the top 10 results (the default number of items
returned) and searched for strings matching the regular
expression “[A-Z]\d{2}[A-Z]{2}\d{2}.” The first 3 characters
of these strings were added to a list, and the highest frequency
second-level ATC code was the choice made by the search-based
algorithm.

The grading of the search-based algorithm was simplified. While
the LLM-based algorithm had to find the best and next-best
second-level ATC codes, the search-based algorithm only had
to find the single best ATC code. There were only 2 grades
applied: "appropriate" and "not appropriate," where
appropriateness is for a database of oral solids. If there is a tie
between 2 second-level ATC codes and both are appropriate,
then the output is appropriate. If there is a tie and at least 1 code
is inappropriate, then that output is not accepted. This sets up
the fraction of appropriate grades as a benchmark,
acknowledging that the search-based algorithm is not
encouraged to pick ATC codes relating to oral solids.

The results of the search-based algorithm are adjunctive to the
results of the LLM, and the decision was made not to pursue
formal inference. Comparing the success rates was inevitable,
but not the goal of the paper. However, it was informative to
see cases where the search-based algorithm failed and the LLM
succeeded, and vice versa. A table of cross frequencies was thus
compiled, and all cases where the search-based algorithm’s
output was graded “not appropriate” were added to the table of
errors.

Ethical Considerations
This study used operational data collected from a commercial
medication dispensing system used in routine patient care and
was not subject to institutional review board review
requirements, so approval was not obtained. Users of the spencer
device provided consent for data collection through the End

User License Agreement, which covers the collection of
medication adherence data and responses to quality of life and
patient-reported outcome surveys as part of the system’s
standard operation. No additional compensation was provided
to users beyond the normal terms of their device use agreement.
All data analyzed in this study were deidentified before the
analysis. SHS has achieved both ISO 27001 and Data Privacy
Framework certifications, and the system uses industry-standard
encryption and security measures.

This research analyzed data collected during standard clinical
care and device use. All results are presented as anonymous
aggregate statistics. The original data collection occurred as
part of routine clinical practice, with patients providing consent
for research use through the device’s terms of service and care
management agreement. Under the Tri-Council Policy
Statement: Ethical Conduct for Research Involving Humans,
Article 2.4, research ethics board review is not required for
research that relies exclusively on the secondary use of
anonymous information, where the process does not generate
identifiable information [39]. Under US regulation 45 CFR 46
104(d)(4)(ii), institutional review board review is not required
when information is recorded by the investigator in such a
manner that participants cannot be identified, directly or through
identifiers linked to the participants; the investigator does not
contact the participants; and the investigator will not reidentify
participants [40].

Results

The Initial AI Prompt
The initial prompt constructed is provided in Textbox 3 and
made available as a plain text file in Multimedia Appendix 1.
With a goal of classifying aspirin in a dose-dependent manner
with instructions and examples, this prompt requested output
consisting of only ATC codes in a pipe-delimited list.

When tested interactively, the initial prompt repeatedly failed
to classify high doses of aspirin with N02 as the most likely
second-level ATC code. The following inputs all consistently
produced the response “B01|N02”: “aspirin|1 pill of 81mg,”
“aspirin|2 pills of 325mg,” “aspirin|12 pills of 325mg,” and
“aspirin|3 pills of 1000mg.” Sentences were added, such as
“Prioritize the dose” and “Think about what conditions the total
daily dose would be most likely to treat,” but these were not
effective. Results from testing this first AI prompt, with a focus
on aspirin classification performance, emphasized challenges
faced in the development of a robust classification system that
may deal with dose-dependent categorizations. This motivated
the creation of a second prompt with chain-of-thought reasoning
techniques.
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Textbox 3. The initial artificial intelligence (AI) prompt: few-shot learning with concise output.

# Instructions

You are a classifier of drug prescriptions into Anatomical Therapeutic Chemical (ATC) second level subgroups. As a drug and dose combination may
contain multiple ATC second level subgroups, your job is to return to the closest ATC second level category, followed by the next closest. If there is
one and only one category, then return “NA” for the second category. If the drug cannot be classified or is ambiguous, return “UNKNOWN” for both
ATC fields. Return exactly two fields are separated by a pipe (“|”).

# Input and Output format

- Input: <drug name>|<daily drug dose>

- Output: <Best level 2 ATC Code>|<Next Best level 2 ATC Code (if applicable)>

# Additional Information

All drugs are oral solids. The drug name as a string. Handle different capitalizations, common misspellings, and concatenations with manufacturer
names. If the daily drug dose is missing or unintelligible, then do your best with the drug name alone.

# Examples

* Input: metformin|2 pills of 500MG

* Output: A10|NA

* Input: apo-dexamethasone|0.5 pills of 4.0 MG

* Output: H02|S01

* Input: XYZ−1234|1 pill of 1 g

* Output: UNKNOWN|UNKNOWN

* Input: webber naturals womens 50 plus most

* Output: A11|NA

The Revised AI Prompt Using Chain-of-Thought
Reasoning
On the basis the results of the initial AI prompt, the preference
for concise output was dropped in favor of a chain-of-thought
prompting technique. The hypothesis was that prompting the
LLM to reason about drugs before reporting second-level ATC
codes would lead to higher quality classifications as, at the time
of making the classification, the LLM would have access to its
own reasoning before outputting the ATC classes so that the
LLM can use the text generated by the reasoning. Few-shot
learning examples were used here as well, and the entire revised
AI prompt is shown in Textbox 4 and made available as a plain
text file in Multimedia Appendix 2.

As a side note, dexamethasone from the initial prompt examples
was omitted from the revised prompt. It is a secondary
classification of S01, an ophthalmological drug, would not be
dispensed through spencer as it is a liquid eye drop.

The revised prompt was able to classify aspirin in the desired
manner. For instance, in the OpenAI playground, the assistant
responded to the input “aspirin|1 pill of 81mg” with the output
presented in Textbox 5.

Despite the carriage returns, the output was pipe-delimited as
requested, and the reasoning correctly specifies that aspirin that
this dose is used for its antiplatelet effects rather than its pain
relief effects. It did not include N02 as the next most likely drug
classification, and this was deemed acceptable since a patient
is unlikely to be taking 81 mg of aspirin daily for pain. An input
of “aspirin|2 pills of 325mg” led to the output in Textbox 6.

Thus, the revised prompt with chain-of-thought reasoning
returned N02 as the best ATC code for high-dose aspirin and
B01 as the next-best second-level ATC. This was deemed
acceptable as aspirin could conceivably be taken for a dual
purpose, and the revised prompt was promoted to the pilot
sample phase.
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Textbox 4. Revised artificial intelligence prompt with chain-of-thought prompting techniques.

#Instructions

You are a classifier of oral drug prescriptions into Anatomical Therapeutic Chemical (ATC) level 2 therapeutic subgroups. Handle different capitalizations,
common misspellings, and concatenations with manufacturer names. As a drug and dose combination may be linked to several ATC level 2 subgroups,
your job is to return the most likely and next most likely level 2 subgroups. The user’s input should take the from <Oral solid drug name>|<Daily
drug dose>, whereby you should output a 3-column, pipe-delimited message taking the form: <Reasoning>|<Most likely level 2 ATC Code>|<Next
most likely level 2 ATC Code (or “NA”)>. Reason step by step as demonstrated in the examples, taking into consideration the most likely indication
given the daily dose.

#Examples

*Input: metformin|2 pills of 500MG

*Output: 2 pills of 500MG is 1000MG per day. The typical effective dose range for metformin in managing type 2 diabetes is between 500mg to
2000mg per d., and 1000MG is right within this range. The code A10 refers to “Drugs used in diabetes.”|A10|NA

*Input: apo-dexmethasone|0.5 pills of 4.0MG

*Output: 0.5 pills of 4.0 MG is 2.0 MG per day. Dexamethasone at this dose is typically used for mild to moderate inflammatory and autoimmune
conditions. The primary code H02 refers to “Corticosteroids for systemic use, plain.”|H02|NA

*Input: XYZ-1234|1 pill of 1g

*Output: XYZ-1234 is not an oral solid drug I am familiar with.|NA|NA

*Input: webber naturals womens 50 plus most|1 pill of UNK

*Output: The dose is unintelligible, but this is a multivitamin and is classified by ATC Code A11: Vitamins.|A11|NA

Textbox 5. The output for aspirin at 81 mg per day.

1 pill of 81mg is 81mg per day. Aspirin at this low dose is typically used for its antiplatelet effects to prevent cardiovascular events such as heart
attacks and strokes. The primary ATC code for antithrombotic agents is B01.

Reasoning: Aspirin at 81mg is commonly used for cardiovascular protection rather than for pain relief or anti-inflammatory purposes, which would
require higher doses.

|B01|NA

Textbox 6. The output of aspirin at 650mg per day.

2 pills of 325mg is 650mg per day. Aspirin at this dose is typically used for pain relief, anti-inflammatory purposes, and sometimes for cardiovascular
protection. The primary ATC code for aspirin when used for pain and inflammation is N02: “Analgesics.” When used for cardiovascular protection,
the ATC code is B01: “Antithrombotic agents.” Given the dosage, it is more likely to be used for pain relief.

Reasoning: 2 pills of 325mg is 650mg per day. Aspirin at this dose is typically used for pain relief and anti-inflammatory purposes. The primary code
N02 refers to “Analgesics.”

|N02|B01

A Finite Population of Daily Drug Doses
To this point, all AI prompt testing was done via hypothetical
examples. For testing on prescription drugs in a real population,
3371 deidentified patients met the inclusion criteria described
in Textbox 1, of which 2908 (86.26%) resided in Canada and
463 (13.73%) resided in the United States. These patients
collectively had 4.76 million doses scheduled after January 1,
2024, according to the database query date of June 1, 2024.
Within these doses, there were 2077 distinct drug names, 517
(24.89%) of which were prescribed to patients residing in
Canada, and 646 (31.1%) were prescribed to patients residing
in the United States. Only 86 (4.14%) out of 2077 drug names
were prescribed to patients residing in both regions. When
combined with daily pill quantity and strength information,
there were 12,294 daily drug prescription strings (eg,

“pms-quetiapine|1 pill of 100.0 MG, 1 pill of 200.0 MG”), the
finite population of interest.

The Pilot Sample for Testing the AI Prompt
The random sample of 20 daily dosage strings was used to
determine if the revised prompt would continue to be studied.
The 20 daily dose strings appear in Table 2 alongside the output
from the OpenAI Batch API.

This result was deemed adequate for proceeding, despite 2
issues. The string “apo-lamotrigine|0.5 pills of 25.0 MG”
returned a correct best second-level ATC code of N03 but an
incorrect next-best second-level ATC code of N05. For the
string “apo-pregabalin|4 pills of 75.0 MG,” the first of several
pregabalin doses to come, the antiepileptic nature is emphasized
at the expense of the neuropathic pain aspect that the drug has
come to be most associated with. The N02 best second-level
ATC code would have arguably been superior.
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Table 2. The pilot sample for testing the revised artificial intelligence (AI) prompt.

Next-best second-level ATCBest second-level ATCaInput string for user role

N/AbN03carbamazepin tab|2 pills of 200MG

N/AA12calcium-ng-vitd - jam|1 pill of UNK

N/AN04teva-entacapone|7 pills of 200.0 MG

N/AC01apo-midodrine|8 pills of 2.5 MG

R06N05hydroxyzine hydrochloride|4 pills of 10.0 MG

N/AA03apo-domperidone|2 pills of 10.0 MG

N/AN06aventyl|4 pills of 25.0 MG

C03C09sandoz perindopril erbumine/indapamide hd|2 pills of 0.0

N/AA11vitamin d2|1 pill of 1.25 mg

N/AH03synthroid|2 pills of 125.0 MCG

N05N03apo-lamotrigine|0.5 pills of 25.0 MG

N/AJ01jamp-azithromycin|2 pills of 250.0 MG

N/AC07metoprolol-l|3 pills of 50.0 MG

N/AC09sandoz irbesartan|1 pill of 75.0 MG

N06N03apo-pregabalin|4 pills of 75.0 MG

N/AC09apo-ramipril|1 pill of 10.0 MG, 1 pill of 5.0 MG

N07N06odan bupropion sr|2 pills of 100.0 MG

N/AJ05valacyclovir tab|1 pill of 500MG

N/AN05olanzapine|3 pills of 10 MG

aATC: Anatomical Therapeutic Chemical Classification System.
bN/A: not applicable.

The Inference Sample for Estimating Accuracy of AI
Drug Classification
With the 20 records from the pilot sample excluded, a final
sample of 200 daily drug dose strings were taken without
replacement. These strings were sent to the OpenAI Batch API
using GPT-4o with the settings previously described on July
10, 2024, for a total cost of US $0.33. Of the 200 daily dose
string inputs, 175 (87.5%) were graded as perfect, 10 (5%) had
a minor issue, and 15 (7.5%) had a major issue. For inference

to our population of 12,294 daily drug prescription strings, the
estimate of mostly correct outputs was 92.5% (185/200, 80%
CI 90.1%-94.9%).

Despite not being tuned for an oral solid database, the pipeline
based on Google’s Programmable Search Engine did well. Out
of the 200 drug names submitted to the algorithm, 82.5%
(165/200) were deemed acceptable for use in the oral solid
database, while 17.5% (35/200) were not. Table 3 shows the
breakout of grades from both algorithms.

Table 3. GPT-4o with prompt versus a pipeline using Google’s Programmable Search Engine and regular expressions.

MarginSearch-based algorithm scoreLarge language models score

Not acceptableAcceptable

175271481 (perfect)

10282 (minor issue)

15693 (major issue)

20035165Margin

All imperfect gradings from either algorithm are presented in
Multimedia Appendix 3.

When discussing the imperfect grades from the LLM algorithm,
pregabalin was the most frequent culprit, appearing total 7 times
in the inference sample under different brand names and
different dosing configurations. In each case, the LLM’s output

returned N03 as the best second-level ATC code followed by
N06. The search-based algorithm consistently returned N02,
which aligns with pregabalin’s most well-recognized role of
treating neuropathic pain. However, pregabalin, developed as
an antiepileptic, is still used in that capacity and also for
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generalized anxiety disorder. Thus, the LLM's outputs were
considered more correct than incorrect.

The largest category of serious errors is where the LLM either
did not recognize a real drug or reasoned about the wrong drug.
An example of the former was MYA, a Canadian birth control
oral solid [41] that GPT-4o was unable to retrieve information
about. Interactive prompt modifications in the OpenAI
playground could not overcome this. In a second case, the
Canadian morphine drug STATEX [42] was reasoned about as
a statin, presumably due to the lexical similarity. However, this
mistake could not be replicated within the OpenAI playground.

Reasoning about vitamins that might be anemia treatments
caused two grade 3 errors relating to the best second-level ATC.
The decision was made to require B03 (Antianemic preparations,
a second-level ATC code) as the best second-level ATC code
for Vitamin B12 supplements if the dose was high or if the dose
was unknown, and in these 2 cases Vitamin B12 supplements
were classified primarily as A11 (vitamins, a second-level ATC
code). A11 was allowed as a next-best code if it was provided
but was not required.

The vitamin D analog calcitriol proved to be another noteworthy
case in the domain of vitamins. While Vitamin D analogs
explicitly fall under A11, calcitriol is no ordinary vitamin, and
its therapeutic use case falls better under H05 (calcium
homeostasis). The decision was made to require both A11 and
H05 for full credit, but to give mostly correct status if either
one was present. In the 2 times that calcitriol appeared, only
A11 was present in one case and only H05 in the other, so these
were graded as more correct than incorrect.

The reasoning in the chain-of-thought responses was not without
cost. The extra output costs money, and there’s additional
likelihood of a delimiter error because the algorithm needs to
stop reasoning and add the pipe delimiters and ATC codes. In
total, 2 (1%) times out of the 200, delimiter errors were a
primary cause of a mostly incorrect grade.

The LLM respected the oral solid criteria, sometimes to a fault.
In a favorable case, azithromycin was classified as J01 when it
would have been classified as S01 if packaged in liquid form
as eye drops. However, the search-based algorithm also returned
J01, without any oral solid prompting. For the case of a reminder
pouch for Repatha, an injectable, the LLM was a reminder pouch
for Repatha, an injectable, where the LLM only returned missing
data points even though Repatha itself is easily classified as
C10. This was not considered incorrect because the prompt was
specifically asked to return NAs when drugs could not be
classified as oral solids.

During the grading process, difficulties with the problem
formulation of best versus next-best ATC code became apparent
in ways that were not obvious from the motivating example of
aspirin. Terazosin, which can be used as an antihypertensive or
a urological in oral solid form and where doses overlap, was
well served by a C02|G04 output. Calcium, magnesium, zinc,
and Vitamin D3 were well served by an A12|A11 output.
However, in other cases, things were less clear. Pregabalin could
have at least 3 ATC codes. For the case of calcitriol, there are

only 2 relevant ATC codes, but the order of best versus next
best is not obvious.

The drug methotrexate illuminated a limitation of the daily dose
formulation of the prompt. The string input was
“pms-methotrexate|5 pills of 2.5 MG” which suggests a 12.5-mg
daily dose; however, this medication is often dosed once per
week. This output was graded as mostly incorrect as it returned
L01 instead of L04, whereas the former would more typically
be associated with high-dose infusions for cancer treatment.

After focusing the first part of this research on chain-of-thought
reasoning about drug dose, it is natural to question whether this
was worth the additional prompt complexity and number of
prompts. While the reasoning would often mention “at this
dose,” or mention that the dose fell within a common range of
prescriptions, in the end, the results mostly aligned with the
search-based algorithm. The cases where the dose mattered
were antianemic preparations such as high-dose folic acid (a
case that the search-based algorithm missed) and high-dose
folate. It also helped to give prednisone an H02 systemic use
classification as opposed to a higher dosage A07 classification
for inflammatory bowel disease. Notably, low-dose aspirin did
show up in the inferential sample, but the drug name was
“aspirin low dose” and the search-based algorithm was easily
able to reach a majority vote of B01.

Discussion

Principal Findings
LLMs such as GPT-4o perform well in the drug classification
task. In the handpicked example of aspirin, GPT-4o was able
to distinguish between 2 therapeutic uses based on the dose,
which happened only after incorporating a chain-of-thought
prompting technique. This prompt, when applied to a larger
sample, was deemed mostly correct a vast majority of the time
(n=200, 92.5%).

Google’s Programmable Search Engine via the Custom Search
JSON API also does well with extracting ATC codes when
combined with a simple pipeline using regular expressions and
voting. While the proportion of appropriate search-algorithm
responses (n=200, 82.5%) was somewhat lower than the mostly
correct proportion mostly correct proportion from the LLM, the
algorithm was not specifically tuned to the task of coding oral
solids. Different search terms could be tried or more pages could
be returned.

However, the question is not whether Google’s Programmable
Search Engine could be tuned to outperform an LLM, because
with enough time and effort, the answer can likely be found
online. One place where such answers show up is a publicly
accessible version of DrugBank, a proprietary source of drug
information, that is indexed by Google’s Programmable Search
Engine and often shows up in the summary snippets returned
by the Custom Search JSON API. Along with Google’s
restriction on persistent storage of results, automatic scraping
of such data represents multiple terms-of-service violations.
While the enforceability is questionable, why incur the risk
when LLMs perform as well as they do and are meant to extract
information for the user to keep for as long as is necessary?
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In addition, Google Search, while quite reproducible in the short
term due to caching, has faced allegations of declining quality
[43] and its long-term reproducibility is uncertain. Prediction
algorithms built upon Google’s Search infrastructure have failed
when the infrastructure changed, as in the case of Google flu
[44].

Reproducibility for versioned LLMs with temperature
parameters like GPT-4o should, in principle, be perfect, as
setting the temperature parameter to 0 should lead to
deterministic output (at least when there are no probability ties
between tokens). However, this is not true in practice [45].
Differences between the Batch API and OpenAI playground
were sometimes material, and this has been experienced by
other users. One user of the OpenAI Batch API commented that
batching changed the behavior of an OpenAI LLM, making the
results “too similar” [46]. At the time of writing, an experimental
feature from OpenAI is available that includes a seed parameter
and system fingerprint, which may be helpful in achieving
perfect reproducibility.

Despite concerns with reliability in this research, GPT-4o’s
reliability has been praised in medical contexts as higher than
alternatives. In a study on extraction and summarization of
Japanese-language clinical research protocols, GPT-4o was said
to exhibit “high reproducibility,” with 80% and 100% accuracy
for research objectives and research designs [47]. In an
information extraction task on veterinary electronic health
records, GPT-4o demonstrated greater reproducibility than
human pairs, with an average Cohen κ of 0.98 versus 0.8 for
humans [48].

For US $0.33, 200 daily drug prescription strings were classified
into best and next-best second-level ATC codes with the
reasoning provided. That would correspond to spending
approximately US $20 to classify all 12,294 daily drug
prescription strings in the SHS drug database. The affordability
of GPT-4o as a drug categorization tool signifies a
democratization of research instruments in
pharmacoepidemiology, as the inexpensive use of GPT-4o,
especially via the OpenAI Batch API, means that drug
classification can be accommodated on virtually any research
budget. Prompts can be shared within the research community,
and the richness of drug datasets will be enhanced for teams
worldwide. Furthermore, as competition increases, capabilities
are likely to improve while prices fall. An example of this is
GPT-4o itself, which at the time of release was twice as fast
and half the price of GPT-4 Turbo [49]. This cost-effectiveness
democratizes access to advanced drug classification tools and,
as such, promotes equitable research opportunities.

Limitations and Future Work
This study involved a specific population of daily drug
prescriptions from polychronic patients in a value-based care
organization residing in the United States and Canada.
Geographically, the patients were biased toward Canada, with
some US representation. Future work is needed to replicate drug
classification in other settings. In addition, one of the
motivations for One motivation for adopting LLMs was their
ability to accommodate drugs in non-English speaking countries
that use operational codes other than DIN and NDC. While

GPT-4o boasts of “significant improvement on text in
non-English languages” [49], such classification was out of
scope for this research. Future studies are needed to test the
global generalizability of this approach.

The manual grading used in this paper has the potential for bias
and errors. The grading process was tedious and represented
220 separate research investigations. It is likely that
contradictions remain; however, all imperfect grades were
documented in the Results section. In the future, more formal
methods, such as the Delphi method [50], could add additional
rigor.

The problem formulation of best and next-best second-level
ATC codes, based on daily dosage strings, was occasionally
not ideal for the drugs and doses encountered. Examples include
cases where more than 2 ATC codes were necessary, times
where ordering was not clear, questionable relevance of a
next-best code, and weekly dosing schedules. Other formulations
could be considered, such as those that return true or false for
a set of codes, potentially not based on dose at all. Ignoring the
dose would greatly simplify the problem formulation. In addition
to alleviating the daily versus weekly frequency complexity,
the multiplicity of inputs is cut down to a fraction of what was
encountered in this research, as only the drug name is the input.

Complete and total reproducibility of GPT-4o outputs was not
possible at the time of writing. New features such as system
fingerprints and seeds may address this and are an important
topic for future research. One prompting technique to deal with
a multiplicity of possible outputs is to sample them from the
LLM with temperature set above 0 and use a voting process.
This is the essence of the “self-consistency” prompting approach
[46]. In addition, with powerful open-source LLMs becoming
available, such as the Llama family of models [51], there is the
question of whether full reproducibility is achievable when the
researcher is running the model locally. If so, is there a reduction
in the quality of the drug classification when using an
open-source model that may pose a trade-off to reproducibility?

Outside of reproducibility, more research on the benefits of
open-source LLMs for drug classification and related tasks is
needed. For instance, open-source models run locally have the
privacy advantage of not needing to have data leave any internal
network but could open up other privacy risks. The economics
of using an open-source LLM vs proprietary LLMs via APIs is
also unclear. This research was limited to one LLM, the
proprietary GPT-4o (specifically the version
“gpt-4o-2024-05-13”).

New LLMs are arriving regularly, with new capabilities. Future
research will be needed to evaluate the drug classification
capabilities of the next generation of the next generation of
models. Continuing assessment of the emergence of new AI
models will enable the use of the most-effective and updated
tools for pharmacoepidemiologic research.

Conclusions
This research demonstrated that GPT-4o is a powerful and
accessible tool for enhancing pharmacoepidemiologic research
by automating drug classification. GPT-4o and LLMs in general
represent an inexpensive and straightforward method for
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augmenting real-world drug databases with Anatomical
Therapeutic Chemical drug classes. This gives nearly all
research teams access to a powerful tool to satisfy a key
prerequisite of pharmacoepidemiological analysis using data
from electronic health records, pharmacy management systems,
and claims records. It is not just a matter of increased efficiency

but also democratizing access to high-quality
pharmacoepidemiologic drug classification instruments. Better,
more accessible drug information is a precursor to higher quality
and greater quantity of pharmacoepidemiologic datasets and a
path toward better drug prescription policy and clinical outcomes
for patients across the world.

Acknowledgments
This work was funded by Spencer Health Solutions, Inc, a private corporation headquartered in Morrisville, North Carolina.

Data Availability
A subset of the data generated during this study—specifically, examples of large language model–generated errors and corresponding
processed drug and dose strings—is included in the supplementary information files. The complete set of processed drug strings
and evaluation outcomes is available from the corresponding author on reasonable request. The raw data containing numerical
identifiers are not publicly available due to privacy and confidentiality restrictions.

Authors' Contributions
All authors participated in the conceptualization, review, and revision of the final manuscript draft for submission. IRR-C provided
expert guidance on the performance grading. BO and IRR-C proposed the methodology, assessed the performance of the algorithms,
and wrote the original draft. BO performed the statistical analyses. EF and TR supervised the research through all stages and
performed validation activities.

Conflicts of Interest
The authors are all current or former employees or contractors of Spencer Health Solutions, Inc, the developer of the spencer
platform.

Multimedia Appendix 1
The initial artificial intelligence (AI) prompt: few-shot learning with concise output.
[TXT File , 1 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Revised artificial intelligence (AI) prompt with chain-of-thought prompting techniques.
[TXT File , 2 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Imperfect classifications made by either the large language model (LLM)–based algorithm or Google’s search-based algorithm.
[DOCX File , 44 KB-Multimedia Appendix 3]

References

1. Bérard A. Pharmacoepidemiology research-real-world evidence for decision making. Front Pharmacol. 2021;12:723427.
[FREE Full text] [doi: 10.3389/fphar.2021.723427] [Medline: 34557096]

2. Reisinger SJ, Ryan PB, O'Hara DJ, Powell GE, Painter JL, Pattishall EN, et al. Development and evaluation of a common
data model enabling active drug safety surveillance using disparate healthcare databases. J Am Med Inform Assoc.
2010;17(6):652-662. [FREE Full text] [doi: 10.1136/jamia.2009.002477] [Medline: 20962127]

3. Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics.
J Clin Epidemiol. Apr 2005;58(4):323-337. [doi: 10.1016/j.jclinepi.2004.10.012] [Medline: 15862718]

4. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, et al. Observational Health Data Sciences and Informatics
(OHDSI): opportunities for observational researchers. Stud Health Technol Inform. 2015;216:574-578. [FREE Full text]
[Medline: 26262116]

5. Platt R, Wilson M, Chan KA, Benner JS, Marchibroda J, McClellan M. The new Sentinel Network--improving the evidence
of medical-product safety. N Engl J Med. Aug 13, 2009;361(7):645-647. [doi: 10.1056/NEJMp0905338] [Medline: 19635947]

6. Gini R, Schuemie M, Brown J, Ryan P, Vacchi E, Coppola M, et al. Data extraction and management in networks of
observational health care databases for scientific research: a comparison of EU-ADR, OMOP, mini-sentinel and MATRICE
strategies. EGEMS (Wash DC). 2016;4(1):1189. [FREE Full text] [doi: 10.13063/2327-9214.1189] [Medline: 27014709]

JMIR AI 2025 | vol. 4 | e65481 | p. 13https://ai.jmir.org/2025/1/e65481
(page number not for citation purposes)

Ogorek et alJMIR AI

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=ai_v4i1e65481_app1.txt&filename=c945fb350bb781cf08b64df936a37774.txt
https://jmir.org/api/download?alt_name=ai_v4i1e65481_app1.txt&filename=c945fb350bb781cf08b64df936a37774.txt
https://jmir.org/api/download?alt_name=ai_v4i1e65481_app2.txt&filename=11a16d8f1d7f6e3934690799c86bbc2d.txt
https://jmir.org/api/download?alt_name=ai_v4i1e65481_app2.txt&filename=11a16d8f1d7f6e3934690799c86bbc2d.txt
https://jmir.org/api/download?alt_name=ai_v4i1e65481_app3.docx&filename=29b0614a346d6ad1a64017fb572ad9a7.docx
https://jmir.org/api/download?alt_name=ai_v4i1e65481_app3.docx&filename=29b0614a346d6ad1a64017fb572ad9a7.docx
https://europepmc.org/abstract/MED/34557096
http://dx.doi.org/10.3389/fphar.2021.723427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34557096&dopt=Abstract
https://europepmc.org/abstract/MED/20962127
http://dx.doi.org/10.1136/jamia.2009.002477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20962127&dopt=Abstract
http://dx.doi.org/10.1016/j.jclinepi.2004.10.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15862718&dopt=Abstract
https://europepmc.org/abstract/MED/26262116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26262116&dopt=Abstract
http://dx.doi.org/10.1056/NEJMp0905338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19635947&dopt=Abstract
https://air.unimi.it/handle/2434/394437
http://dx.doi.org/10.13063/2327-9214.1189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27014709&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


7. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language models are few-shot learners. arXiv.
Preprint posted online May 28, 2020. [FREE Full text]

8. Sabaté M, Montané E. Pharmacoepidemiology: an overview. J Clin Med. Nov 10, 2023;12(22):7033. [FREE Full text]
[doi: 10.3390/jcm12227033] [Medline: 38002647]

9. Williams N, Rudolph KE. A drug classification pipeline for Medicaid claims using RxNorm. arXiv. Preprint posted online
April 1, 2024. [FREE Full text]

10. Applications of the ATC/DDD methodology. World Health Organization. URL: https://www.who.int/tools/atc-ddd-toolkit/
applications-methodology [accessed 2024-06-23]

11. WHO Collaborating Centre for Drug Statistics Methodology. ATC/DDD methodology – history. Norwegian Institute of
Public Health. 2018. URL: https://atcddd.fhi.no/atc_ddd_methodology/history/ [accessed 2024-07-16]

12. Anatomical therapeutic chemical (ATC) classification. World Health Organization. URL: https://www.who.int/tools/
atc-ddd-toolkit/atc-classification [accessed 2024-07-16]

13. WHO Collaborating Centre for Drug Statistics Methodology. ATC/DDD Index – C09BA03. Norwegian Institute of Public
Health. URL: https://atcddd.fhi.no/atc_ddd_index/?code=C09BA03 [accessed 2024-07-16]

14. WHO Collaborating Centre for Drug Statistics Methodology. Purpose of the ATC/DDD system. Norwegian Institute of
Public Health. 2018. URL: https://atcddd.fhi.no/atc_ddd_methodology/purpose_of_the_atc_ddd_system/ [accessed
2024-07-16]

15. Simonaitis L, McDonald CJ. Using national drug codes and drug knowledge bases to organize prescription records from
multiple sources. Am J Health Syst Pharm. Oct 01, 2009;66(19):1743-1753. [FREE Full text] [doi: 10.2146/ajhp080221]
[Medline: 19767382]

16. Drug identification number (DIN). Health Canada. URL: https://www.canada.ca/en/health-canada/services/
drugs-health-products/drug-products/fact-sheets/drug-identification-number.html [accessed 2024-06-23]

17. About Z-index. Z-Index. URL: https://www.z-index.nl/english [accessed 2024-07-18]
18. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z. DBpedia: a nucleus for a web of open data. In: Proceedings

of the 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference on The Semantic Web. 2007.
Presented at: ISWC '07; November 11-15, 2007:722-735; Busan, South Korea. URL: https://link.springer.com/chapter/
10.1007/978-3-540-76298-0_52 [doi: 10.1007/978-3-540-76298-0_52]

19. DBpedia lookup - generic RDF indexer and searcher. DBpedia. URL: https://lookup.dbpedia.org/ [accessed 2024-12-09]
20. Liu S, Wei Ma, Moore R, Ganesan V, Nelson S. RxNorm: prescription for electronic drug information exchange. IT Prof.

Sep 2005;7(5):17-23. [doi: 10.1109/mitp.2005.122]
21. Rxclass. United States National Library of Medicine. URL: https://mor.nlm.nih.gov/RxClass/ [accessed 2024-06-23]
22. Drug product database: access the extracts. Health Canada. URL: https://www.canada.ca/en/health-canada/services/

drugs-health-products/drug-products/drug-product-database/extracts.html [accessed 2022-04-30]
23. Kellmann AJ, Lanting P, Franke L, van Enckevort EJ, Swertz MA. Semi-automatic translation of medicine usage data (in

Dutch, free-text) from lifelines COVID-19 questionnaires to ATC codes. Database (Oxford). Apr 26, 2023;2023:22. [FREE
Full text] [doi: 10.1093/database/baad019] [Medline: 37114804]

24. Croset S, Hoehndorf R, Rebholz-Schuhmann D. Integration of the anatomical therapeutic chemical classification system
and drugbank using owl and text-mining. In: Proceedings of the 4th Workshop of the GI Workgroup Ontologies in
Biomedicine and Life Sciences. 2012. Presented at: OBML '12; September 27-28, 2012:15; Dresden, Germany. URL:
https://www.scirp.org/reference/referencespapers?referenceid=1771072 [doi: 10.32388/0gv0fn]

25. Knox C, Wilson M, Klinger CM, Franklin M, Oler E, Wilson A, et al. DrugBank 6.0: the DrugBank knowledgebase for
2024. Nucleic Acids Res. Jan 05, 2024;52(D1):D1265-D1275. [FREE Full text] [doi: 10.1093/nar/gkad976] [Medline:
37953279]

26. About DrugBank. DrugBank. URL: https://go.drugbank.com/about [accessed 2024-06-13]
27. Custom search JSON API. Google. URL: https://developers.google.com/custom-search/v1/overview [accessed 2024-12-09]
28. Wallace JC, Berzon MS. hiQ Labs V. Linkedln Corp. United States Supreme Court. URL: https://cdn.ca9.uscourts.gov/

datastore/opinions/2022/04/18/17-16783.pdf [accessed 2024-04-29]
29. Programmable search engine terms of service. Google. URL: https://support.google.com/programmable-search/answer/

1714300?hl=en [accessed 2024-12-09]
30. Liu HW. Two decades of laws and practice around screen scraping in the common law world and its open banking watershed

moment. Wash Int Law J. 2020;301(1):28. [FREE Full text]
31. Patel T, Ivo J, Pitre T, Faisal S, Antunes K, Oda K. An in-home medication dispensing system to support medication

adherence for patients with chronic conditions in the community setting: prospective observational pilot study. JMIR Form
Res. May 19, 2022;6(5):e34906. [FREE Full text] [doi: 10.2196/34906] [Medline: 35587371]

32. GPT-4o. OpenAI. URL: https://platform.openai.com/docs/models/gpt-4o [accessed 2024-06-24]
33. Batch API. Open AI. URL: https://platform.openai.com/docs/guides/batch [accessed 2024-07-01]
34. How should I set the temperature parameter? OpenAI. URL: https://platform.openai.com/docs/guides/text-generation/

how-should-i-set-the-temperature-parameter [accessed 2024-07-28]

JMIR AI 2025 | vol. 4 | e65481 | p. 14https://ai.jmir.org/2025/1/e65481
(page number not for citation purposes)

Ogorek et alJMIR AI

XSL•FO
RenderX

https://arxiv.org/abs/2005.14165
https://www.mdpi.com/resolver?pii=jcm12227033
http://dx.doi.org/10.3390/jcm12227033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38002647&dopt=Abstract
https://arxiv.org/abs/2404.01514
https://www.who.int/tools/atc-ddd-toolkit/applications-methodology
https://www.who.int/tools/atc-ddd-toolkit/applications-methodology
https://atcddd.fhi.no/atc_ddd_methodology/history/
https://www.who.int/tools/atc-ddd-toolkit/atc-classification
https://www.who.int/tools/atc-ddd-toolkit/atc-classification
https://atcddd.fhi.no/atc_ddd_index/?code=C09BA03
https://atcddd.fhi.no/atc_ddd_methodology/purpose_of_the_atc_ddd_system/
https://europepmc.org/abstract/MED/19767382
http://dx.doi.org/10.2146/ajhp080221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19767382&dopt=Abstract
https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/fact-sheets/drug-identification-number.html
https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/fact-sheets/drug-identification-number.html
https://www.z-index.nl/english
https://link.springer.com/chapter/10.1007/978-3-540-76298-0_52
https://link.springer.com/chapter/10.1007/978-3-540-76298-0_52
http://dx.doi.org/10.1007/978-3-540-76298-0_52
https://lookup.dbpedia.org/
http://dx.doi.org/10.1109/mitp.2005.122
https://mor.nlm.nih.gov/RxClass/
https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/drug-product-database/extracts.html
https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/drug-product-database/extracts.html
https://europepmc.org/abstract/MED/37114804
https://europepmc.org/abstract/MED/37114804
http://dx.doi.org/10.1093/database/baad019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37114804&dopt=Abstract
https://www.scirp.org/reference/referencespapers?referenceid=1771072
http://dx.doi.org/10.32388/0gv0fn
https://europepmc.org/abstract/MED/37953279
http://dx.doi.org/10.1093/nar/gkad976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37953279&dopt=Abstract
https://go.drugbank.com/about
https://developers.google.com/custom-search/v1/overview
https://cdn.ca9.uscourts.gov/datastore/opinions/2022/04/18/17-16783.pdf
https://cdn.ca9.uscourts.gov/datastore/opinions/2022/04/18/17-16783.pdf
https://support.google.com/programmable-search/answer/1714300?hl=en
https://support.google.com/programmable-search/answer/1714300?hl=en
https://digitalcommons.law.uw.edu/wilj/vol30/iss1/5/
https://formative.jmir.org/2022/5/e34906/
http://dx.doi.org/10.2196/34906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35587371&dopt=Abstract
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/guides/batch
https://platform.openai.com/docs/guides/text-generation/how-should-i-set-the-temperature-parameter
https://platform.openai.com/docs/guides/text-generation/how-should-i-set-the-temperature-parameter
http://www.w3.org/Style/XSL
http://www.renderx.com/


35. max_tokens. OpenAI. URL: https://platform.openai.com/docs/api-reference/chat/create#chat-create-max_tokens [accessed
2024-07-28]

36. What are tokens and how to count them? OpenAI. URL: https://help.openai.com/en/articles/
4936856-what-are-tokens-and-how-to-count-them [accessed 2024-07-28]

37. Lohr SL. Sampling: Design and Analysis. New York, NY. Chapman and Hall/CRC; 2021.
38. Cocks K, Torgerson DJ. Sample size calculations for pilot randomized trials: a confidence interval approach. J Clin

Epidemiol. Feb 2013;66(2):197-201. [doi: 10.1016/j.jclinepi.2012.09.002] [Medline: 23195919]
39. Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, Social Sciences

and Humanities Research Council of Canada. Tri-Council Policy Statement: Ethical Conduct for Research Involving
Humans. Panel on Research Ethics. 2018. URL: https://ethics.gc.ca/eng/documents/tcps2-2018-en-interactive-final.pdf
[accessed 2025-05-22]

40. US Department of Health and Human Services. 45 CFR §46.104(d)(4)(ii): Exempt research. Code of Federal Regulations.
2018. URL: https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-A/part-46#section-46.104 [accessed 2022-05-22]

41. Product monograph PrMYA®. APOTEX INC. URL: https://pdf.hres.ca/dpd_pm/00055884.PDF [accessed 2024-04-29]
42. STATEX®. Paladin Labs Inc. URL: https://www.paladin-pharma.com/our_products/Statex_en.pdf [accessed 2024-08-05]
43. Bevendorff J, Wiegmann M, Potthast M, Stein B. Is Google getting worse? A longitudinal investigation of SEO spam in

search engines. In: Proceedings of the 46th European Conference on Information Retrieval. 2024. Presented at: ECIR '24;
March 24-28, 2024:56-71; Glasgow, UK. URL: https://link.springer.com/chapter/10.1007/978-3-031-56063-7_4 [doi:
10.1007/978-3-031-56063-7_4]

44. Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science. Mar
14, 2014;343(6176):1203-1205. [doi: 10.1126/science.1248506] [Medline: 24626916]

45. Why the API output is inconsistent even after the temperature is set to 0. OpenAI Community. URL: https://community.
openai.com/t/why-the-api-output-is-inconsistent-even-after-the-temperature-is-set-to-0/329541 [accessed 2024-07-24]

46. Wang X, Wei J, Schuurmans D, Le Q, Chi E, Narang S, et al. Self-consistency improves chain of thought reasoning in
language models. arXiv. Preprint posted online March 21, 2022. [FREE Full text]

47. Fukataki Y, Wakako H, Naoki N, Ito YM. Ethical review of clinical research with generative AI: evaluating ChatGPT's
accuracy and reproducibility. medRxiv. Preprint posted online November 20, 2024. [FREE Full text] [doi:
10.1101/2024.11.19.24317555]

48. Wulcan JM, Jacques KL, Lee MA, Kovacs SL, Dausend N, Prince LE, et al. Classification performance and reproducibility
of GPT-4 omni for information extraction from veterinary electronic health records. Front Vet Sci. Jan 16, 2024;11:1490030.
[FREE Full text] [doi: 10.3389/fvets.2024.1490030] [Medline: 39885843]

49. Hello GPT-4o. OpenAI. URL: https://openai.com/index/hello-gpt-4o/ [accessed 2024-07-24]
50. Dalkey N, Helmer O. An experimental application of the DELPHI method to the use of experts. Manag Sci. Apr

1963;9(3):458-467. [doi: 10.1287/mnsc.9.3.458]
51. Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M, Lacroix T, et al. LLaMA: open and efficient foundation language

models. arXiv. Preprint posted online February 27, 2023. [FREE Full text]

Abbreviations
A11: vitamins (a second-level ATC code)
AI: artificial intelligence
API: application programming interface
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B01: antithrombotic agents (a second-level ATC code)
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JSON: JavaScript Object Notation
LLM: large language model
N02: analgesics (a second-level ATC code)
NDC: National Drug Code
RWD: real-world data
SHS: Spencer Health Solutions
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