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Abstract

Background: Recent advancements in Generative Adversarial Networks and large language models (LLMs) have significantly
advanced the synthesis and augmentation of medical data. These and other deep learning–based methods offer promising potential
for generating high-quality, realistic datasets crucial for improving machine learning applications in health care, particularly in
contexts where data privacy and availability are limiting factors. However, challenges remain in accurately capturing the complex
associations inherent in medical datasets.

Objective: This study evaluates the effectiveness of various Synthetic Data Generation (SDG) methods in replicating the
correlation structures inherent in real medical datasets. In addition, it examines their performance in downstream tasks using
Random Forests (RFs) as the benchmark model. To provide a comprehensive analysis, alternative models such as eXtreme
Gradient Boosting and Gated Additive Tree Ensembles are also considered. We compare the following SDG approaches: Synthetic
Populations in R (synthpop), copula, copulagan, Conditional Tabular Generative Adversarial Network (ctgan), tabular variational
autoencoder (tvae), and tabula for LLMs.

Methods: We evaluated synthetic data generation methods using both real-world and simulated datasets. Simulated data consist
of 10 Gaussian variables and one binary target variable with varying correlation structures, generated via Cholesky decomposition.
Real-world datasets include the body performance dataset with 13,393 samples for fitness classification, the Wisconsin Breast
Cancer dataset with 569 samples for tumor diagnosis, and the diabetes dataset with 768 samples for diabetes prediction. Data
quality is evaluated by comparing correlation matrices, the propensity score mean-squared error (pMSE) for general utility, and
F1-scores for downstream tasks as a specific utility metric, using training on synthetic data and testing on real data.

Results: Our simulation study, supplemented with real-world data analyses, shows that the statistical methods copula and
synthpop consistently outperform deep learning approaches across various sample sizes and correlation complexities, with
synthpop being the most effective. Deep learning methods, including large LLMs, show mixed performance, particularly with
smaller datasets or limited training epochs. LLMs often struggle to replicate numerical dependencies effectively. In contrast,
methods like tvae with 10,000 epochs perform comparably well. On the body performance dataset, copulagan achieves the best
performance in terms of pMSE. The results also highlight that model utility depends more on the relative correlations between
features and the target variable than on the absolute magnitude of correlation matrix differences.

Conclusions: Statistical methods, particularly synthpop, demonstrate superior robustness and utility preservation for synthetic
tabular data compared with deep learning approaches. Copula methods show potential but face limitations with integer variables.
Deep Learning methods underperform in this context. Overall, these findings underscore the dominance of statistical methods
for synthetic data generation for tabular data, while highlighting the niche potential of deep learning approaches for highly complex
datasets, provided adequate resources and tuning.

(JMIR AI 2025;4:e65729) doi: 10.2196/65729

JMIR AI 2025 | vol. 4 | e65729 | p. 1https://ai.jmir.org/2025/1/e65729
(page number not for citation purposes)

Miletic & SariyarJMIR AI

XSL•FO
RenderX

mailto:murat.sariyar@bfh.ch
http://dx.doi.org/10.2196/65729
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

synthetic data generation; medical data synthesis; random forests; simulation study; deep learning; propensity score mean-squared
error

Introduction

In recent years, Generative Adversarial Networks (GANs) and
large language models (LLMs) have revolutionized the synthesis
and augmentation of medical data [1-3]. These technologies
have introduced methods for creating high-quality, realistic
datasets, which are essential for advancing machine learning
(ML) applications in the health care sector [4-6]. The ability to
synthesize realistic medical data is particularly valuable in
contexts where data privacy and availability are major concerns
[7]. Medical data is often subject to strict regulations due to
privacy laws and ethical considerations, which can limit the
availability of comprehensive datasets for research and
development. By using GANs and LLMs to generate synthetic
data, researchers and practitioners can overcome these
limitations, creating datasets that preserve the statistical
properties and correlations of the original data while ensuring
that individual patient identities remain protected.

However, despite the promising capabilities of GANs and
LLMs, several challenges persist in leveraging these
technologies effectively for medical data synthesis [8-11]. A
key challenge is the ability of these models to accurately capture
and replicate the intricate relationships within medical datasets.
Medical data often exhibits complex interdependencies between
features, such as the relationship among symptoms, diagnostic
indicators, and treatment outcomes. Inaccurate representation
of these correlation structures can result in synthetic data that
fails to mimic the true variability and relationships found in
real-world medical data [12]. The use of synthetic medical data
also raises ethical concerns, particularly regarding the potential
perpetuation or, in some cases, even amplification of biases
inherent in the original datasets [13]. For instance, GANs tend
to prioritize matching overall data distribution rather than
subgroup-level details. Such representation issues can translate
into new or stronger associations between sensitive attributes
such as race and medical conditions [14]. If high data quality
is promised based on such data because a particular metric
performs well, ML methods may establish incorrect associations
accordingly.

Focusing on pairwise correlation structures in medical data
synthesis, despite their limitations in complex data
environments, remains crucial for several reasons: (1) correlation
analysis identifies primary dependencies as a starting point for
understanding how variables interact; (2) if a ML model
recognizes that certain variables are typically correlated, it can
better simulate realistic scenarios, leading to more accurate
predictions and insights; and (3) pairwise correlation structures
provide a baseline for validating and comparing synthetic data.
Even though they might not capture all forms of dependence,
comparing correlations in synthetic data with those in real-world
data can help assess the fidelity and quality of the generated
datasets.

There have been several approaches addressing correlations in
the context of Synthetic Data Generation (SDG), particularly
for relational data [15]. Most methodological studies aim to
capture correlation structures by extending existing techniques.
For example, Vu et al [16] explored how to make the loss
function of GANs correlation-aware but found no significant
benefit. In contrast, Patel et al [17] demonstrated that
incorporating a Correlational Neural Network can improve a
GAN’s ability to capture correlations, slightly outperforming
the MedGAN model. Torfi and Fox developed realistic synthetic
health care records by leveraging Convolutional Neural
Networks to capture correlations between medical features,
achieving comparable performance to real data in ML tasks
while maintaining privacy and statistical fidelity [18]. Rajabi
and Garibay [19] showed that effective consideration of
correlations can enhance fairness in synthetic data. These works
are noteworthy because the primary goal of advanced SDG
methods is to capture the full dependency structure.

Despite the substantial body of work on validation and
benchmarking in SDG, there is a notable gap in studies
specifically assessing how the correlation structure of real data
influences the effectiveness of SDG methods in replicating such
relationships. Understanding whether faithfully reproducing
correlation structures is critical for achieving high-quality results
in downstream tasks remains an open question. This issue is
particularly relevant given the increasing reliance on SDG
methods across various domains. Simulation studies are
well-suited to address these questions, as they enable controlled
analysis of specific factors affecting model performance [20].
For instance, Strobl et al [21] demonstrated through simulations
that Random Forest (RF) models tend to produce biased variable
selection when predictors differ in scale or category count.

The aim of this study is to address the research gap by
developing a simulation design and validating the results on 3
real-world medical datasets. We evaluate how effectively SDG
methods can replicate the correlation structure of the original
data and perform a classification task using RF. To provide a
comprehensive analysis, alternative models such as eXtreme
Gradient Boosting [22] and Gated Additive Tree Ensembles
[23] are also considered. In addition, for one notable case, we
assess whether the relevant variables are selected based on
variable importance measures, as correlation matrix distances
are often calculated in practice without addressing their impact.
For this analysis, we use the following SDG approaches:
Synthetic Populations in R (synthpop) [24], copula [25],
copulagan [26], Conditional Tabular Generative Adversarial
Network (ctgan) [27], Tabular Variational Autoencoder (tvae)
[27], and tabula for LLMs [28,29], the latter of which per default
uses DistilGPT-2 (distilled Generative Pretrained Transformer
-2), a streamlined version of the english-language model GPT-2.
The corresponding assessment will help practitioners in guiding
their choice of SDG methods.
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Methods

Overview
The schematic diagram in Figure 1 outlines the key steps in the
methodology used in this study. The process begins with data

generation, where simulated datasets were created using
correlation matrix construction and target variable creation.
Besides that, we selected 3 real-world datasets (Body
Performance [BP], Breast Cancer [BC], and Diabetes [DB]).
All datasets are then used to generate and evaluate various SDG
methods.

Figure 1. Overview of the methodology workflow. BC: Breast Cancer Dataset; BP: Body Performance Dataset; ctgan: Conditional Tabular Generative
Adversarial Network; DB: Diabetes Dataset; pMSE: Propensity Score Mean-Squared Error; SDG: synthetic data generation; tvae: Tabular Variational
Autoencoder; VIMP: variable importance.

Datasets

Real-World Datasets
We selected 3 medical datasets from Kaggle – Body
Performance (BP), Breast Cancer (BC), and Diabetes (DB) –
that are commonly used in predictive modeling and data analysis
tasks. All 3 datasets involve classification problems. The
correlation matrices of these datasets are provided in Figure 2.

The BP dataset provides comprehensive data on physical fitness
and body measurements, encompassing variables such as height,
weight, age, gender, body fat percentage, and details of physical
activity and fitness routines. It includes 13,393 samples with
11 numerical features and a categorical target variable that
classifies individuals into four fitness categories: excellent,
good, average, and poor. Among the features, age and sit-up
count are recorded as integers.

The BC dataset comprises 569 entries, each with 30 numerical
features extracted from digitized images of fine needle aspirates
of breast masses. These features, representing the mean, standard
error, and maximum value, quantify geometric and textural
properties of cell nuclei, including radius, texture, perimeter,
area, smoothness, compactness, concavity, concave points,
symmetry, and fractal dimension. The dataset supports tumor
classification as malignant or benign based on the nuclei
features.

The DB dataset is tailored for predicting diabetes based on
diagnostic measurements. It comprises 768 records of Pima
Indian women aged 21 and older, with variables including the
number of pregnancies, glucose levels, blood pressure, skin
thickness, insulin levels, BMI, a diabetes pedigree function,
age, and a binary diabetes outcome. All variables are numerical,
representing physiological and diagnostic metrics critical to
diabetes prediction.

Figure 2. Correlation matrix for 3 real-world datasets: (A) BP: Body Performance Dataset, (B) BC: Breast Cancer Dataset, and (C) DB: Diabetes
Dataset.

Simulated Datasets
In our simulation study, we first generate 10
Gaussian-distributed features and then impose distinct
correlation structures using the Cholesky decomposition method
[30]. A binary target variable is subsequently constructed based
on 4 selected features. The process of defining the target variable
is repeated across 3 different correlation structures, with the
simulation executed at 3 distinct sample sizes (500, 5000, and
10,000). The use of varying sample sizes allows us to examine
the effect of data volume on the robustness and stability of the

correlation structures and the resulting relationships between
features and the target variable.

To introduce correlations, we construct 3 types of correlation
matrices based on 3 different exponential decay rates,
corresponding to varying strengths and patterns of correlation:
0.1 for strong positive correlations, 0.3 for weaker positive
correlations, and 0.25 for alternating correlations (positive and
negative). The correlation between variables is defined using
equation (1) for the 0.1 and 0.3 decay rates, where the
exponential decay ensures that correlations decrease as the index
distance increases:
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Here, α represents the decay rate, controlling the speed at which
correlations diminish as the distance |i – j| between indices
grows. Smaller values of (eg, 0.1) result in slower decay and
stronger correlations over larger distances, while larger values
(eg, 0.3) lead to faster decay and weaker correlations.

For the 0.25 alternating correlation, equation (2) is used,
incorporating alternating signs to produce correlations that
switch between positive and negative values with increasing
index distance. In this case, α = .25 determines the rate of decay,

while the alternating factor (–1)|i – j| introduces the sign changes
in the correlations. The resulting correlation matrix, which must
fulfill the condition of symmetric positive semidefiniteness, is
then decomposed via Cholesky decomposition, allowing us to
transform independent normal variables into correlated ones as
defined by the specified structure. Examples of such generated
correlation matrices are shown in Figure 3.

Figure 3. Correlation matrices used in the simulation study: (A) positive exponential decay rate of 0.1, (B) positive exponential decay rate of 0.3, and
(C) alternating positive and negative exponential decay rate of 0.25.

The correlation between different types of variables is calculated
through a structured process that accommodates binary,
continuous, and mixed data types. For each pair of variables,
the appropriate correlation metric is selected based on their data
types. If at least one variable is binary, the Point-Biserial
correlation coefficient is used [31]. The data with the correlated
variables is then used to construct a binary target variable, which
is defined as a linear combination of the first 4 features from
the 10 generated variables, as shown in equation (3):

The remaining 6 variables (X5, … , X10) do not contribute to Y
and effectively act as noise variables in the dataset. These noise
variables introduce additional complexity by creating scenarios
where irrelevant features must be disentangled. This setup
mimics real-world scenarios where datasets often contain
features that are unrelated or weakly related to the target
variable. Y is then used to define thresholds based on its median,
with a range of SD 10% around the median. Values exceeding
the upper threshold are assigned the binary label 1, while those
below the lower threshold are assigned 0. For values within the
threshold range, binary labels are assigned randomly. It should
be noted that while the features X1, X2, X3, X4 remain continuous,
the binary target variable is derived through this thresholding
approach applied to the linear combination defined in equation
(3).

The complexity in these simulated datasets arises from
structured correlation patterns, where the strength, direction,
and interplay of correlations among features significantly affect
their relationships with the target variable. This correlational
complexity can be understood at three levels:

1. Feature-target correlation: Variability in how individual
features relate to the target, ranging from strong to very
weak associations.

2. Feature-feature correlation: Associations among features
that introduce complicate the disentanglement of their
individual contributions to the target.

3. Global correlation structures: The overall arrangement of
feature-target and feature-feature correlations, encompassing
uniform (eg, consistent signs) or mixed configurations (eg,
alternating signs).

Based on these levels, the datasets can be categorized into three
complexity groups:

• Low complexity: Features exhibit rather strong relationships
with the target, minimal or no correlations among features,
and homogeneous global correlation.

• Moderate complexity: Feature-target relationships vary,
ranging from strong to weak, with moderate feature-feature
correlations, and consistent correlation signs.

• High complexity: Feature-target relationships are rather
weak, with moderate feature-feature correlations, and
alternating correlation signs (Figure 3C).

As complexity increases, the challenges in data analysis and
modeling grow substantially. The correlation matrices of both
simulated and real data reveal that BP most closely aligns with
the 0.25 case (high complexity), BC with the 0.1 case (low
complexity), and DB with the 0.3 case (low complexity).

Synthetic Data Generation Methods
We use a range of SDG methods to explore diverse approaches
to data synthesis. Statistical methods include synthpop, a widely
used statistical model that generates synthetic data by fitting
individual features and their conditional distributions based on
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the observed data structure. Synthpop is particularly well-suited
for datasets with both continuous and categorical variables, as
it applies models such as classification and regression trees that
account for different data types. Another statistical method,
copula, uses copula functions to model dependencies among
variables, allowing for the generation of multivariate synthetic
data by combining marginal distributions with a dependency
structure. While copula-based methods are primarily designed
for continuous variables, extensions or preprocessing techniques
can be used to encode and incorporate categorical variables,
such as one-hot encoding or ordinal transformations.

For more advanced generative approaches, we use copulagan,
ctgan, and tvae, which are deep learning–based models designed
to handle complex data synthesis tasks. Copulagan combines
the dependency modeling capabilities of copulas with GANs.
It learns the marginal distributions of real data columns and
applies ctgan to model normalized data, improving the synthesis
of mixed data types. Ctgan uses conditional GANs to address
challenges in imbalanced and categorical data. It incorporates
techniques like mode-specific normalization to handle
high-cardinality categories, enabling precise modeling. Tvae
captures complex, nonlinear relationships in tabular data by
learning latent representations and generating high-quality
synthetic data. In addition, we used the Tabula [29] LLM, which
leverages LLMs such as a distilled Generative Pretrained
Transformer-2 model, and encodes tabular data into natural
language-style representations. This framework allows flexible
data generation, incorporating domain-specific contexts and
enabling synthesis from textual prompts. While not all models
used qualify as LLMs (parameter sizes ≥1 billion), we used the
term for simplicity.

For the implementation of copula, copulagan, ctgan, and tvae
we used the Synthetic Data Vault library (SDV [32]). SDV
(Andrew Montanez et al) integrates various methods into a
unified framework, facilitating seamless experimentation and
evaluation. Although adaptations of synthpop for Python (Sam
Maurer et al) exist, we used the native R [24] environment, as
it provides the most stable and comprehensive implementation.

Utility and Correlation Matrix Distance Measures
To evaluate the quality of the synthetic data, we use 3 key
metrics. First, training on synthetic data and testing their
performance on original data, using the F1-score as a measure.
The F1-score is calculated using a classification probability
cutoff of 0.5. This approach is often referred to as
train-synthetic-test-real. The evaluation differs depending on
whether the data is derived from real-world datasets or simulated
datasets. For real-world datasets, the original data is split into
training and testing sets with an 80/20 split. The 80% training
split is used to train the SDG methods, and an equivalent amount
of synthetic data (corresponding to the 80% training size) is
generated. The quality of this synthetic data is then evaluated
by testing it against the original 20% testing split from the
real-world dataset. For simulated datasets, 100% of the “real”
simulated data is used to train the SDG methods. To evaluate
the quality of the synthetic data, a separate test set consisting
of 100% newly generated synthetic data was created. The
performance is then assessed by testing the synthetic simulated

data against the “real” simulated data containing the full 100%
of the samples. The F1-score resulting from training on the
original data is represented as a dashed line in the visualizations.

Second, we compute the squared differences between the
correlation matrices of the original and synthetic datasets. This
metric quantifies the extent to which the synthetic data replicates
the pairwise correlations present in the original data. Finally,
we use the propensity score mean-squared error (pMSE), which
is a metric used to evaluate the utility of synthetic data by
measuring the distinguishability between real and synthetic
datasets. It is defined as:

Where êi represents the estimated propensity score for the i-th
observation, which measures the probability of a sample being
synthetic rather than real. The goal of synthetic data generation
is to create data so realistic that the model cannot easily
distinguish between synthetic and real samples. Therefore, lower
pMSE values indicate better performance, as they imply a higher
degree of similarity between the real and synthetic datasets. A
pMSE value close to 0.25 (the maximum achievable value when
synthetic and real datasets are highly distinguishable) suggests
bad synthetic data generation [33]. Normalizing this metric by
dividing it with 0.25 leads to values between 0
(indistinguishable) and 1 (highly distinguishable).

Variable Importance Measures
Python machine learning libraries, for example, sklearn,
typically provide various methods to calculate variable
importance (VIMP). The main two approaches are (1) Gini
importance and (2) permutation importance [34]. Gini
importance measures the reduction in Gini impurity when a
feature is used to split a node. The feature’s importance is
quantified by the total decrease in impurity across all trees.
Features that contribute more to impurity reduction are
considered more important, although this method can be biased
toward features with more categories or higher cardinality.

Alternatively, permutation importance evaluates a feature’s
significance by measuring the drop in model performance,
typically accuracy, when the feature’s values are randomly
shuffled. The importance score is derived from the change in
performance on out-of-bag samples before and after shuffling.
A larger decrease in accuracy indicates greater importance. This
method is more robust, accounting for feature interactions and
reducing biases, but is computationally more demanding.

Using both Gini importance and permutation importance
provides complementary insights: Gini impurity reflects a
feature’s contribution to better splits within trees, while
permutation-based importance directly measures a feature’s
impact on overall prediction accuracy. Combining both methods
offers a more balanced assessment of feature relevance.

Evaluation Design
We conduct 10 sampling iterations for each combination of
SDG methods. For deep learning approaches, we evaluate
training epoch sizes of 300, 1000, and 10,000 on both simulated
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and real datasets. For LLMs, we limit the epoch sizes to 300
and 1000 due to significantly higher resource demands and
previous findings indicating no performance improvement with
larger epoch counts [35]. The batch size is fixed at 500 for the
deep learning SDV methods and 64 for LLMs. Specifically, we
compute the mean F1-score and correlation matrix differences
across the 10 samples for each SDG method and epoch size.
For the most notable results, we visualize the correlation matrix
differences and calculate the VIMP scores for the best and
worst-performing methods.

Results

We will first present the results for the simulated data, followed
by those for the real data. Since the results from eXtreme
Gradient Boosting and Gated Additive Tree Ensembles are
nearly identical to those from Random Forest and provide no
additional insights, we have omitted them here (Multimedia
Appendix 1). Although we anticipated this outcome, we sought
to empirically validate it. The analysis will then continue with
an examination of the VIMP scores and visualization of the
correlation distances for the most notable case, which simulated
data consisting of 10,000 samples with an alternating decay
parameter of 0.25. This scenario is chosen because it illustrates

a case where, despite a large sample size, there is a considerable
performance gap between the best- and worst-performing
methods.

Correlation Distance and Utility Comparison

Simulated Data
Figure 4 presents the results of our methods on the smallest
simulated dataset with 500 samples. For the case of strong
positive correlations (0.1), there is virtually no difference in
utility between generated and original simulated data. In other
words, most models cluster tightly around a RF utility of
approximately 0.75. Some models (eg, ctgan and copulagan at
300 and 1000 epochs) have higher correlation matrix distances,
indicating weaker preservation of correlation structures. Deep
learning models trained with more epochs (eg, 1000 or 10,000,
indicated by blue and purple) perform better in terms of
correlation matrix distances compared to models with 300
epochs. In terms of utility, epoch sizes do not have a significant
effect in this scenario because the data complexity seems not
high enough to require prolonged training. The observation that
utility remains unaffected by high correlation matrix distances
highlights that a poor approximation of the correlation structure
is problematic only under specific conditions.

Figure 4. Comparison of the correlation matrix distance and utility metrics (F1-score in the top row; pMSE in the bottom row) for the simulated dataset
with a sample size of 500. ctgan: Conditional Tabular Generative Adversarial Network; LLM: large language model; pMSE: Propensity Score
Mean-Squared Error; synthpop: Synthetic Populations in R; tvae: Tabular Variational Autoencoder.

In the scenario with moderate positive correlations (0.3), the
higher correlation distance of ctgan and copulagan at low epoch
counts now also negatively affects the RF utility, despite the
correlation matrix distance being lower than in the case of 0.1.

The pMSE values are overall lower, suggesting that the
increased complexity primarily affects the RF utility. Models
trained with 10,000 epochs again demonstrate improved
performance, characterized by lower correlation matrix distances
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and enhanced RF utility, although the pMSE values are higher.
The relationship between pMSE values, correlation matrix
differences, and RF utility is demonstrated by comparing LLM
with 300 epochs and ctgan with 1000 epochs: while LLM
exhibits a higher correlation matrix difference, its superior utility
results in a significantly lower pMSE value overall. As observed
in the 0.1 case, tvae and LLM with high training epochs again
rank among the top-performing methods in this scenario, with
copula and synthpop achieving the highest performance. The
same necessity for extended training epochs as in the 0.1 case
suggests that deep learning models likely struggle due to
insufficient training data.

In the most complex scenario (0.25), the performance of each
SDG method in RF utility is worse than with the original data.
This is particularly evident as the tvae and LLM models deviate
more significantly from the baseline even with 10,000 epochs.
However, these differences have minimal impact on the pMSE
values, where copula and synthpop consistently emerge again
as the best-performing methods. The high complexity of this
simulated dataset primarily manifests as reduced RF utility

rather than increased pMSE. However, the differences compared
with the 0.3 scenario are not substantial. Notably,
well-performing methods show remarkable robustness, while
deep learning approaches with fewer epochs, typically
recommended as default settings for practical applications,
perform surprisingly poorly by comparison.

Figure 5 illustrates the results obtained on the simulated dataset
containing 5000 samples. It is evident that the increased dataset
size improves the performance across all cases. Correlation
matrix differences are smaller, and in the 0.3 case, almost all
methods achieve similarly high levels of performance in terms
of RF utility. Notably, the 0.25 case differs significantly from
the other two cases, although its results are not substantially
different from those observed with the 500-sample dataset. The
most notable change is that copulagan and synthpop now emerge
more clearly as the leading methods, whereas previously, tvae
with high epochs had delivered comparable results. Overall,
while deep learning methods benefit from the larger dataset,
they still require a high number of epochs to perform well and
do not yet match the performance levels of statistical methods.

Figure 5. Comparison of the correlation matrix distance and utility metrics (F1-score in the top row; pMSE in the bottom row) for the simulated dataset
with a sample size of 5000. ctgan: Conditional Tabular Generative Adversarial Network; LLM: large language model; pMSE: Propensity Score
Mean-Squared Error; synthpop: Synthetic Populations in R; tvae: Tabular Variational Autoencoder.

In the results of the simulation dataset comprising 10,000
samples, illustrated in Figure 6, the correlation matrix
differences decrease slightly further. In addition, the
performance of most deep learning methods improves in terms
of RF utility and pMSE values when trained with 300 and 1000
epochs. Increasing the number of training epochs enhances the
performance of deep learning methods more compared with

5000 samples but less compared to 500 samples. Otherwise,
the results closely resemble those obtained with the 5000-sample
dataset. This suggests that using a larger dataset for synthesis
does not yield significant benefits unless the goal is to use deep
learning methods with a limited number of epochs. However,
the overall results indicate that such methods are generally not
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advantageous for datasets with a structure similar to that of our simulation study.

Figure 6. Comparison of the correlation matrix distance and utility metrics (F1-score in the top row; pMSE in the bottom row) for the simulated dataset
with a sample size of 10,000. ctgan: Conditional Tabular Generative Adversarial Network; LLM: large language model; pMSE: Propensity Score
Mean-Squared Error; synthpop: Synthetic Populations in R; tvae: Tabular Variational Autoencoder.

Real-World Data
Due to the larger number of columns and a broader variety of
data types in these datasets, the outcomes naturally exhibit some
differences (Figure 7). Regarding the impact of dataset size, the
results align closely with those observed in the simulated data
for key trends. Specifically, smaller datasets exhibit significantly
greater variability across all metrics. For the BC dataset, the
copula method captures correlations most effectively, whereas
synthpop achieves the best results in terms of RF utility and
pMSE. BC is also the dataset where increasing the number of
epochs benefits deep learning methods the most. This
observation is consistent with findings from the simulated data,
despite the real datasets featuring a considerably higher number
of columns.

On the BP dataset, an initial observation reveals that copulagan
achieves unexpectedly favorable pMSE values. This outcome
becomes more comprehensible upon examining the dataset’s
structure. While BP officially comprises 2 categorical variables
(gender and class), it also includes sit-up counts, which is an
integer variable that pose statistical modeling challenges.
Estimating marginals using diverse distributions, such as the

Beta distribution, as a preprocessing step for GANs, proves
advantageous in this scenario, especially given the ample data
available for these estimations. However, this does not translate
into superior RF utility. The association between target and
features is not adequately captured by copulagan, resulting in
poor RF utility scores. In contrast, synthpop demonstrates the
best RF utility and correlation matrix difference performance,
although it struggles with achieving competitive pMSE due to
the complexity of modeling integer variables. Copula, on the
other hand, fails entirely to learn meaningful target-feature
associations, yielding extremely low RF utility.

The DB dataset presents the fewest challenges to the methods
overall, primarily due to the limited number of continuous
variables it contains. All methods perform relatively similarly,
reflecting the dataset’s inherent simplicity. Compared to the
corresponding simulated dataset, one notable difference is that
even methods with fewer epochs achieve relatively good
performance. Otherwise, the insights gained from the 0.3 case
simulation with 500 samples are largely transferable to this
real-world scenario. Among the methods tested, synthpop and
tvae demonstrate the best performance across all metrics, with
synthpop again emerging as the most effective.
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Figure 7. Comparison of the correlation matrix distance and utility metrics (F1-score in the top row; pMSE in the bottom row) for real-world datasets.
BC: Breast Cancer Dataset; BP: Body Performance Dataset; ctgan: Conditional Tabular Generative Adversarial Network; DB: Diabetes Dataset; LLM:
large language model; pMSE: Propensity Score Mean-Squared Error; synthpop: Synthetic Populations in R; tvae: Tabular Variational Autoencoder.

Detailed Analysis of a Notable Result
We focus on the two least effective methods in terms of
correlation matrix difference (ctgan with 300 epochs and LLM
with 1000 epochs) and the best-performing method across all
metrics (synthpop) on the 0.25 case of the simulated data
consisting of 10,000 samples.

Figures 8-10 display the original correlations, those of the
synthetic data, and the resulting correlation matrix differences
for synthpop, ctgan, and LLM, respectively. While synthpop
generates near-perfect synthetic data, both ctgan and LLM
struggle, particularly with high absolute feature-feature
correlations, which are often underestimated. In the case of
LLM, this issue also extends to feature-target correlations, while
ctgan exhibits feature-target correlations that exceed those in
the original data. Overall, the underestimation of correlations
is more pronounced in LLM than the mixed under- and
overestimation seen in ctgan, which explains the larger

correlation matrix differences observed in LLM. However, since
the relative correlation ratios in LLM more closely resemble
those in the original dataset, it performs better than ctgan in
terms of RF utility and pMSE. Figure 11-13 display the VIMP
scores (Gini and permutation importance) for synthpop, ctgan,
and LLM, respectively. Synthpop shows near-identical results
to the original data. The Gini importance for ctgan is promising,
but the permutation importance reveals that feature 3 becomes
entirely irrelevant. Features 7 and 9, due to their higher
correlations with the target, are now relevant. For the LLM,
feature 1 becomes nearly irrelevant. However, since feature 3
holds greater significance for the target variable, and no other
irrelevant features exhibit substantial permutation importance,
this does not detrimentally impact the RF utility or pMSE as
severely as observed with the ctgan model. Overall, we conclude
that large discrepancies in correlations harm utility only when
the ratios between target and feature correlations shift
significantly.
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Figure 8. Correlation matrix of original simulated data (A), the mean correlation matrix of synthetic data (B), and the difference between (A) and (B)
for synthpop with alternating correlation decay of 0.25 and sample size 10,000 (C). synthpop: Synthetic Populations in R

Figure 9. Correlation matrix of original simulated data (A), mean correlation matrix of synthetic data (B) and difference between (A) and (B) for ctgan
with alternating correlation decay of 0.25, sample size 10,000, and 300 epochs (C). ctgan: Conditional Tabular Generative Adversarial Network.

Figure 10. Correlation matrix of original simulated data (A), mean correlation matrix of synthetic data (B) and difference between (A) and (B) for
LLMs with an alternating correlation decay of 0.25, sample size 10,000 and 1000 epochs (C). LLM: large language model.

Figure 11. VIMP scores for original versus synthetic data generated using synthpop with an alternating correlation decay of 0.25 and a sample size of
10,000. Gini Importance (left) and Permutation Importance (right). synthpop: Synthetic Populations in R. VIMP: Variable Importance.
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Figure 12. VIMP scores for original versus synthetic data generated using ctgan with an alternating correlation decay of 0.25, a sample size of 10,000,
and 300 epochs. Gini Importance (left) and Permutation Importance (right). ctgan: Conditional Tabular Generative Adversarial Network; VIMP: Variable
Importance.

Figure 13. VIMP scores for original versus synthetic data generated using an LLM with an alternating correlation decay of 0.25, a sample size of
10,000, and 1000 epochs. Gini Importance (left) and Permutation Importance (right). LLM: large language model. VIMP: Variable Importance.

Discussion

Principal Findings
The central finding of our simulation study, which is largely
transferable to real-world datasets, is that statistical methods
such as copula and synthpop consistently outperform deep
learning-based approaches across varying sample sizes and
correlation complexities. Notably, synthpop emerged as the
most effective method. These techniques demonstrate robust
performance with minimal reliance on dataset size or extensive
training, highlighting their reliability in preserving statistical
properties and utility. However, our analysis of real-world
datasets revealed that the copula method struggles when
handling integer variables and increasing sample sizes does not
mitigate this limitation.

In contrast, deep learning methods yield mixed results. While
they benefit from larger datasets and extended training epochs,
their performance often falls short of statistical methods,
especially when trained with fewer epochs or on smaller
datasets. These models struggle to capture the correlation
structures, leading to higher pMSE values and diminished utility
for downstream tasks. This suggests that deep learning models
require careful tuning, including sufficient data and training
time, to match the performance of statistical approaches. While
the potential for deep learning models to handle datasets with
diverse types is promising, the results presented here do not
provide sufficient evidence to confirm this advantage over
statistical methods. In addition, high performance observed for
some deep learning-based approaches may be influenced by
overfitting rather than genuine generalization.

The results obtained using the LLM method are somewhat
disappointing. Despite a large sample size (≥10,000), this
approach does not match the performance of synthpop. While
the results are generally acceptable, they highlight that the sheer
number of parameters in LLM models is not a decisive factor.
Instead, methods specifically designed to directly replicate
statistical properties and correlations are often more efficient
and effective for tabular data. The probabilistic modeling of
LLMs via next-token prediction reaches limitations, particularly
when it comes to accurately replicating numerical dependencies.
Although the attention mechanism offers promising potential,
it does not directly address the preservation of distributions and
correlations that are crucial for tabular data. In addition, the
significantly longer runtime (hours instead of seconds or
minutes), even with 2 high-performance NVIDIA H100
Graphics Processing Units, makes the use of the LLM method
difficult to justify for our datasets. However, in cases where
tabular data contains many features (more than 30), such as
high-dimensional datasets, the runtime of synthpop (which runs
on CPU) can become prohibitive when using classification and
regression trees. In these cases, the runtime of LLMs may be
comparable or even shorter, particularly as the number of rows
increases.

Our detailed analysis of correlation matrix differences, VIMP
scores, and utility uncovers one central mechanism that leads
to either good or poor model performance. We find that a
model’s utility is primarily influenced by the preservation of
relative correlations between features and the target variable,
rather than by large correlation matrix differences themselves.
Although LLM exhibits greater correlation matrix differences

JMIR AI 2025 | vol. 4 | e65729 | p. 11https://ai.jmir.org/2025/1/e65729
(page number not for citation purposes)

Miletic & SariyarJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


after 1000 epochs compared to ctgan after 300 epochs, this does
not result in worse utility. This is because LLM better preserves
the relative correlations, particularly those between the features
and the target, which leads to improved RF utility and pMSE.
In contrast, while ctgan shows good Gini importance values,
its less accurate representation of the correlation value ratios
has a greater negative impact on utility. Overall, our findings
demonstrate that it is not the absolute magnitude of correlation
matrix differences, but the relative correlations between features
and the target variable that are critical for model utility.

Our results confirm those found in the literature [36,37] but
extend them by incorporating LLMs for the first time and using
a simulation approach to assess the impact of various correlation
structures on the outcomes. Statistical techniques, such as copula
and synthpop, are widely recommended for medical datasets
with characteristics similar to those in this study. However, our
analysis of the BP dataset highlights the potential usefulness of
deep learning methods, particularly when handling multiple
variables of diverse data types. In these scenarios, deep learning
approaches are anticipated to be able to outperform both
synthpop and copula-based methods.

Limitations
A key limitation of this study is that our simulation focused
primarily on pairwise correlations. This decision was intentional,
as we aimed to restrict our exploration to a small set of scenarios
to maintain manageable complexity and derive initial insights.
While many of our findings translated well to real-world data,
the BP dataset highlighted an important challenge: when dealing
with more complex scenarios involving a larger number of
variables, diverse data types, and intricate interaction patterns,
such as those commonly found in omics or high-dimensional
datasets, it becomes essential to design advanced simulation
studies that better capture these complexities [38]. In such cases,
conventional approaches like Cholesky decomposition or even
copula-based methods may no longer suffice [39].

Another limitation of our work is the exclusion of more recent
and potentially transformative methods, such as diffusion models
[40]. These models have demonstrated exceptional performance
in generating high-quality synthetic data, particularly for images,
and their application to tabular data represents a promising
direction for future research. Moreover, we did not extensively
evaluate how our chosen methods perform under scenarios
involving temporal or longitudinal data, multimodal datasets,
or extreme imbalance in class distributions, challenges that are

increasingly relevant in modern data science applications.
Addressing these aspects would provide a more comprehensive
understanding of the strengths and limitations of SDG methods
in diverse contexts.

Further, privacy considerations were not evaluated as part of
the synthetic data generation process. While the generative
models aimed to preserve data utility and structural similarity,
privacy risks such as data leakage or membership inference
attacks were not assessed due to our focus in the relationships
between correlation structure and utility under different
scenarios.

Finally, in synthetic data generation, it is critical to account for
biases. If the original data contains biases, the synthetic data is
likely to mirror these, potentially leading to discriminatory
health care outcomes, particularly for marginalized or
underrepresented groups. To mitigate such risks, bias detection
and adjustment techniques, such as reweighting, oversampling,
and fairness constraints, should be integrated into the data
generation process. Beyond bias, ethical concerns also include
privacy, informed consent, and accountability. For instance,
transparency in the data generation process and clear, informed
consent from data contributors are essential for maintaining
ethical standards. Regular audits of the synthetic data and
associated models are necessary to identify and correct emerging
biases and privacy breaching risks.

Conclusions
Statistical methods, particularly synthpop, consistently
outperform deep learning–based approaches in preserving
statistical properties and utility across diverse datasets,
establishing their robustness and reliability. Copula methods
show promise but struggle with integer variables, limiting their
application in real-world scenarios. Deep learning methods,
while resource-intensive and sensitive to hyperparameters, may
outperform statistical approaches in handling highly complex
datasets with mixed variable types when sufficient training
samples and computational resources are available. LLMs,
despite their theoretical potential, demonstrated suboptimal
performance and high computational costs for the datasets
analyzed in this study. Overall, these findings underscore the
dominance of statistical methods for synthetic data generation
for tabular data, while highlighting the niche potential of deep
learning approaches for highly complex datasets, provided
adequate resources and tuning.
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