JMIR Al Vivek & Ramesh

Original Paper

Deep Learning Multi-Modal Melanoma Detection: Algorithm
Development and Validation

Nithika Vivek!; Karthik Ramesh?, MD

Del Norte High School, San Diego, CA, United States
2Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA, United States

Corresponding Author:

Nithika Vivek

Del Norte High School

16601 Nighthawk Ln

San Diego, CA 92127

United States

Phone: 1 619 458 5059

Email: nithika.vivek@gmail.com

Abstract

Background: The visual similarity of melanoma and seborrheic keratosis has made it difficult for older patients with
disabilities to know when to seek medical attention, contributing to the metastasis of melanoma.

Objective: This study aimed to present a novel multimodal deep learning-based technique to distinguish between melanoma
and seborrheic keratosis.

Methods: Our strategy is three-fold: (1) use patient image data to train and test three deep learning models using transfer
learning (ResNet50, InceptionV3, and VGG16) and one author-designed model, (2) use patient metadata to train and test a
deep learning model, and (3) combine the predictions of the image model with the best accuracy and the metadata model, using
nonlinear least squares regression to specify ideal weights to each model for a combined prediction.

Results: The accuracy of the combined model was 88% (195/221 classified correctly) on test data from the HAM10000
dataset. Model reliability was assessed by visualizing the output activation map of each model and comparing the diagnosis
patterns to that of dermatologists. The addition of metadata to the image dataset was key to reducing the false-negative and
false-positive rates simultaneously, thereby producing better metrics and improving overall model accuracy.

Conclusions: Results from this experiment could be used to eliminate late diagnosis of melanoma via easy access to an app.
Future experiments can use text data (subjective data pertaining to how the patient felt over a certain period of time) to allow
this model to reflect the real hospital setting to a greater extent.
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melanoma. As the stage of melanoma progresses, the survival
rate can decrease as much as 67% [7]. Thus, timely diagnosis

Introduction

Incidence rates of melanoma have been on an increase since
1999, with 15.1 per 100,000 in 1999 and rising to 23.0
per 100,000 in 2021 [1]. In contrast, seborrheic keratosis
is a benign skin appearance that commonly occurs in older
adults. While the pathology, epidemiology, and histology
of melanoma and seborrheic keratosis are well understood
[2, 3, 4, 5], on a surface level, these 2 lesions can seem
almost identical to the untrained eye, making it difficult for
individuals to know when to seek care [6]. Delayed care
can allow a malignant lesion to progress into metastatic
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and treatment are paramount.

The current diagnostic paradigm has not significantly
advanced despite staggering technological leaps. A typical
process involves a patient visiting a primary care clinic,
followed by a referral to a dermatologist if there are any
unusual skin lesions [8]. The dermatologist repeats the skin
exam, and then further performs biopsies or excision as
required [9]. These samples are sent for pathology, which
makes the final diagnosis. This process requires an iterative
process involving appropriate presentation to a primary care
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provider, appropriate referral, appropriate visual analysis,
appropriate surgical excision, all before a diagnosis can be
made [10].

Deep learning models have commonly been used to
encourage at-home, self-diagnosis, or easier physician
diagnosis of melanoma [11, 12]. One such experiment used
an Iterative Dichotomiser 3 (ID3) algorithm to learn rules
from image data using texture patterns, a method known as
automatic induction [13]. Another method employed transfer
learning [14] and used ResNetl52 to develop a binary
classifier between benign and malignant skin lesions [15].
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Table 1 describes the average area under the curves
(AUCs) for medical imaging segmentation for various
dermatological machine learning models proposed in
literature. The best-performing model was a combination of
ResNet-50 and InceptionV3, with an accuracy of 80%. Most
of these approaches aim to optimize models through transfer
learning and various preprocessing techniques in an attempt
to increase accuracy.

Table 1. Comparison of machine learning approaches taken in 65 dermatological applications across the internet, with analysis on either the
HAM10000 dataset, ISIC dataset, DFUC dataset, or other common datasets ranging from 46-33126 data points for evaluation [14].

Model Accuracy (area under the curve)
ResNet-50 71.620
VGG 68.408
InceptionV3 74311
ResNet-50 and Inception V3 85977
ResNet-50 and VGG 83.065
ID3? 71.000
BottleNeckCSP 81.000

4ID3: Iterative Dichotomiser 3.

Tabular data has been extensively used in various
health applications, serving as the basis of many prediction
algorithms and machine learning models [16]. One relevant
dermatological example used clinical features to represent
the redness, flakiness, definite border extent, and other
qualities to classify 6 types of erythemato-squamous skin
diseases using the UCI Dermatology dataset [17]. Past tabular
metadata for health applications have been used to diagnose
other, nondermatological-related diseases. A Dual Bayesian
ResNet50 model was used to train metadata regarding heart
murmurs using XGBoost [18]. Broader applications of tabular
metadata have been used through a method called MediTab,
in which diverse, out-of-sample data is consolidated and
aligned to improve prediction accuracy [19]. Time progres-
sion tabular deep learning was used for hypercholesterolemia,
in which a multistage deep learning architecture was used
to analyze familial hypercholesterolemia [20]. However, this
method was not integrated with image data and was purely
reliant on tabular data.

Image and tabular predictions can be combined into a
hybrid model by using nonlinear least squares regression
(NLS) by incorporating both image and tabular predictions
in a unified regression model. Past studies have found NLS
useful for fusion of heterogeneous sources of data due to
its ability to model complex, nonlinear relationships inherent
in such data [21]. NLS is a common technique used to fit
a model to data by minimizing the square sum of residu-
als or the squared differences between observed data points
and values predicted by the nonlinear model. Minimizing
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this difference allows for the predictions to more accurately
reflect the true value. NLS has been used in pharmacokinetics
to understand drug absorption, distribution, metabolization,
and excretion [22]. Other applications of NLS appear in
tumor growth analysis and medical imaging to enhance image
quality [23,24].

Because melanoma prevalence can vary among different
demographics, image inputs or metadata inputs alone may
not be sufficient in formulating an accurate diagnosis [25].
This paper aims to build on the previous experiments stated
and incorporate metadata into the model inputs. While NLS
regression has been previously commonly used on raw
medical data, this application of NLS leverages its square
residuals minimizing abilities to determine ideal weights for
the combination of tabular and image data at the output.
Finally, providing the model with multiple input modalities
helps capture heterogeneous factors that decrease the chances
of the model formulating false patterns during classification.

Methods

Overview

Our multimodal deep learning architecture assembly is
threefold: (1) use patient image data to train and test three
deep learning models using transfer learning (ResNet50,
InceptionV3, and VGG16) and one author-designed model,
(2) use patient metadata to train and test a deep learn-
ing model, and (3) combine the predictions of the image
model with the best accuracy and the metadata model, using
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nonlinear least squares regression to specify ideal weights to
each model for a combined prediction.

Dataset Analysis

The data used in this experiment was obtained from the
HAMI10000 dataset [26]. 2259 images were taken from the
practice of Cliff Rosendahl consecutively starting 2008 until
2017. 7756 images were taken from the University of Vienna
in 1988. Because images were collected from different time
periods, some were preprocessed with enhanced contrast and
zoom while others were not. While all types of skin condi-
tions were captured in the dataset, for the purposes of this
analysis, those images not classed as seborrheic keratosis or
melanoma were removed. There were a total of 2210 images,
with 50% (1105 images) belonging to melanoma and 50%
(1105 images) belonging to seborrheic keratosis.

Data Preparation and Cleaning

Deduplication based on lesion ID was performed to prevent
train and test overlap due to the presence of preaugmented
images. Using the Python package TensorFlow, the data was
split into train (70% or 1547/2210 images), test (10% or
221/2210 images), and validation (20% or 442/2210 images)
and then into batches to allow for parallel processing. All
splits of data were then augmented and normalized to reduce
overfitting and ensure equal scaling of pixel values.

https://ai.jmir.org/2025/1/e66561
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Build and Train Image Models

Four image models were developed as depicted in Figure
1: an author-designed model and 3 transfer learning models.
The author-designed model contained 3 convolutional layers
with max pooling layers following each one, one flatten,
and 2 dense layers. Convolutional layers help with extract-
ing features from the image by applying certain weights to
them, and max pooling layers assist in this by performing
dimensionality reduction on the convolution layer output.
Flatten layers once again change the dimensions, and dense
layers help with forming global connections between the
learned input. The output of this model was determined
by the SoftMax layer, which generates a probability of the
input belonging to the malignant class. The transfer learn-
ing models include pretrained ResNet50, InceptionV3, and
VGG16, which were frozen to keep existing memory, and
additional trainable layers were added to fine-tune the overall
system. Dropouts of 0.3 and L2 weights of 0.01 were used
to attempt to mitigate overfitting. All models were run for
the same number of epochs, and the run time per epoch was
recorded. A larger time was spent on training the transfer
learning models because they have more convolutional layers
and therefore take longer to output a feature map from each
layer.
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Figure 1. Architecture of the author designed and transfer learning models. (A) describes the architecture of the image model with three convolu-
tional layers and transfer learning layers, (B) describes the metadata model for processing structured data, and (C) outlines the NLS method used to
combine the predictions from each model.
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Improving Image Model Accuracy

To improve model accuracy, further data cleaning was
performed. Train, test, and validation datasets were manually
parsed through with the following metrics in mind:<72 DPI

Vivek & Ramesh

and <600 x 800 px with visuals depicted in Figure 2. 8.3%
(183/2210) of the data was eliminated this way and rerun
with the same model structure to analyze the effect of image
quality on model accuracy.

Figure 2. Examples of faulty and good images. Specific metrics were used for data cleaning. (A) Faulty images, with dots per inch (DPI) <72 and
approximate zoom <600x800px were removed. (B) Good images, with DP>72 and approximate zoom 600 x 800px were kept. 200 out of 2400 faulty
images were removed from the dataset using these specifications, 100 from each class.

Metadata Cleaning and Run

After optimizing and validating the image model, the
metadata was cleaned and split similar to the image data. A
train, test, and validation dataset was built that matched that
of the images using matching image IDs to ensure con-
trolled training. Categorical columns were made numerical
through manual mapping, and the data was standardized
using a built-in package called StandardScaler. A simple
model architecture with only dense layers was used as visual
patterns are not necessary for structured data. However,
even without convolutional layers, global knowledge pattern
formation was achieved through dense (fully connected)
layers that connected each “node,” or learned pattern, to each
other.

Combining the Two: Non-Linear Least
Squares (NLS) Regression

The image and metadata model output SoftMax probabilities
for each class (melanoma and seborrheic keratosis). The NLS
regression method was applied to determine optimal weights
for combining each model’s prediction. The coefficients were
determined through analysis of image and metadata outputs
for the training dataset.

0.75x, + 0.25¢, = (1)

The above equation, outputted from the NLS function,
describes the weights applied to both image (x{) and metadata
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(x2) model outputs to achieve an ideal accuracy. § represents
the combined prediction, with values>0.5 being classified
as malignant (melanoma) and values<0.5 being classified as
seborrheic keratosis.

Ethical Considerations

No human participants were involved in this research. All
data used in this research was obtained from the HAM 10000
dataset, an open source and publicly available dataset. The
authors of the HAM 10000 dataset state that data sources were
approved by the ethics committee at the Medical University
of Vienna (Protocol No. 1804/2017) and the institutional
ethics board at the University of Queensland (Protocol No.
2017001223).

Results

Comparing Model Accuracies

The simple model had the highest accuracy of 83.4%
(369/442 images classified correctly) on validation data. All
transfer learning models had high training accuracy but low
validation accuracies, showing signs of overfitting. With the
number of epochs in training constant, the transfer learn-
ing models show significantly more training time than the
self-built model, as well as depicted in Table 2.
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Table 2. Comparing model accuracies.
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Training accuracy, N=1547,n

Validation accuracy, N=442, n

Model name (%) (%) Number of epochs Run time per epoch
ResNet50 1526 (98.65) 240 (54.29) 500 229 seconds
InceptionV3 1512 (97.75) 296 (67.04) 500 315 seconds
VGG16 1524 (98.52) 270 (61.13) 500 401 seconds
Self-Built Model 1242 (80.27) 348 (78.62) 500 2 seconds

(pre-data cleaning)

Self-Built Model 1488 (96.2) 369 (83.4) 500 2 seconds

(post-data cleaning)

ROC Curves

ROC (receiver operating characteristic) curves were plotted
as another method of showcasing the accuracy of each model.
The self-built model had the highest AUC of 83% (369/442
images classified correctly) on validation data, consistent with
the self-built model accuracy from the validation data. This
model reaches its highest true-positive rate while achieving
lower false-positive rates than the transfer learning models.
The transfer learning models had significantly lower AUCs
with ResNet50 approaching the random guess line.

Validating Image Model

Saliency maps on test data illustrate the region of inter-
est identified by different convolutional neural network
architectures, allowing for greater model reliability and
interpretability. They were generated from the last convo-
lution layer, to help visualize which regions of an image
are important for final classification. Each model demon-
strates varying focus patterns, reflecting differences in feature
extraction and attention and accounting for varying accuracies
across all models.

Combined Model: Confusion Matrices

The classification performance of the image, metadata, and
combined models was evaluated through confusion matri-
ces reflecting sensitivity and specificity. The image-based
model shows a balanced distribution of correct classifica-
tions, achieving a true-negative rate of 42% (93/221) and a
true-positive rate of 41% (91/221) on test data. The metadata-
based model exhibited lower overall performance. When both
image and metadata inputs were integrated, better perform-
ance was achieved across all metrics.

Discussion

Comparing Model Accuracies

Contrary to what was expected, the transfer learning models
appear to perform worse than the author-designed model. The
differences in model accuracy can be attributed to model
architecture, particularly the number of convolutional layers.
Transfer learning models have far more convolutional layers
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than the self-built model (ie, ResNet50 has 50 convolutional
layers while the self-built model has only 3). As the number
of convolutional layers increases, the ability of the model to
detect more complex and finer features increases. Therefore,
the transfer learning models are more susceptible to overfit-
ting as they can detect more minute details like hair and
wrinkles. This accounts for the overfitting occurring in the
transfer learning models as seen in the large difference
between training and validation accuracy.

ResNet50 differs from the author-constructed model as it
contains a residual layer that directly connects the output
layers to the input layers as opposed to “stacking” them. The
author constructed model optimizes the accuracy by using
backpropagation, where the gradients used to determine the
minimum loss value are calculated using the chain rule.
Rather than using the chain rule, ResNet avoids the subse-
quent derivation between each layer and instead connects
each output to the input. While this is important for mod-
els with a large number of convolutional layers, the author
constructed model only contains 3 convolutional layers, so
the effect of chain rule is less amplified, deeming the residual
layer unnecessary. Inception V3 differs from the author-con-
structed model as it uses parallel convolutional layers to
analyze a wider feature range in the input images. However,
because melanoma is often centered in one specific region
and is attributed with a set of consistent features defined
by the ABCDE rule, the detection of too many features is
harmful. VGG16 specializes in using smaller kernel strides to
center on more minute features, which can lead to overfitting
in this situation as small details in the skin are not vital and
sometimes confusing in making a classification. While past
studies have shown that ResNet50 and InceptionV3 perform
well in these applications, the ability of the simple model to
generalize to this particular problem makes it better compared
to these previous approaches.

In real-world deployment, frontend image capture tools
[27] will ensure image inputs conform to these predetermined
metrics as shown in Figure 3, thereby increasing usability of
the model. Upon deployment of this model to the primary
care office, physicians are further advised to take good quality
images of their patients’ lesions to ensure accurate diagnosis.
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Figure 3. ROC curves: receiver operating characteristic curves plot the false-positive rate versus the true-positive rate. The ideal point on the curve is
(0,1). FPR: false-positive rate; ROC: receiver operating characteristic; TPR: true-positive rate.
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ROC curves in Figure 3 are used to determine a cutoff point
that optimizes the sensitivity and specificity of a specific
test [28]. In medical applications, this is especially important
since false-negative results could be life-threatening. As the
false-negative rate is a direct function of the true-positive rate,
in order to lower the false-negative rate, the true-positive rate
must be increased, even if it comes at the expense of the

false-positive rate. Consequently, point A would be preferred
to point B.

In addition, ROC curves can also be a measure of accuracy
through the AUC depicted in the key shown in Figure 3. As
the models get worse (as shown by the accuracies in Table 3),
the ROC curve moves further away from the ideal point (0,1)
and towards the random guess line [29].

Table 3. The final testing accuracy of the combined model is significantly higher than the existing accuracies from the literature review, which

averaged around 70%.

Model type Sensitivity Specificity Testing accuracy

Image 0.82 0.84 0.83

Metadata 0.76 0.52 0.64

Combined 0.875 0.875 0.875

Heatmaps presented in the author-designed model to a limited extent.

A major problem in artificial intelligence models today is lack
of interpretability [30]. Artificial intelligence is often referred
to as a “black box” with limited explainability regarding
its decisions [31]. However, Figure 4 allows users to “see
through the eyes” of the model through heatmaps.

The author-designed model has a more “fixed” area of
concentration as opposed to the other three transfer learn-
ing models. However, unlike InceptionV3, ResNet50 offers
human interpretability and appears to follow the pattern
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However, it fails to capture differences between benign and
malignant lesions as shown in the similar weight distributions
between the 2 classes.

As shown in Figure 4, the author-designed model that
performed the best appears to primarily look at the differen-
ces in border between the two lesions, connecting back to the
ABCDE method used by dermatologists for clinical diagnosis
[32]. This gives the model more reliability, as it is dissecting
the image similar to how a dermatologist would.

JMIR AI 2025 | vol. 4 166561 | p. 7
(page number not for citation purposes)


https://ai.jmir.org/2025/1/e66561

JMIR Al Vivek & Ramesh

Figure 4. Comparison of Grad-CAM heat maps for benign and malignant skin lesions using different CNN architectures (Self-Built, InceptionV3,
VGG16, ResNet50) for one example from each class.
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Comparison to Past Studies

Past work on dermatological applications of machine learning
is compiled in Table 1, showing an accuracy ranging around
75%. The AUC of the transfer learning models (ResNet50,
InceptionV3, and VGG16) matches that of past experiments.
This study showcases an improvement of overall accuracy
through the incorporation of additional metadata as well
as constructing a simple model with fewer convolutional
layers. These two approaches were successful in increasing
the overall accuracy to 87.5% (194/221), showing promising
implications for a multimodality approach to deep learning in
dermatology.

Applications and Improvements for
Future Studies

Out of sample testing will be used through the deployment
of this model in local hospital settings in cases with known
diagnoses to ensure model feasibility and usability outside the
controlled environment of HAM10000. To achieve this, this
model will be employed in local dermatological centers and
results will be compared against dermatologist-determined
diagnosis to determine out-of-sample accuracy.

Cross-validation using different train-test-validation splits
will be tested to increase the confidence of the model with
access to more storage and compute units. To make this
possible, a resource-efficient approach to training a convolu-
tional neural network is necessary as images occupy a large
amount of storage space.

Currently, the model does poorly when presented with
patients aged 40 and younger as well as lesions present on
curved areas of the body such as the eyelids. This is due to
the lack of data from these demographics and areas, forcing
the model to use generalized patterns to predict on these
data points. Access to more granular metadata from younger
patients and certain areas of the model can help address
this issue. However, given the predominance of melanoma
in older age groups, the authors believe this to be a natural
obstacle of diagnosis in unusual populations.

Vivek & Ramesh

As machine learning is a rapidly growing field, many new
techniques can be used to improve the accuracy of the model.
Combining metadata and image model predictions can be
done through deep learning rather than regression, thereby
enabling end-to-end joint training of the system to improve
accuracy. Alternate architecture designs that combine image
and metadata at the input or intermediate layers can also
be explored. Additionally, using more granular metadata
with less repetitions and more variations (eg, more data on
different ages) can decrease the possibility of overfitting.

Using text data can also be a major change to this
experiment. While this study only used structured data
(patient metadata) and image data, in the real hospital setting,
anecdotes, pain scale, lesion progression, and other descrip-
tive factors can greatly influence a doctor when making
a diagnostic decision. Using these records and combining
them into the deep learning network through natural language
processing can improve robustness and applicability of this
model to the real world.

In order to make the application useful to a wider range
of common citizens, making the model more robust by
supporting a multi-way classification will allow older patients
to use it in the home setting. Training the model on multiple
types of lesions will motivate a more patient-friendly output
as simply differentiating between benign and malignant
eliminates the need to narrow down lesion possibilities.

Conclusion

In this manuscript, we introduce a multimodal technique that
employs heterogeneous forms of data to produce a proba-
bility of the lesion belonging to either class. The model
expands upon current model architectures and is adapted and
trained for the specific problem at hand. This strategy can be
applied to a multitude of medical applications in addition to
current studies to provide a more comprehensive diagnosis
of a certain disease through the addition of multiple data
modalities.
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