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Abstract

Background: Generative artificial intelligence (Al) is showing great promise as a tool to optimize decision-making across
various fields, including medicine. In anesthesiology, accurately calculating maximum safe doses of local anesthetics (LAs)
is crucial to prevent complications such as local anesthetic systemic toxicity (LAST). Current methods for determining LA
dosage are largely based on empirical guidelines and clinician experience, which can result in significant variability and dosing
errors. Al models may offer a solution, by processing multiple parameters simultaneously to suggest adequate LA doses.

Objective: This study aimed to evaluate the efficacy and safety of 3 generative Al models, ChatGPT (OpenAl), Copilot
(Microsoft Corporation), and Gemini (Google LLC), in calculating maximum safe LA doses, with the goal of determining their
potential use in clinical practice.

Methods: A comparative analysis was conducted using a 51-item questionnaire designed to assess LA dose calculation across
10 simulated clinical vignettes. The responses generated by ChatGPT, Copilot, and Gemini were compared with reference
doses calculated using a scientifically validated set of rules. Quantitative evaluations involved comparing Al-generated doses
to these reference doses, while qualitative assessments were conducted by independent reviewers using a 5-point Likert scale.

Results: All 3 Al models (Gemini, ChatGPT, and Copilot) completed the questionnaire and generated responses aligned with
LA dose calculation principles, but their performance in providing safe doses varied significantly. Gemini frequently avoided
proposing any specific dose, instead recommending consultation with a specialist. When it did provide dose ranges, they often
exceeded safe limits by 140% (SD 103%) in cases involving mixtures. ChatGPT provided unsafe doses in 90% (9/10) of cases,
exceeding safe limits by 198% (SD 196%). Copilot’s recommendations were unsafe in 67% (6/9) of cases, exceeding limits by
217% (SD 239%). Qualitative assessments rated Gemini as “fair” and both ChatGPT and Copilot as “poor.”

Conclusions: Generative Al models like Gemini, ChatGPT, and Copilot currently lack the accuracy and reliability needed
for safe LA dose calculation. Their poor performance suggests that they should not be used as decision-making tools for
this purpose. Until more reliable Al-driven solutions are developed and validated, clinicians should rely on their expertise,
experience, and a careful assessment of individual patient factors to guide LA dosing and ensure patient safety.
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Introduction

Generative artificial intelligence (AI), powered by large
language models (LLMs), has emerged as a promising
tool for enhancing medical decision-making [1]. These Al
models, which process vast amounts of text data to generate
human-like responses, have demonstrated capabilities in drug
discovery and dosing optimization [2,3].

Recent studies have extensively evaluated the perform-
ance of generative Al models in medical question-answering
scenarios. These models have shown promising results in
medical licensing examinations [4,5] clinical case discussions
and diagnostic reasoning [6,7]. However, their perform-
ance varies significantly based on task complexity. While
generative Al models demonstrate strong capabilities in tasks
requiring medical knowledge recall and explanation, they
show limitations in scenarios demanding precise numeri-
cal calculations or complex clinical decision-making [8].
Understanding these varying capabilities of LLMs across
different medical tasks is crucial when evaluating their
potential role in clinical applications that require both medical
knowledge interpretation and accurate numerical computa-
tions. This is particularly relevant for local anesthetic (LA)
dosing, where calculation accuracy directly impacts patient
safety [9,10].

LAs represent one such challenging area in clinical
practice [11]. These drugs, used to induce temporary loss
of sensation in specific body areas [12], require particularly
careful dosing due to their narrow therapeutic window. The
optimal dosing of LAs is complex, influenced by a variety of
factors including patient-specific characteristics, underlying
health conditions, and potential drug interactions [13].

Current methods for LA dose calculation rely heavily
on empirical guidelines and clinician expertise, with no
standardized recommendations universally adopted [14].
While several mobile apps exist for LA dose calculation,
most allow the computation of potentially unsafe doses.
Recently, LoAD Calc (Local Anesthetics Dose Calculator)
was developed as a computational tool to systematize LA
dose calculation [15], but like all specialized medical tools
for dose calculations, it requires extensive validation to
meet medical device regulations before clinical implemen-
tation. Meanwhile, health care providers increasingly turn
to readily available Al models for clinical decision support
[16,17]. Given this trend and the widespread accessibility
of generative Al models, understanding their capabilities
and limitations in LA dose calculation becomes crucial for
patient safety. Empirical approaches and unsafe calculation
tools can lead to overdosing and adverse outcomes, such as
local anesthetic systemic toxicity (LAST) [18]. Understand-
ing the capabilities and limitations of Al models in LA dose
calculation is therefore crucial for patient safety, particularly
given their widespread accessibility in health care settings
[19].
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In this context, generative Al emerges as a promising tool
to enhance the precision of LA dose calculation. The aim of
this study was to evaluate the efficacy and safety of 3 leading
generative Al models in addressing the complexities of LA
dose calculation. By analyzing their responses to a dedica-
ted questionnaire including clinical vignettes, we sought to
assess the accuracy and reliability of these Al algorithms
in optimizing LA dosing and calculating maximum safe LA
doses.

Methods
Study Design

This study is a comparative analysis of the performance
of 3 generative Al models on the knowledge of LA dos-
ing and computation of maximum doses in 10 simulated
vignettes. Three of the most popular generative Al models:
ChatGPT (OpenAl), Copilot (Microsoft Corporation), and
Gemini (Google LLC), were exposed to a questionnaire about
LA dose calculation once in June 2024.

Questionnaire

A 51-item questionnaire, derived from a protocol developed
by anesthesiologists to test LA calculation by clinicians [20],
included 3 questions on model performance in answering
medical questions and output accuracy, 17 questions on LA
dose calculation specifics, 1 introductory question on dose
determination in clinical vignettes, and 10 clinical vignettes,
each followed by 2 questions on the assessed safety of model
outputs. These clinical vignettes were initially created to carry
out a parallel group randomized controlled trial, the protocol
of which has already been published [20]. The purpose of
these vignettes was to compute the maximum safe dose of
3 commonly used LAs, alone or in combination (mixture of
2 different LAs). Different clinical settings were described,
and the patients’ physical characteristics, comorbidities, and
medications varied significantly. The complete questionnaire
is available in Multimedia Appendix 1.

Al Model Data Generation

We analyzed the latest stable versions of 3 generative
Al models, namely ChatGPT-4.0, Microsoft Copilot, and
Google Gemini 1.0. These models were selected due to
their popularity at the time of the study, their widespread
accessibility in health care settings, and their representation
of current state-of-the-art technology from 3 leading Al
companies (OpenAl, Microsoft, and Google) [21,22]. All
models were accessed through their public web interfaces
using standard parameter settings between noon and 5:00 PM
UTC during our data collection period (June 19-24, 2024).
Each model was presented with the exact prompts provided in
the questionnaire (Multimedia Appendix 1) in a standardized
sequence. Given the stochastic nature of LLMs, which can
produce varying responses across multiple runs, we opted for
a single-run approach to mirror real-world clinical scenarios
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where practitioners typically rely on single queries. The
responses were recorded in a separate Microsoft Word file
for subsequent analysis.

Definition of Maximum Safe Doses

The expected maximum safe doses were determined manually
using a set of scientifically grounded -calculation rules
previously described and used in the development of the
LoAD Calc app [15]. The anticipated results were calcula-
ted using the app itself. Before the study, these results were
cross-checked by 3 anesthesiologists who manually recompu-
ted the calculations for each vignette using the LoAD Calc
calculation rules, without using the app itself.

Typically, maximum safe doses are calculated in mil-
ligrams. However, in clinical practice, anesthesiologists
administer a volume of LA, the concentration of which can
vary, rather than a specific quantity of LA. Thus, while
toxicity correlates with the quantity (in milligrams) of LA
administered, it is more clinically relevant to determine
the maximum volume (in milliliters) of LA suitable for a
particular patient and a specific LA concentration. Therefore,
half of the vignettes required calculating volumes while the
other half dealt with milligrams.

Initially, each maximum safe dose was calculated in
milligrams and then converted back to milliliters based on
the concentration of the LA used in the vignette. This volume
was rounded down to the nearest integer. An overdose was
defined as any dose exceeding this maximum volume or its
corresponding quantity of LA in milligrams.

Quantitative Evaluation

For the quantitative evaluation values in milligrams or
milliliters given by each AI model were compared with
the values computed with the full set of rules. Briefly, the
first step was to determine the calculation weight (CW). To
determine the CW, the BMI and ideal body weight (IBW)
using Devine formula were calculated [23]. CW was capped
at 70kg to ensure safe LA doses. The CW was determined as
follows:
1. If actual weight (AW) was <70 kg, BMI<30 kg/m?, and
IBW >AW, then CW=AW.
2. If AW<70 kg, BMI<30 kg/m?, and IBW=<AW, then
CW=IBW.
3. If AW<70 kg and BMI=30 kg/m?, then CW=IBW.
4. If AW>70 kg and IBW>70 kg, then CW=70 kg.
5. If AW>70 kg and IBW<70 kg, then CW=IBW.

Next, the maximum safe dose was adjusted based on patient
factors affecting LA metabolism. For patients aged 70
years or older, with renal dysfunction (glomerular filtration
rate <50 mL/min), hepatic dysfunction (prothrombin time
<50%), heart failure (left ventricular ejection fraction <30%),
pregnancy, or using major cytochrome P450 1A2 or 3A
inhibitors (eg, ciprofloxacin and macrolides), the maximum
dose was reduced by 20%. If 2 or more of these factors
were present, it was reduced by 30%. A simplified calculation
relies solely on the patient’s AW or IBW to compute the
maximum safe dose using the following formula [24]:
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Maximum dose(mg) = Weight(AW v IBW)(kg) x Dose limit for chosen LA(::‘—gg)
While patient-specific adaptations are important for safety,
a simplified calculation method relying solely on patient
weight is more commonly used in clinical practice [19].
This dual approach reflects the complexity of LA dosing,
where multiple calculation methods coexist. While we chose
the comprehensive method as our primary evaluation criteria
for its rigorous safety assessment, including the simplified
method as a secondary outcome helps contextualize our
findings within current clinical practices.

Qualitative Evaluation

To conduct a qualitative assessment, a comprehensive list of
elements crucial for reproducing the calculation rules used by
LoAD Calc was predefined. From this selection, a detailed
list of items was compiled and organized in a Microsoft
Excel file (Multimedia Appendix 2). The 2 independent
reviewers were board-certified anesthesiologists with over 5
years of clinical experience in regional anesthesia and LA
dose calculation. Their familiarity with LoAD Calc in both
clinical practice and research settings ensured a thorough
understanding of LA dosing principles. For each element,
reviewers evaluated domains by considering the accuracy of
dose calculations compared with reference values, consis-
tency between stated principles and computed doses, and
relevance of provided explanations to clinical practice. These
aspects were synthesized into a single rating for each domain.
This balanced approach aimed to evaluate the performance of
Al models beyond just numerical accuracy. The reviewers,
blinded to the AI models, assessed the performance of each
Al for every predefined individual item on a 5-point Likert
scale (l=very poor, 2=poor, 3=fair, 4=good, and S5=very
good).

Outcomes

The primary outcome was the overall overdose rate using the
comprehensive set of calculation rules used in the devel-
opment of LoAD Calc. The secondary outcomes included
assessing the overdose rate based on the simulated patient’s
IBW and AW, as well as examining the overdose rate
associated with each studied LA. In addition, a qualitative
evaluation was conducted to gauge the AI’s proficiency in
considering individual elements of the calculation process.

Statistical Analysis

Data were entered in an Excel Binary File Format (.xIs) file
and curated using Stata (version 17.0; StataCorp LLC). If
ranges were suggested by the AI model, the lowest dose
advised was used. Descriptive characteristics were reported
using means and SDs, as were the LA values exceeding the
reference doses. The frequencies of categorical variables were
calculated and reported in percentages. An overall value was
computed for the qualitative evaluation of each Al model
and rounded to the nearest integer to report a consistent
rating. Each element was also specifically analyzed, and
ratings reported accordingly. When reviewers disagreed on
a rating, the median value was computed and rounded to
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the nearest integer. Cronbach o coefficient was computed to
assess inter-rater reliability.

Results

All 3 models were able to complete the questionnaire. The
complete questionnaires with the answers given by each
model can be found in Multimedia Appendix 3.

Suppan et al

Gemini only generated 3 ranges of values (3/10, 30%), one
for each LA tested. In the 2 instances where mixtures were
used (2/3, 67%), the values provided exceeded maximum safe
doses by 140% (SD 103%) (Table 1). This model’s responses
contained no precise dose calculations or specific doses or
volumes, and included statements about consulting medical
professionals for accurate dosing guidance.

Table 1. Detailed values provided by Gemini, ChatGPT, and Copilot for each vignette. The maximum safe doses were computed using the full

calculation rules.

Vignette Local anesthetic Reference value Mixture Gemini ChatGPT Copilot
1 Ropivacaine (mg) 165 No 150 165 165

2 Levobupivacaine (mL) 9 Yes 15 20.6 10

3 Lidocaine (mg) 40 Yes B 270 270

4 Levobupivacaine (mL) 18 No — 21 28

5 Levobupivacaine (mg) 110 No — 240 240

6 Ropivacaine (mL) 18 Yes — 64 —

7 Levobupivacaine (mg) 82.5 No — 120 150

8 Lidocaine (mL) 6 Yes 18.75 33.75 33.75
9 Ropivacaine (mg) 123.75 No — 270 33.75
10 Ropivacaine (mL) 29 No — 48 16

4Not available.

ChatGPT provided values for all vignettes. These values were
unsafe in 9 cases (9/10, 90%). In unsafe cases, the values
proposed by the Al model exceeded maximum safe doses by
198% (SD 196%; 129, SD 143 mg for lidocaine, 46, SD 58
mg for levobupivacaine, and 70, SD 67 mg for ropivacaine).

Copilot provided values for 9 cases (9/10, 90%). These
values were always safe when ropivacaine was the LA
tested. They were nevertheless unsafe in the 6 cases where
either lidocaine or levobupivacaine were used (6/9, 67%). In
these cases, the values proposed by the Al model exceeded
maximum safe doses by 217% (SD 239%; 129, SD 143 mg
for lidocaine and 52, SD 60 mg for levobupivacaine). When
values lower than the ones used as reference were given no
details on the calculation were given. Detailed values are
given in Table 1.

When considering IBW, the proportion of LA overdose
remained unchanged with Gemini. It was of 70% (7/10) with

ChatGPT and 56% (5/9) with Copilot. When the patient’s
actual weight was the only parameter taken into account
to determine maximum LA doses, the values provided by
Gemini were still too high in the 2 instances where mix-
tures were used (2/3, 67%). However, the proportion of LA
overdose dropped to 40% with ChatGPT, and to 33% with
Copilot.

The qualitative assessments conducted by the 2 independ-
ent reviewers showed high consistency, with a Cronbach a
value of 0.87 and no differences exceeding a single level on
the Likert scale. A total of 5 disagreements were recorded
for Gemini and Copilot (5/8, 63%), and only 1 for ChatGPT
(1/8, 13%). Gemini was rated as “fair,” while both ChatGPT
and Copilot were rated “poor.” Copilot had the highest rate of
“very poor” ratings (3/8, 38%; Table 2).

Table 2. Qualitative analysis of Gemini, ChatGPT, and Copilot for specific local anesthetics dose calculation elements.

Criteria for dose adaptation Gemini ChatGPT Copilot
Height and weight Poor Poor Poor

Age Fair Poor Poor
Renal dysfunction Good Good Fair
Hepatic insufficiency Fair Poor Fair
Heart failure Fair Poor Poor
Pregnancy Fair Very poor Very poor
Drugs decreasing LA? metabolism Fair Poor Very poor
Use of LA mixtures Poor Poor Very poor
Overall Fair Poor Poor
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4L A: local anesthetic.

Discussion

Principal Findings

In this study, the evaluated generative Al models gener-
ally advised unsafe LA doses when confronted with real-
istic clinical vignettes. The analysis showed considerable
variability in the outputs from these models, with Gemi-
ni’s responses containing the fewest unsafe doses but also
providing the least number of specific recommendations.
Importantly, most Al-generated doses were deemed unsafe
when evaluated against a comprehensive set of calculation
rules that prioritize the lowest, safest dose. Even when using
less stringent criteria, Al models still tended to recommend
excessively high doses, raising serious safety concerns about
their potential use in clinical practice.

While our study focused on general-purpose Al models,
it’s worth noting that specialized tools for LA dose calcu-
lation are rare. As analyzed in our previous work [15],
most available tools for LA dose calculation were found
to be potentially unsafe, allowing computation of excessive
doses. LoAD Calc, which served as our reference standard,
was specifically designed to address these safety concerns.
The significant performance gap between this purpose-built
medical tool and general-purpose Al models highlights
the importance of domain-specific knowledge and safety
constraints in clinical applications.

While the models’ responses included general recommen-
dations about dose adaptation based on patients’ comor-
bidities or treatments, when asked to perform specific
calculations in the clinical vignettes, the calculated outputs
showed significant inconsistencies. The limitations in dose
adaptation calculations based on patient-specific factors, such
as comorbidities or drug interactions, further underscore their
limitations [8]. Personalized medicine requires an approach
that Al models currently cannot provide adequately [10].
Furthermore, all models underperformed when tasked with
calculating doses for LA mixtures, a common practice
in anesthesiology, indicating their current inadequacies in
complex clinical scenarios [25].

These findings align with previous research that has
questioned the reliability of AI in critical medical applica-
tions. For instance, while Al has demonstrated promise in
diagnostic imaging and drug discovery, its performance in
decision-making tasks like diagnosis and dose calculation,
remains inconsistent [26]. When processing multiple clinical
variables, these models generate errors that can compromise
patient safety [27,28].

The clinical implications are especially concerning given
the severe consequences that can arise from LA dosing errors.
When safe dosing limits are exceeded, LAST can manifest
through central nervous system toxicity (seizures and loss of
consciousness) and cardiovascular collapse. This is especially
alarming for the high-risk scenarios in our vignettes involving

https://ai.jmir.org/2025/1/e66796

patients with organ system dysfunction (hepatic, renal, or
cardiac), advanced age, or concurrent medications affecting
LA metabolism, where the safety margin is already reduced.
The significant overdosing we observed with LA mixtures is
particularly dangerous in clinical practice, as the combined
toxicity of multiple agents can potentiate adverse effects and
complicate resuscitation efforts if LAST occurs.

A notable concern was the lack of transparency in how
Al models like Copilot arrived at their dose recommen-
dations, sometimes suggesting lower, safe doses without
clear explanations. This “black box” nature poses signifi-
cant risks, as it prevents users from understanding the AI’s
decision-making process, potentially leading to errors [29].
In addition, AI models are susceptible to hallucinations,
generating content that is not based on real or existing data
and thus misrepresenting reality [30]. Previous research has
also demonstrated that generative Al can fabricate references,
misleading users into believing that the information provided
is scientifically grounded [31].

In the qualitative assessment, Gemini received the highest
overall rating for its explanations on adjusting doses
according to different patient characteristics and medications.
However, its tendency to withhold exact dosage recommen-
dations, opting for a safer approach, diminishes its useful-
ness for dose computation. While this conservative approach
of recommending specialist consultation aligns with safety
principles, it limits practicality for real-time clinical use. As
noted in previous research, optimizing Gemini to provide
more direct answers to medical queries could enhance its use
[32].

Given these outcomes, the applicability of these 3
generative Al models in clinical practice for LA dose
calculation remains limited. The AI models tested were
unable to consistently provide safe and accurate dosage
recommendations, which is crucial in anesthesiology to
prevent complications such as LAST. Health care professio-
nals should exercise caution when considering the use of
generative Al models for LA dose calculation. The study
suggests that while AI has potential in certain aspects
of medical practice, its application in dose computation
for LAs is potentially dangerous and therefore premature.
Until Al models can reliably incorporate complex, patient-
specific factors and adhere to stringent safety guidelines,
their role should be limited to supplementary tools rather
than primary decision-makers [33,34]. Preference should be
given to Al systems that are transparent in their decision-
making processes, allowing clinicians to understand and
verify recommendations. Al models that integrate contin-
uous learning capabilities and up-to-date medical guide-
lines would be more suitable for clinical applications. At
present, clinicians should prioritize their clinical judgment
and experience, carefully evaluating individual patient factors
to guide LA dosing and maintain patient safety.
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This study evaluated generative AI models through
their default public interfaces using standardized prompting,
mirroring how health care providers would typically access
these tools in clinical practice. This methodological choice
was deliberate, as surveys indicate most clinicians use these
models through standard web interfaces rather than fine-
tuned versions or specialized prompting strategies [16,19].
While fine-tuning these models with domain-specific data
on LA dosing might potentially improve performance, such
customization requires technical expertise, computational
resources, and access to proprietary APIs, resources generally
unavailable to most health care providers. In addition, even
fine-tuned models would require rigorous clinical valida-
tion equivalent to medical devices before implementation in
clinical practice, highlighting the gap between technological
capability and clinical applicability.

Our standardized prompting approach focused on
obtaining direct dosing recommendations rather than
explicitly requesting step-by-step reasoning processes,

aligning with our primary research objective of evaluating
output safety and reliability rather than reasoning trans-
parency. As previous studies have noted, generative Al
models can demonstrate a disconnect between reasoning and
output accuracy, providing seemingly sound explanations for
incorrect outputs or correct answers with flawed reasoning

[6].
Limitations

This study has several limitations. The evaluation was based
on simulated clinical vignettes, which, while designed to
mimic real-world scenarios, cannot capture the full complex-
ity of actual clinical practice. While our set of vignettes
was designed to cover major clinical variables affecting
LA dosing, we recognize that real-world scenarios present
an even wider range of patient characteristics and clinical
contexts. In addition, the study relied on predefined calcu-
lation rules and expert evaluations, which, while rigorous,
may not encompass all possible clinical scenarios or dosing
variations. Furthermore, the study focused on 3 specific Al

Suppan et al

models, currently available to the public, so the findings
may not be generalizable to other generative Al systems
or future iterations of these models. Another limitation is
the static nature of AI models, which lack the ability to
update their knowledge or reasoning processes in real-time.
This is particularly problematic in medicine, where new
research and clinical guidelines continually evolve. With-
out regular updates to their training data, Al models may
quickly become outdated, leading to recommendations that
do not reflect current best practices. Finally, our single-run
methodology, while reflecting typical clinical usage where
practitioners rely on single queries, presents a limitation given
the stochastic nature of LLMs. This methodological choice
prevents assessment of response consistency and reliability
across multiple attempts, particularly relevant for drug dosing
calculations, where response variability could have safety
implications. Future research could explore whether fine-
tuned models specifically trained on LA dosing guidelines
or alternative prompting strategies requesting step-by-step
reasoning might improve calculation accuracy. In addition,
multiple runs should be considered to evaluate response
consistency and establish confidence intervals for dosing
recommendations. Such investigations could enhance our
understanding of these models’ limitations while maintaining
the focus on patient safety.

Conclusion

In conclusion, while generative AI models like Gemini,
ChatGPT, and Copilot offer significant promise, their current
capabilities fall short in the critical area of LA dose calcula-
tion. The study’s findings suggest that these Al tools are not
yet ready for clinical use in this context, primarily due to their
inconsistent performance and the potential for recommending
unsafe dosages. Future advancements in Al technology must
focus on enhancing the accuracy, transparency, and adapta-
bility of these models to ensure they can be safely integra-
ted into medical practice. Until then, reliance on clinician
expertise and established dosing tools remains essential for
ensuring patient safety.
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