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Abstract

Background: Alzheimer disease and related dementias (ADRD) are complex disorders with overlapping symptoms and
pathologies. Comprehensive records of symptoms in electronic health records (EHRs) are critical for not only reaching an accurate
diagnosis but also supporting ongoing research studies and clinical trials. However, these symptoms are frequently obscured
within unstructured clinical notes in EHRs, making manual extraction both time-consuming and labor-intensive.

Objective: We aimed to automate symptom extraction from the clinical notes of patients with ADRD using fine-tuned large
language models (LLMs), compare its performance to regular expression-based symptom recognition, and validate the results
using brain magnetic resonance imaging (MRI) data.

Methods: We fine-tuned LLMs to extract ADRD symptoms across the following 7 domains: memory, executive function,
motor, language, visuospatial, neuropsychiatric, and sleep. We assessed the algorithm’s performance by calculating the area under
the receiver operating characteristic curve (AUROC) for each domain. The extracted symptoms were then validated in two
analyses: (1) predicting ADRD diagnosis using the counts of extracted symptoms and (2) examining the association between
ADRD symptoms and MRI-derived brain volumes.

Results: Symptom extraction across the 7 domains achieved high accuracy with AUROCs ranging from 0.97 to 0.99. Using
the counts of extracted symptoms to predict ADRD diagnosis yielded an AUROC of 0.83 (95% CI 0.77-0.89). Symptom associations
with brain volumes revealed that a smaller hippocampal volume was linked to memory impairments (odds ratio 0.62, 95% CI
0.46-0.84; P=.006), and reduced pallidum size was associated with motor impairments (odds ratio 0.73, 95% CI 0.58-0.90;
P=.04).

Conclusions: These results highlight the accuracy and reliability of our high-throughput ADRD phenotyping algorithm. By
enabling automated symptom extraction, our approach has the potential to assist with differential diagnosis, as well as facilitate
clinical trials and research studies of dementia.
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Introduction

Alzheimer disease and related dementias (ADRD) encompass
a group of disorders characterized by cognitive and behavioral
impairments, which progressively affect memory, thinking, and
activities of daily living [1]. Among them, Alzheimer disease
(AD) is the most common form of dementia and affects
approximately 6.7 million individuals in the United States [1].
Other major types of ADRD include dementia with Lewy bodies
(DLB), frontotemporal dementia (FTD; behavioral variant),
Parkinson disease (PD), primary progressive aphasia (PPA),
and vascular cognitive impairment (VCI), each presenting
unique symptom profiles with overlapping characteristics. For
example, AD typically presents with memory loss [2]; DLB
with visual hallucinations, motor symptoms, and sleep
disturbances [3]; FTD with behavioral and language symptoms
[4]; and PD with motor symptoms [5]. However, clinical
presentations and symptoms vary with neuropathology, which
contributes to diagnostic challenges. Documentation of ADRD
symptoms often exists solely within unstructured clinical notes
in electronic health records (EHRs) without any standardization,
and manual chart review is error prone and time consuming.
The development of an artificial intelligence algorithm for
automatic symptom extraction from clinical notes could
significantly aid in overcoming these challenges, thereby
offering substantial benefits for diagnosis and intervention
strategies. Additionally, the symptom data in clinical notes have
the potential to facilitate research studies, for example, studies
of the longitudinal progression of symptoms in patients with
ADRD or how symptoms are documented, shedding light on
both medical patterns and recording practices [6].

Symptom extraction is often performed by manual expert chart
review, which is inefficient and labor intensive. Traditional text
mining and natural language processing (NLP) techniques,
which rely on symptom-related keywords specified by domain
experts [7,8], can facilitate the symptom extraction process. For
example, Vijayakrishnan et al [9] developed a rule-based NLP
pipeline to identify heart failure symptoms using the
Framingham heart failure diagnostic criteria. Jackson et al [10]
created a unified NLP model for extracting severe mental illness
symptoms based on a keyword lexicon crafted by psychiatrists.
Moreover, Forsyth et al [11] developed a machine learning
model to extract breast cancer symptoms based on a code book
developed by physicians. However, these rule-based or
keyword-dependent methods are still susceptible to missing
semantic relationships and contextual information.

In contrast to traditional NLP techniques, the advent of deep
learning–based large language transformer models [12-14]
presents a significant improvement by understanding contextual
information and semantic relationships in clinical notes. In
particular, large language models (LLMs) are adept at
recognizing complex patterns and relationships within texts
using an attention-based transformer model [15]. For example,
a recent study used LLMs to extract cannabis use and

documentation in EHRs among children and young adults [16].
In another study, researchers created an LLM-based symptom
extraction model that can be applied to extract COVID-19
symptoms from Twitter data [17]. Indeed, by understanding the
context of keywords and terminologies, these models can enable
more accurate and sensitive symptom extraction.

In this study, we used LLMs [12,13,18] to extract symptoms
from the clinical notes of patients diagnosed with ADRD.
Symptoms were categorized into 7 domains: memory, executive
function, motor, language, visuospatial, neuropsychiatric, and
sleep, with distinction as impaired, intact, or no information.
This method quantified symptom occurrences for further
analysis. The overall aim was to develop an effective model for
automated symptom extraction, which may not only facilitate
the differential diagnosis of ADRD (AD, DLB, FTD, PD, PPA,
and VCI), but also support research on heterogeneity within
these subtypes. To evaluate the effectiveness of our LLM-based
approach, we compared it against a traditional rule-based method
using regular expressions for symptom extraction. We further
validated the model’s symptom predictions using brain volume
data derived from magnetic resonance imaging (MRI).

Methods

Study Dataset
The dataset consisted of the EHR data of patients from the
Massachusetts General Hospital (MGH) memory clinic
(collected between 2015 and 2022), who were over 50 years
old at their first visit and had at least two MGH memory clinic
encounters. The dataset was further filtered to exclude patients
without an office or telemedicine visit or those who did not
have a progress note with at least 512 characters. The final
dataset was filtered to only include patients with 1 of 6 ADRD
diagnoses during their latest encounter: AD, DLB, FTD, PD,
PPA, or VCI, and without mixed dementia in their EHR history.
See Multimedia Appendix 1 for the full list of diagnosis names
by ADRD category.

Ethical Considerations
This study was approved by the Mass General Brigham
Institutional Review Board (protocol 2015P001915), with a
waiver of informed consent granted for secondary analysis of
electronic health records. No participant compensation was
provided. Data were extracted from Epic and securely stored
on servers within the Mass General Brigham firewall, with
access limited to authorized study personnel in accordance with
institutional privacy and data security policies.

Preprocessing
To process the notes, we applied medspaCy, a specialized text
analysis tool for clinical notes [19]. We extracted key sections
of the notes that held important information regarding the
patient’s symptoms such as medical history, examination, and
impression. The extraction tool was customized for each
physician’s template. Subsequently, we sampled notes based
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on ADRD diagnoses and split notes into sentences or phrases
for symptom annotation.

Annotation
An expert (AB) conducted thorough review of the medical
literature and identified symptoms from seven domains typically
present in patients living with ADRD: (1) memory, (2) executive
function, (3) motor, (4) language, (5) visuospatial, (6)
neuropsychiatric (which also incorporates symptoms related to
behavior and mood), and (7) sleep (Multimedia Appendix 2).
A behavioral neurologist (JD) provided critical input throughout
both processes. Subsequently, another expert (MM) annotated

sentences or phrases as symptom (patient shows intact or
impaired symptoms) or no symptom (no information on patient
symptoms). Further, MM annotated sentences or phrases as
intact, impaired, or no information for each of the 7 symptom
domains, using a web-based JavaScript annotation tool
developed by AS. Using these annotations, we created 2 gold
standard datasets: gold standard dataset I (composed of
sentences or phrases labeled as symptom or no symptom) and
gold standard dataset II (composed of sentences or phrases
labeled as intact, impaired, or no information across the 7
symptom domains). The process for creating the gold standard
dataset is illustrated in Figure 1A.

Figure 1. Model development and architecture. (A) Gold standard dataset creation and model development. This workflow describes the development
of a 2-tier hierarchical model to classify symptoms in clinical notes. Initially, 1712 memory clinic notes are processed, and sentences sampled across
various Alzheimer disease and related dementias (ADRD) diagnoses are manually annotated using a web tool, producing 2 gold standard datasets: one
identifying symptom presence, and another categorizing symptom status across 7 domains. The 2 classification models, built on BioBERT, undergo
fine-tuning using 80% of the data and testing using 20% of a held-out dataset. (B) Illustration of the application of BioBERT in stage I and stage II
models for symptom extraction. dx: diagnosis.
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Symptom Recognition Using BioBERT
We developed a 2-tier hierarchical model for symptom
extraction. The stage I binary symptom classification model
classified each input sentence as symptom or no symptom. The
stage II multi-label symptom classification model is composed
of 7 distinct models, with each trained to classify sentences or
phrases from 1 of the 7 symptom domains, namely memory,
executive function, motor, language, visuospatial,
neuropsychiatric, and sleep. Each stage II multi-label symptom
classification model classifies sentences or phrases into 3
categories: impaired, intact, and no information. The impaired
category encapsulates symptoms indicative of impairment within
the specific domain, highlighting manifestations of dysfunction.
Conversely, the intact category encompasses symptoms that
reflect normal functioning of the respective symptom domain.
The no information category encompasses all remaining
symptoms from other categories (eg, a sentence that only
mentions motor symptom is categorized as no information in
the memory model), supplemented by nonsymptomatic
sentences.

Both the stage I binary symptom classification model and stage
II multi-label symptom classification model were developed
using BioBERT [20], an LLM pretrained on a large corpus of
biomedical text (eg, PubMed abstracts and PubMed Central
full-text articles) and implemented using the HuggingFace’s
Pythontransformers package (version 4.8.2) [21]. The stage I
binary symptom classification model was initialized with its
pretrained parameters of BioBERT and then fine-tuned on the
gold standard dataset I (80% training set, 20% hold-out set).
The stage II multi-label symptom classification model was again
initialized with pretrained parameters and later fine-tuned on
gold standard dataset II (80% training set, 20% hold-out set).
Optuna hyperparameter tuning was used to tune the
hyperparameters for both models, including training epochs,
batch size, and learning rate, with a 20-trial study to maximize
the area under the precision-recall curve. An early stopping
criterion was implemented to cease training if the loss did not
change substantially in 4 epochs, preventing overfitting.

Figure 1B shows how we used BioBERT for the stage I and
stage II models. We used the pretrained BioBERT model as a
starting point and fine-tuned it for our task. As shown in Figure
1B, the extracted sentences are first processed through the
BioBERT tokenizer, which splits the raw text into tokens. For
example, the sentence “Patient has difficulty walking” is
tokenized. Then, each token is converted into a pretrained
embedding, capturing the semantic meaning of the word in the
context of the sentence, along with a position embedding that
encodes the token’s location within the sequence to help the
model understand word order and structure. A [CLS] token is
added at the beginning of each sentence. Its embedding is used
to represent the aggregated meaning of the entire sentence. A
[SEP] token is placed at the end to signify the boundary between
input tokens. E (embedding) from 1 to n represents the token
embeddings, with the total count of n including [CLS] and
[SEP]. These embeddings are passed through BioBERT’s
transformer layers, which use self-attention and feed-forward
neural networks to generate context-aware embeddings. As the
sentence passes through the layers, the embedding of the [CLS]

token becomes enriched with contextualized information derived
from the full sentence, which represents the overall meaning of
the input. Finally, the embedding of the [CLS] token is used as
the input for the linear layer, which calculates the logits for each
class. Sigmoid (for binary classification) or SoftMax (for
multi-class classification) as a decision function is applied to
these logits to obtain class probabilities, and the class with the
highest probability is selected as the model’s predicted label.
We fine-tuned BioBERT separately for stage I (binary
classification) using gold standard dataset I and for stage II
(multi-label classification) using gold standard dataset II. The
fine-tuning process primarily involves adjusting the parameters
of the BioBERT transformer layers and the linear layer to
optimize performance for each stage’s specific classification
task.

We also experimented with other pretrained models as part of
our preliminary experiments, including ClinicalBERT,
RoBERTa, and LLaMA 2, with the latter being a generative
transformer model. Despite fine-tuning (for ClinicalBERT and
RoBERTa) or prompt engineering (for LLaMA 2), the models
did not achieve the same level of performance as BioBERT in
symptom classification based on the area under the receiver
operating characteristic curve (AUROC) and F1-score. All text
processing and LLM development procedures were conducted
in Python (version 3.8.15).

Symptom Recognition Using Regular Expressions
We created a list of regex patterns for ADRD symptoms to
compare the efficacy of our advanced LLM approach with the
traditional rule-based regex technique. First, 100 patient visit
notes across the 6 ADRD diagnoses (AD, DLB, FTD, PD, PPA,
and VCI) were randomly sampled. These notes were analyzed
to identify examples from each of the 7 symptom domains
(memory, executive function, motor, language, visuospatial,
neuropsychiatric, and sleep) and develop a comprehensive set
of regex patterns for each symptom domain. An expert
behavioral neurologist (JD) provided critical guidance
throughout this process. Next, these regex patterns were used
to flag sentences or phrases corresponding to each symptom
domain in the entire set of visit notes. The symptom counts for
each note were then aggregated to calculate the total number of
matches for each domain. For the full list of regex patterns,
please see Multimedia Appendix 3.

Validation via ADRD Differential Diagnosis
We compiled symptom counts across 7 domains (memory,
executive function, motor, language, visuospatial,
neuropsychiatric, and sleep) based on predictions of our 2-tier
hierarchical model on the entire set of visit notes. These
symptom counts served as input features for a multinomial
L1-regularized logistic regression model to classify 6 ADRD
diagnoses (AD, DLB, FTD, PD, PPA, and VCI). To optimize
the model, we employed 5-fold cross-validation and grid search
cross-validation to determine the optimal value of alpha for L1
regularization using the Pythonscikit-learn (version 0.24.2)
package. Additionally, we incorporated the aggregated symptom
counts, derived from applying the ADRD symptom regex
patterns (Multimedia Appendix 3) on the same dataset, as
features in the machine learning model. We hypothesized that
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symptoms identified with our 2-tier hierarchical model would
have superior performance than those derived from regex
patterns in predicting ADRD diagnoses. All ADRD differential
diagnosis analyses were conducted in Python (version 3.8.15).

Validation via MRI Brain Volume Data
To evaluate symptom predictions using MRI, we selected
memory clinic notes with an MRI scan performed within 1 year
of the visit. We ensured that none of these notes overlapped
with the gold standard datasets. Each clinical note was matched
with a unique MRI scan from the Mass General Brigham patient
database, with the imaging date being within 1 year of the visit
date. The SynthSeg+ pipeline [22] was used for brain
segmentation and volume estimation. Only those images whose
subcortical regions collectively surpassed a threshold of 0.65
in the average automated quality control score were selected
for further analysis. For patients with multiple eligible clinical
images, the final brain volume was determined by averaging
the volumes across all qualifying images. Furthermore, to
account for individual differences, the volume of each brain
region was normalized by the intracranial volume.

In our brain volume analysis, we first selected a priori brain
regions associated with 2 of the most commonly disrupted
functions in patients with ADRD: memory and motor. For
memory symptoms, we investigated the bilateral hippocampus
and entorhinal cortex, both associated with the memory of recent
events, as well as the prefrontal cortex, which is related to
immediate memory [2,23-25]. For motor symptoms, our
evaluation encompassed the bilateral primary motor cortex, the
secondary motor cortex, the basal ganglia (including the caudate,
putamen, pallidum, and nucleus accumbens) along with the
thalamus (a structure with strong connections to the basal
ganglia), and the cerebellar gray and white matter [26-29].

Logistic regression was used to evaluate the volumes of brain
regions associated with symptoms, with a contrast of cases
having impaired symptoms and those having either intact
symptoms or no information. The analysis was conducted for
both memory and motor symptoms, with adjustments made for
age and sex, using the function glm in the R stats (version 4.3.2)

package. The reported results were adjusted for multiple
comparisons using the Benjamini-Hochberg method [30]. All
MRI brain volume analyses were conducted in R (version 4.2.1;
R Core Team). For a detailed workflow of validation using
MRI, see Figure S1 in Multimedia Appendix 4.

Results

Study Data
The study data consisted of visit notes from the latest encounters
of 1712 patients (Figure 2). The visit notes were from 866
(50.6%) male and 846 (49.4%) female patients, with an average
age at visit of 77.5 (SD 8.3) years. All patients had 1 of the
following ADRD diagnoses: AD, DLB, FTD, PD, PPA, and
VCI. The patient demographics are described in Table 1.

From these 1712 visit notes, we compiled 2 gold standard
datasets. Gold standard dataset I included 10,089 sentences or
phrases labeled as symptom (n=5468, 54.2%) or no symptom
(n=4621, 45.8%). Gold standard dataset II included 6784
sentences or phrases labeled as intact, impaired, or no
information across the 7 symptom domains. The ADRD
diagnoses in dataset II predominantly included AD (2862/6784,
42.2%) and DLB (1866/6784, 27.5%), followed by FTD
(879/6784, 13.0%), PD (628/6784, 9.3%), VCI (479/6784,
7.1%), and PPA (70/6784, 1.0%). Specifically, AD had the
highest counts for memory and visuospatial symptoms; DLB
led in executive function symptoms; PD was predominant in
motor symptoms; PPA led in language symptoms; and FTD
was notable for neuropsychiatric and sleep symptoms, with
high counts also noted in visuospatial and sleep symptoms for
VCI and DLB, respectively (refer to Table 2 for detailed
distributions). A standardized mean difference (SMD) threshold
of 0.1 was employed to assess the equilibrium of each metric,
with measurements exceeding 0.1 indicating a comparative lack
of balance. The MRI validation dataset included 582 visit notes
from 528 unique patients and had clinical MRI performed within
1 year (Figure S2 in Multimedia Appendix 4). For demographic
distribution related to these visit notes, refer to the last column
of Table 1.
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Figure 2. Consort diagram of the selection of patients with Alzheimer disease and related dementias (ADRD). This consort diagram illustrates the
patient selection process from the Massachusetts General Hospital (MGH) memory clinic. dx: diagnosis.

Table 1. Summary statistics of the demographic and clinical characteristics of 1712 patients, including a subset of 582 visits from 528 patients with
valid magnetic resonance imaging data.

MRIa sample (n=582)Total sample (N=1712)Characteristic

76.3 (7.3)77.5 (8.3)Age at visit (years), mean (SD)

Sex, n (%)

279 (47.9)846 (49.4)Female

303 (52.1)866 (50.6)Male

Race and ethnicity, n (%)

459 (78.9)1317 (76.9)Non-Hispanic White

10 (1.7)40 (2.0)Non-Hispanic Black

16 (2.7)42 (2.5)Non-Hispanic Asian

20 (3.4)54 (3.2)Hispanic or Latino

1 (0.2)3 (0.2)American Indian or Alaska Native

9 (1.5)25 (1.5)Other

67 (11.5)231 (13.5)Unavailable

Visit diagnosis, n (%)

378 (64.9)1117 (65.2)Alzheimer disease

44 (7.6)143 (8.4)Dementia with Lewy bodies

67 (11.5)195 (11.4)Frontotemporal dementia

15 (2.6)53 (3.1)Parkinson disease

24 (4.1)89 (5.2)Primary progressive aphasia

54 (9.3)115 (6.7)Vascular cognitive impairment

aMRI: magnetic resonance imaging.
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Table 2. Summary statistics of gold standard dataset II.

SMDgVCIf (n=479)PPAe (n=70)PDd (n=628)FTDc (n=879)DLBb

(n=1866)
ADa (n=2862)Total

(N=6784)
Characteristic

0.661h83.6 (7.0)72.4 (7.3)75 (7.7)75.8 (7.3)74.8 (7.4)79.9 (7.43)77.7 (7.9)Age at visit (years),
mean (SD)

0.540hSex, n (%)

281 (58.7)43 (61.4)142 (22.6)650 (73.9)468 (25.1)1637 (57.2)3221 (47.5)Female

198 (41.3)27 (38.6)486 (77.4)229 (26.1)1398 (74.9)1225 (42.8)3563 (52.5)Male

0.844hRace and ethnicity, n (%)

363 (75.8)68 (97.1)485 (77.2)251 (28.6)1498 (80.3)1948 (68.1)4613 (68.0)Non-Hispanic
White

16 (3.3)0 (0.0)0 (0.0)19 (2.2)15 (0.8)11 (0.4)61 (0.9)Non-Hispanic
Black

8 (1.7)0 (0.0)41 (6.5)7 (0.8)48 (2.6)109 (3.8)213 (3.1)Non-Hispanic
Asian

11 (2.3)0 (0.0)18 (2.9)0 (0.0)0 (0.0)324 (11.3)353 (5.2)Hispanic or Latino

0 (0.0)0 (0.0)0 (0.0)0 (0.0)0 (0.0)0 (0.0)0 (0.0)American Indian or
Alaska Native

0 (0.0)0 (0.0)0 (0.0)0 (0.0)0 (0.0)64 (2.2)64 (0.9)Other

81 (16.9)2 (2.9)84 (13.4)602 (68.5)305 (16.3)406 (14.2)1480 (21.8)Unavailable

0.275hMemory, n (%)

64 (13.4)5 (7.1)29 (4.6)33 (3.8)143 (7.7)493 (17.2)767 (11.3)Impaired

32 (6.7)2 (2.9)15 (2.4)49 (5.6)23 (1.2)98 (3.4)219 (3.2)Intact

383 (80.0)63 (90.0)584 (93.0)797 (90.7)1700 (91.1)2271 (79.4)5798 (85.5)No information

0.173hExecutive function, n (%)

54 (11.3)5 (7.1)68 (10.8)43 (4.9)256 (13.7)371 (13.0)797 (11.7)Impaired

21 (4.4)2 (2.9)16 (2.5)13 (1.5)70 (3.8)118 (4.1)240 (3.5)Intact

404 (84.3)63 (90.0)544 (86.6)823 (93.6)1540 (82.5)2373 (82.9)5747 (84.7)No information

0.562hMotor, n (%)

50 (10.4)8 (11.4)236 (37.6)32 (3.6)555 (29.7)321 (11.2)1202 (17.7)Impaired

44 (9.2)20 (28.6)117 (18.6)65 (7.4)246 (13.2)300 (10.5)792 (11.7)Intact

385 (80.4)42 (60.0)275 (43.8)782 (89.0)1065 (57.1)2241 (78.3)4790 (70.6)No information

0.345hLanguage, n (%)

25 (5.2)19 (27.1)31 (4.9)167 (19.0)89 (4.8)214 (7.5)545 (8.0)Impaired

24 (5.0)5 (7.1)22 (3.5)54 (6.1)54 (2.9)104 (3.6)263 (3.9)Intact

430 (89.8)46 (65.8)575 (91.6)658 (74.9)1723 (92.3)2544 (88.9)5976 (88.1)No information

0.154hVisuospatial, n (%)

29 (6.1)2 (2.9)31 (4.9)11 (1.3)90 (4.8)196 (6.8)359 (5.3)Impaired

16 (3.3)1 (1.4)18 (2.9)20 (2.3)29 (1.6)69 (2.4)153 (2.3)Intact

434 (90.6)67 (95.7)579 (92.2)848 (96.5)1747 (93.6)2597 (90.7)6272 (92.5)No information

0.453hNeuropsychiatric, n (%)

42 (8.8)1 (1.4)25 (4.0)236 (26.8)162 (8.7)274 (9.6)740 (10.9)Impaired

86 (18.0)4 (5.7)16 (2.5)97 (11.0)110 (5.9)331 (11.6)644 (9.5)Intact

351 (73.3)65 (92.9)587 (93.5)546 (62.1)1594 (85.4)2257 (78.9)5400 (79.6)No information
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SMDgVCIf (n=479)PPAe (n=70)PDd (n=628)FTDc (n=879)DLBb

(n=1866)
ADa (n=2862)Total

(N=6784)
Characteristic

0.246hSleep, n (%)

9 (1.9)0 (0.0)25 (4.0)76 (8.6)125 (6.7)98 (3.4)333 (4.9)Impaired

17 (3.5)0 (0.0)9 (1.4)16 (1.8)41 (2.2)74 (2.6)157 (2.3)Intact

453 (94.6)70 (100.0)594 (94.6)787 (89.5)1700 (91.1)2690 (94.0)6294 (92.8)No information

aAD: Alzheimer disease.
bDLB: dementia with Lewy bodies.
cFTD: frontotemporal dementia.
dPD: Parkinson disease.
ePPA: primary progressive aphasia.
fVCI: vascular cognitive impairment.
gSMD: standardized mean difference.
hIndicates comparative lack of balance.

Symptom Recognition Using a Transformer-Based
Language Model
We trained, validated, and tested a transformer-based LLM to
identify symptoms related to ADRD diagnoses. The symptom
extraction process was executed through a 2-stage framework.
The stage I binary symptom classification model categorized
sentences as either symptom or no symptom. The model attained
a micro-averaged AUROC of 1.00 (95% CI 0.99-1.00), along
with a micro-averaged F1-score of 0.98 (95% CI 0.97-0.98),
micro-averaged precision of 0.98 (95% CI 0.97-0.98), and
micro-averaged recall of 0.98 (95% CI 0.97-0.98), highlighting
its ability to accurately detect symptom presence. The 95% CIs
for each metric reflect the reliability of these estimates,
confirming the model’s overall efficacy in symptom
classification across diverse clinical features.

This initial classification is followed by the use of the stage II
multi-label symptom classification models, which further
classify each detected symptom into impaired, intact, and no
information. The 7 stage II models are tailored to each specific
domain (memory, executive function, motor, language,
visuospatial, neuropsychiatric, and sleep). All symptom domains
showed robust model performance, with micro-averaged
AUROC values of 0.97-0.99, micro-averaged F1-score values
of 0.89-0.96, micro-averaged precision values of 0.87-0.96, and
micro-averaged recall values of 0.91-0.96 across all symptoms.
Among these, we observed slightly lower metrics in the
visuospatial domain (micro-averaged AUROC: 0.97, 95% CI
0.95-0.99; micro-averaged F1-score: 0.89, 95% CI 0.85-0.93;
micro-averaged precision: 0.87, 95% CI 0.83-0.91;
micro-averaged recall: 0.91, 95% CI 0.87-0.94). Table 3
provides a comprehensive evaluation of the performance metrics
for both models.

Table 3. Performance of the 2-tier hierarchical symptom classification model.

Accuracya, value
(95% CI)

AUROCa,c, value
(95% CI)

Recalla, value
(95% CI)

Precisiona, value
(95% CI)

AUPRCa,b, value
(95% CI)

F1-scorea, value
(95% CI)

Model

0.98 (0.97-0.98)1.00 (0.99-1.00)0.98 (0.97-0.98)0.98 (0.97-0.98)1.00 (0.99-1.00)0.98 (0.97-0.98)Stage I binary symptom
classification model

Stage II multi-label symptom classification model

0.94 (0.92-0.96)0.99 (0.98-1.00)0.95 (0.94-0.97)0.96 (0.95-0.98)0.94 (0.91-0.96)0.96 (0.94-0.98)Memory

0.87 (0.84-0.90)0.98 (0.97-0.99)0.92 (0.90-0.95)0.90 (0.87-0.92)0.85 (0.82-0.89)0.91 (0.88-0.94)Executive function

0.93 (0.91-0.95)0.98 (0.97-0.99)0.94 (0.92-0.96)0.93 (0.91-0.95)0.90 (0.87-0.92)0.94 (0.92-0.96)Motor

0.91 (0.88-0.94)0.98 (0.96-0.99)0.93 (0.92-0.96)0.93 (0.91-0.96)0.97 (0.97-0.99)0.93 (0.92-0.96)Language

0.82 (0.78-0.87)0.97 (0.95-0.99)0.91 (0.87-0.94)0.87 (0.83-0.91)0.82 (0.78-0.87)0.89 (0.85-0.93)Visuospatial

0.90 (0.87-0.93)0.99 (0.98-1.00)0.92 (0.89-0.94)0.91 (0.88-0.94)0.94 (0.91-0.96)0.91 (0.89-0.95)Neuropsychiatric

0.95 (0.92-0.98)0.99 (0.98-1.00)0.96 (0.94-0.98)0.96 (0.94-0.98)0.94 (0.91-0.96)0.96 (0.94-0.98)Sleep

aThe performance metrics for both models are calculated as micro-averages.
bAUPRC: area under the precision-recall curve.
cAUROC: area under the receiver operating characteristic curve.
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Model Validation With ADRD Differential Diagnosis
To validate the accuracy of our 2-tier hierarchical symptom
classification model, we used a machine learning model to
classify ADRD diagnoses with the counts of identified
symptoms as model features. We compared 2 L1-regularized
logistic regression models: one based on regex-derived symptom
counts and another using counts derived from the 2-tier
hierarchical LLM. This method allowed us to assess the efficacy
of traditional regex techniques against more advanced LLM
approaches in the context of ADRD diagnostic accuracy.

First, we predicted ADRD diagnoses using L1 logistic regression
based on regex-derived symptom counts. Using regex patterns,
we extracted symptom counts from the latest visit notes of 1712
patients diagnosed with ADRD, spanning 7 domains: memory,
executive function, motor, language, visuospatial,
neuropsychiatric, and sleep. These counts were used to build
an L1-regularized multinomial logistic regression model, which
predicted the type of ADRD diagnosis using symptom counts
as features. The model’s average AUROC was 0.59 (95% CI
0.51-0.66). Detailed AUROC values for each ADRD diagnosis
relative to the rest are displayed in Figure 3A.

Figure 3. Performance of Alzheimer disease and related dementias (ADRD) differential diagnosis. (A) Receiver operating characteristic (ROC) curves
for predicting 6 ADRD diagnoses (Alzheimer disease [AD], dementia with Lewy bodies [DLB], frontotemporal dementia [FTD], Parkinson disease
[PD], primary progressive aphasia [PPA], and vascular cognitive impairment [VCI]) using an L1-regularized logistic regression model based on
regex-derived symptom counts. The area under the receiver operating characteristic curve (AUROC) is 0.59 (95% CI 0.51-0.66). (B) ROC curves for
an L1-regularized logistic regression model using 2-tier hierarchical large language model (LLM)-derived symptom counts. The AUROC is 0.83 (95%
CI 0.77-0.89). (C) Feature importance ranking for the model using LLM-derived symptom counts, with an average across the coefficients of symptoms
in all ADRD diagnoses. Executive function is the most important feature, followed by language, motor, memory, neuropsychiatric, visuospatial, and
sleep. AUC: area under the curve.
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Second, we predicted ADRD diagnoses using L1 logistic
regression based on LLM symptom counts. The second model,
leveraging symptom counts extracted from patient visit notes
via the 2-tier hierarchical LLM, aimed to predict specific ADRD
diagnoses using L1-regularized logistic regression. This model
demonstrated a substantial enhancement in diagnostic accuracy,
achieving an AUROC of 0.83 (95% CI 0.77-0.89) compared to
the AUROC of 0.59 (95% CI 0.51-0.66) obtained with the
regex-based model. This marked improvement highlights the
model’s efficacy in accurately classifying ADRD categories,
underscoring the potential of transformer-based BioBERT
models in capturing the context of clinical symptoms from notes.
The detailed AUROC for each diagnosis compared to the rest
is displayed in Figure 3B.

Further, analysis using feature importance derived from the
LLM-based logistic regression model showed that executive
function had the greatest predictive power on average, followed
by language, motor, memory, neuropsychiatric, visuospatial,
and sleep. This ranking, illustrated in Figure 3C, emphasizes
the critical roles of executive function, language, memory, and
motor symptoms in predicting ADRD diagnoses. Feature
importance rankings for each ADRD diagnosis are illustrated
in Figure S3 in Multimedia Appendix 4.

Model Validation With Brain MRI
We used MRI brain volume data to assess our model’s ability
to identify symptoms from clinical notes. We hypothesized that
the volumes of selected brain regions associated with each
domain would be smaller in patients with impaired symptoms
predicted from the notes compared to those without. The model
analyzed 582 sentences or phrases, identifying memory
impairment in 90.7% (528/582) and motor impairment in 80.6%
(469/582) of cases. In particular, we observed that
memory-impaired individuals showed smaller hippocampal and
prefrontal cortex volumes (SMDs >0.1), while motor-impaired
individuals had reduced volumes in subcortical regions,
including the thalamus, putamen, pallidum, and accumbens area

(SMDs >0.1). For brain volume summary statistics from memory
and motor BioBERT model predictions, see Figure 4A.

The memory model predicted that visit notes of patients with
AD had the highest proportion (93.7%) of memory symptoms
relative to the other ADRD diagnoses, which is consistent with
our understanding that memory impairment is the initial and
primary symptom for most patients with AD [2] (Figure 4B).
The MRI analysis of memory symptoms revealed that a smaller
hippocampal volume was associated with an increased likelihood
of memory impairment (odds ratio [OR] 0.62, 95% CI 0.46-0.84;
P=.006) (Figure 4C). Power analysis for the logistic regression,
using 1000 simulations, yielded an 89.7% chance of detecting
a significant impact of hippocampal volume on memory
symptoms, thereby confirming the reliability of these findings.
Nonetheless, the volumes of the entorhinal cortex and prefrontal
cortex did not show a significant relationship with memory
symptoms (P>.05), but the prefrontal cortex had high SMDs
(Figure 4A).

In terms of motor symptoms, the motor model predicted that
visit notes with DLB (95.5%) and PD (100%) diagnoses had
the highest proportion of motor symptoms across visit notes of
ADRD diagnoses, which is consistent with our understanding
that motor impairment is the primary symptom for patients with
DLB and PD [3,5] (Figure 4D). The MRI analysis of motor
symptoms revealed that a smaller pallidum size was significantly
associated with the presence of motor impairments (OR 0.73,
95% CI 0.58-0.9; P=.04) (Figure 4E). Power analysis for the
logistic regression, conducted with 1000 simulations, revealed
an 84.7% probability of accurately detecting a significant
influence of pallidum volume on motor symptoms, which
substantiates the robustness of our results. Other regions related
to motor function did not exhibit significant volumetric
differences (P>.05). Age and sex were accounted for in all
analyses. All results were corrected for multiple comparisons
[30]. Thus, the MRI findings corroborated both memory and
motor symptom predictions made by our 2-tier hierarchical
LLM.
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Figure 4. Evaluation of model performance with magnetic resonance imaging brain volume. (A) Summary statistics of the volumes of brain regions
associated with memory or motor functions. A standardized mean difference (SMD) threshold of 0.1 has been employed to assess the equilibrium of
each metric. Measurements with an SMD exceeding 0.1 (highlighted in bold) signify a comparative lack of balance. (B) Percentage of visit notes with
at least one impaired memory symptom predicted by the memory model across visit notes with Alzheimer disease and related dementias (ADRD)
diagnosis. The number above each bar represents the number of visit notes in each ADRD diagnosis where impaired memory symptoms were detected.
As expected, visit notes with Alzheimer disease (AD) diagnosis had the highest proportion of memory symptoms across all ADRD diagnoses. (C)
Coronal view of the brain area associated with memory impairment. Patients with a smaller hippocampus had a higher likelihood of memory impairment
(odds ratio [OR] 0.62; P=.006). (D) Percentage of visit notes with at least one impaired motor symptom predicted by the motor model across visit notes
with ADRD diagnosis. The number above each bar represents the number of visit notes in each ADRD diagnosis where impaired motor symptoms were
detected. As expected, visit notes with dementia with Lewy bodies (DLB) and Parkinson disease (PD) diagnoses had the highest proportion of motor
symptoms across all ADRD diagnoses. (E) Coronal view of the brain area associated with motor impairment. Patients with a smaller pallidum had a
higher likelihood of motor impairment (OR 0.73; P=.04). All P values have been adjusted for multiple comparisons. FTD: frontotemporal dementia;
PPA: primary progressive aphasia; VCI: vascular cognitive impairment. *P<.05, **P<.01.
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Error Analysis
We performed an error analysis to gain insights into the
misclassifications made by the 2-tier hierarchical LLM,
particularly in its ability to classify symptoms as intact or
impaired across the 7 domains. We included both the held-out
test set and the MRI validation dataset in our analysis to ensure
thoroughness. It is worth mentioning that since the MRI
validation dataset does not include true labels, we relied on
chart reviews to validate predictions (Figure S1 in Multimedia
Appendix 4).

Our error analysis began by examining instances where the
models’ predictions of symptoms across ADRD types did not
align with known disease profiles. For example, in AD cases,
where memory impairment is a prominent symptom [2], the
model did not predict memory symptoms in 6.1% (23/378) of
cases. These instances were notable for their focus on broader
cognitive decline or general test scores rather than explicit
mentions of memory symptoms. In FTD, 93% (62/67) of visit
notes referenced memory symptoms, which is intriguing since
memory impairment is not typical in FTD, particularly in its
behavioral variant [31]. Manual review confirmed that these
symptoms were indeed documented. In VCI, 87% (47/54) of
visit notes mentioned memory symptoms, with a consistent
recognition of memory issues as a feature of VCI [32]. The
model detected memory symptoms in 84% (37/44) of DLB visit
notes and 79% (19/24) of PPA cases, which often concerned
semantic memory challenges. Another example involves motor
symptoms. The model showed a small margin of error in DLB
cases, failing to detect motor symptoms in just 2 cases (2/44,

5%). In AD visit notes, motor symptoms were predicted
accurately in 76.2% (288/378) of notes. FTD cases showed an
88% (59/67) occurrence of motor symptoms, and VCI notes
included motor symptom references in 92.6% (50/54) of cases,
often related to lower body motor challenges. PPA patients were
identified with motor symptoms in 63% (15/24) of notes, with
manual verification confirming the presence of true motor
symptoms in majority (11/15, 73%) of these cases.

The second part of the error analysis investigated visit notes by
random sampling, with a focus on notes with high symptom
counts (more than 10 symptom predictions). This examination
uncovered several types of errors affecting prediction accuracy
across all symptoms, including six types of false positives: (1)
generalizing cognitive function as a symptom, (2) confusing
one symptom with another symptom, (3) identifying evaluation
or test statements as impairment, (4) misrecognizing intact as
impaired, (5) misleading by ambiguous or complex sentences,
and (6) confusing medical history as present symptoms. Four
types of false negatives were also identified, including (1)
overlooking particular expressions, (2) overlooking particular
test scores, (3) misrecognizing impaired as intact, and (4)
overlooking sentences or phrases that require contextual
information. Table 4 provides a detailed breakdown of these
error types and examples from visit notes. Additionally, to
understand the distribution of false positives and false negatives
across the model’s predictions at the sentence level, we
calculated confusion matrices based on the held-out test set for
each symptom, and the data are presented in Figure S4 in
Multimedia Appendix 4.

JMIR AI 2025 | vol. 4 | e66926 | p. 12https://ai.jmir.org/2025/1/e66926
(page number not for citation purposes)

Cheng et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Types of errors in model prediction.

Example (mislabeled category; correct category)Types of errors

False positive

Generalizing cognitive function as a symptom • “problem in cognitive functioning” (mislabeled: impaired memory; correct: no
information)

Confusing one symptom with another symptom • “she began to have trouble sorting items” (mislabeled: impaired memory; correct:
impaired executive function)

• “cannot remember a word” (mislabeled: impaired motor; correct: impaired
memory)

Identifying evaluation or test statements as impairment • “patient visit for evaluation of memory impairment” (mislabeled: impaired
memory; correct: no information)

Misrecognizing intact as impaired • “Mild wordfinding difficulty has resolved” (mislabeled: impaired language;
correct: intact language)

• “No disorientation in time” (mislabeled: impaired memory; correct: intact
memory)

• “Plantar response is flexor bilaterally” (mislabeled: impaired motor; correct:
intact motor)

Misleading by ambiguous or complex sentences • “Speech is fluent but some dysnomia is noted” (mislabeled: intact language;
correct: impaired language)

• “Long term memory is fine but short term memory is not great” (mislabeled:
intact memory; correct: impaired memory)

• “Impairment of short-term memory has declined” (mislabeled: intact memory;
correct: impaired memory)

Confusing medical history as present symptoms • “ask about his past falls” (mislabeled: impaired motor; correct: no information)

False negative

Overlooking particular expressions • “repeat the same question over and over again” (mislabeled: no information;
correct: impaired memory)

• “he puts things away in the wrong place” (mislabeled: no information; correct:
impaired memory)

Overlooking particular test scores • “CDR-SOB memory is 1” (mislabeled: no information; correct: impaired
memory)

Misrecognizing impaired as intact • “oriented partially in time” (mislabeled: intact memory; correct: impaired
memory)

• “oriented to his wife but has visual agnosia” (mislabeled: intact visuospatial;
correct: impaired visuospatial)

• “He requires help to dress only for adult undergarments but not for clothes”
(mislabeled: intact motor; correct: impaired motor)

Overlooking sentences or phrases that require contextual
information

• “memory has been stable for 2 years. He has worsened in the past 5 months”
(mislabeled: intact memory; correct: impaired memory)

• “Gait: … slow to initiate.” (mislabeled: no information; correct: impaired motor)

Discussion

In this study, we developed and evaluated an LLM-based 2-tier
hierarchical model for automated symptom extraction, which
was trained on expert-labeled visit notes from patients with
ADRD at the MGH memory clinic. The model classified
sentences or phrases into categories of impaired, intact, or no
information for 7 ADRD symptoms: memory, executive function,
motor, language, visuospatial, neuropsychiatric, and sleep. Our
method demonstrated superiority over rule-based and
keyword-dependent methods [7-11], which often miss nuanced
contextual and semantic relationships. The model achieved

robust performance in detecting each symptom from clinical
notes, with a micro-averaged AUROC ranging from 0.97 to
0.99. Furthermore, with the implementation of our LLM-based
symptom extraction, the AUROC for ADRD differential
diagnosis improved substantially (AUROC=0.83) compared to
regex-based extraction (AUROC=0.59). Moreover, our model’s
predictions aligned with clinical evidence, with most clinical
notes correctly matching their respective symptoms. Further,
the associations of symptoms with different affected brain
regions were substantiated through brain MRI findings. Thus,
our model holds potential as a screening tool to streamline
diagnosis, improve precision in clinical trials and treatment
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planning, and enhance our understanding of ADRD subtype
heterogeneity.

Traditional approaches, such as regex-based methods, are highly
dependent on predefined sets of keywords or rules. They
struggle with variations in how symptoms are expressed. For
instance, the phrase “difficulty swallowing” could be
documented in various ways, such as “unable to swallow” and
“has trouble swallowing,” or with more context-specific
expressions like “takes 60 minutes to feed the patient a meal.”
It is difficult to build a one-size-fits-all rule for captioning every
symptom in each domain. To illustrate these challenges, we
created a list of regex patterns for ADRD symptoms (Multimedia
Appendix 3) and compared the performance of our LLM-based
model with traditional regex techniques. We evaluated both
methods using 2 L1-regularized logistic regression models: one
based on symptom counts derived from regex patterns, and
another using counts from our 2-tier hierarchical LLM. Our
results showed that the LLM-based model significantly
outperformed the regex-based model, achieving an AUROC of
0.83, compared to an AUROC of 0.59 obtained with the
regex-based model. This improvement demonstrates the LLM’s
ability to better capture the context of clinical symptoms in
ADRD, highlighting the superiority of transformer-based
models, like BioBERT, in overcoming the limitations of
traditional rule-based approaches. Other researchers have used
NLP approaches to determine or extract information from
clinical notes as well. For example, Prakash et al [33] achieved
strong accuracy and F1-scores (83%-92%) for determining the
presence of ADRD severity information in clinical notes using
rule-based methods. Similarly, Chen et al [34] developed a
rule-based NLP pipeline to extract cognitive test scores and
biomarkers from clinical narratives, achieving an F1-score of
0.9059 across 7 different measures. Their focus was on
identifying and harmonizing cognitive test scores in severity
categories for patients with ADRD. However, these approaches
primarily focus on specific cognitive tests and biomarkers,
which are typically more straightforward to identify. In contrast,
our method focuses on symptom extraction of sentences across
7 distinct domains. Symptoms are more complex and less
structured, requiring a deep understanding of contextual
relationships to accurately identify and classify them. Our study
verified that the transformer-based BERT model can address
this challenge to handle complex medical terminologies and
capture the meanings of terms within their context.

As expected, in ADRD differential diagnosis, memory emerged
as the most crucial symptom for predicting AD (Figure S3A in
Multimedia Appendix 4), motor was the most significant
symptom for predicting DLB (Figure S3B in Multimedia
Appendix 4), and language was the most important symptom
for predicting PPA (Figure S3E in Multimedia Appendix 4).
These findings are consistent with our understanding of the
clinical manifestations of these diseases [2-4].

While no single disease required all 7 symptoms for prediction
(Figure S3 in Multimedia Appendix 4), executive function stood
out as the most important (for AD, PD, and VCI; see Figures
S3A, D, and F in Multimedia Appendix 4) or moderately
important (for DLB, FTD, and PPA; see Figures S3B, C, and

E in Multimedia Appendix 4) feature across all predictions.
Notably, the importance of executive function in predicting AD
was comparable to that of memory. This may be due to the broad
range of behaviors associated with executive function, such as
planning, time management, and working memory, which are
intricately woven into the complexity of daily life. Additionally,
the frontal lobe, a key hub for executive function [35], is
extensively connected with other brain regions involved in
various functions [36]. For example, memory impairment may
impact the hippocampal-prefrontal pathway [37], thereby
affecting tasks that require both memory and executive function,
such as remembering to take medications at specific times. This
pattern also helps explain why, in the case of FTD, a disease
characterized by severe behavioral manifestations [4] and frontal
or temporal lobe degeneration [38], executive function provides
only moderate predictive power. Although this might seem
counterintuitive given the role of executive function in FTD, it
may be because the behavioral symptoms in FTD are more
prominent, and executive function may not have sufficient
discriminatory power for a differential diagnosis. Moreover,
frontal lobe atrophy in FTD may affect behavior in a manner
similar to how disruption in the connection between the frontal
lobe and other functional areas impacts executive tasks, thereby
influencing the overall predictive value of executive function
in this context.

In the context of ADRD differential diagnosis, our model
identified memory as a moderately important symptom on
average for diagnosing ADRD (Figure 3C). When evaluating
prediction performance by specific ADRD diagnoses, memory
was ranked as the most crucial symptom for predicting AD
(Figure S3A in Multimedia Appendix 4); moderately important
for FTD (Figure S3C in Multimedia Appendix 4) and VCI
(Figure S3F in Multimedia Appendix 4); and least important
for DLB (Figure S3B in Multimedia Appendix 4), PD (Figure
S3D in Multimedia Appendix 4), and PPA (Figure S3E in
Multimedia Appendix 4). This importance ranking for memory
aligns with existing knowledge about the prevalence of memory
impairment across different ADRD diagnoses [2-5,32]. The
model generally performed well in identifying memory
symptoms. However, in some patients with AD, memory
symptoms were not predicted. Further analysis revealed that
this was likely due to follow-up notes simply stating “no
change” in the patient’s condition, which did not trigger the
model’s detection mechanisms. This suggests a need for
improvement in detecting implied or static memory impairments.
Additionally, some notes detailed atypical AD presentations,
emphasizing language or motor difficulties rather than memory
loss, which can indicate variations in clinical presentation among
patients with the same underlying etiology. Further, an
unexpectedly high prevalence of memory symptoms in FTD
underscores the complexity of symptomatology. While aging
has been suggested as a confounding factor for memory
symptoms in FTD [4], our data indicated no significant age
difference in patients with and without memory symptoms.
Meanwhile, some studies have suggested that memory symptoms
can emerge in patients with progressive FTD, akin to AD
presentations [39], which may explain our observation. In DLB
cases, our model detected memory symptoms in many visit
notes, with only 1 case later reclassified as AD. Although DLB
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typically lacks early memory impairment, such symptoms can
develop as the condition advances [3]. Most evaluated visit
notes were from initial visits, suggesting that DLB diagnoses
might already be at more advanced stages by then. Further
analysis showed that AD cases had more frequent
memory-related references than DLB (Wilcoxon rank sum test
W=105474; P<.001), demonstrating our model’s ability to
distinguish patterns of the same symptom across different
diagnoses.

Motor symptoms were the most prevalent impairments among
patients with ADRD in our dataset (Table 2) and showed
moderate importance on average in predicting ADRD diagnoses
(Figure 3C). When evaluating prediction performance by
specific ADRD diagnoses, motor was ranked as the most crucial
symptom for predicting DLB (Figure S3B in Multimedia
Appendix 4); moderately important for AD (Figure S3A in
Multimedia Appendix 4), PD (Figure S3D in Multimedia
Appendix 4), PPA (Figure S3E in Multimedia Appendix 4),
and VCI (Figure S3F in Multimedia Appendix 4); and least
important for FTD (Figure S3C in Multimedia Appendix 4).
This importance ranking for motor aligns with existing
knowledge about the prevalence of motor impairment in AD,
DLB, PPA, and VCI diagnoses [2-4,32]. The low ranking of
motor in predicting FTD and its moderate ranking for PD was
unexpected, considering that these 2 diseases have more
behavioral symptoms closely associated with motor function
[4,5]. This discrepancy might be due to the broad range of motor
functions involved, making it harder to distinguish nuances
between these diseases and others, similar to the case where
executive function had a moderate contribution in predicting
FTD. As expected, patients with DLB or PD had the highest
occurrences of motor symptoms. Notably, 1 patient initially
diagnosed with mild cognitive impairment was later found to
have DLB, which the model had correctly predicted,
underscoring the model’s robustness. FTD cases often exhibited
motor symptoms, even though their diagnoses did not change
to DLB or PD in later visits. This was observed despite
excluding motor symptom subtypes like corticobasal syndrome
or progressive supranuclear palsy [4], and no motor neuron
diseases were noted. This underscores that motor symptoms
can develop in patients with FTD over time, even when they
are not diagnosed with conditions typically associated with
these symptoms. Moreover, patients with FTD having motor
symptoms were generally older, aligning with symptom
progression, although the age difference was not statistically
significant. In patients with AD, the model’s prediction of
frequent motor symptoms, such as “unsteady stance” and
“perseveration of movement” (largely confirmed upon chart
review), aligns with literature indicating that late-stage AD can
manifest motor impairments [2], similar to those seen in DLB
or PD [3,5]. This suggests that these patients with AD may be
at more advanced stages of the disease. Patients with AD having
motor symptoms were generally older, which is consistent with
the progression hypothesis, though this relationship was not

statistically significant. The high occurrence of motor symptoms
in VCI cases (confirmed through manual review), which
emphasized sentences or phrases that particularly mention the
lower body being affected, such as “gait instability” and
“frequent falls,” aligns with clinical knowledge [32]. Only 1
predicted VCI case was later diagnosed with DLB, highlighting
the model’s specificity for differential diagnosis.

Among all symptom predictions, visuospatial symptoms had
the lowest performance (Table 3). Further review revealed that
certain behaviors might reflect mixed symptoms in patients’
clinical presentations. For example, “unable to drive” in clinical
notes could be due to impaired navigation ability [40-42],
typically categorized as a visuospatial symptom, but driving is
a complex behavior that also involves executive function for
planning the route [43], memory for remembering place names
[43], and motor skills for physical control [43]. Therefore,
developing more refined models that can better distinguish and
specifically target visuospatial symptoms will be essential for
improving the accuracy of symptom extraction.

This study has several limitations. While our current NLP
techniques proved to be effective in symptom extraction, the
model performance is still susceptible to diverse clinical
narratives and abbreviations. For example, we tailored data
preprocessing templates for each provider, which makes it
challenging to generalize the model to different health care
settings. Additionally, our study focused on patients with a
single ADRD diagnosis, yet many patients fall into the dementia
unspecified category due to mixed dementia. For instance,
autopsy studies revealed that patients with pure VCI were less
common than those with mixed dementia [44], which often
co-occurred with AD pathology [45] and complicated the
diagnostic process. Finally, our method is primarily intended
for research use, and several challenges, such as data privacy,
clinician–artificial intelligence interaction, and model
performance, need to be overcome before it is ready for clinical
decision-making.

Future studies should include patients with multiple ADRD
diagnoses and at different disease stages to better reflect
real-world complexities. Enhancements might include more
sophisticated language parsing and the integration of clinical
criteria for improved specificity. Moreover, integrating
structured patient data, such as demographics and neurological
tests, could enhance the model’s precision and generalizability.
Recent studies, such as the study by Xue et al [46], have shown
the potential of transformer-based models for multi-modal
differential diagnosis of dementia, suggesting avenues for further
refinement of our approach. Furthermore, the dataset generated
through our efforts provides a foundation for successive cycles
of the active learning loop, having the potential to continually
refine and elevate the model’s performance over time. Future
research should leverage this dataset to further improve model
performance and explore avenues for expanding the scope of
symptom extraction in diverse clinical scenarios.
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