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Abstract

Background: The early detection of clinical deterioration and timely intervention for hospitalized patients can improve
patient outcomes. The currently existing early warning systems rely on variables from structured data, such as vital signs and
laboratory values, and do not incorporate other potentially predictive data modalities. Because respiratory failure is a common
cause of deterioration, chest radiographs are often acquired in patients with clinical deterioration, which may be informative for
predicting their risk of intensive care unit (ICU) transfer.

Objective: This study aimed to compare and validate different computer vision models and data augmentation approaches
with chest radiographs for predicting clinical deterioration.

Methods: This retrospective observational study included adult patients hospitalized at the University of Wisconsin Health
System between 2009 and 2020 with an elevated electronic cardiac arrest risk triage (eCART) score, a validated clinical
deterioration early warning score, on the medical-surgical wards. Patients with a chest radiograph obtained within 48 hours
prior to the elevated score were included in this study. Five computer vision model architectures (VGG16, DenseNet121,
Vision Transformer, ResNet50, and Inception V3) and four data augmentation methods (histogram normalization, random flip,
random Gaussian noise, and random rotate) were compared using the area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve (AUPRC) for predicting clinical deterioration (ie, ICU transfer or ward
death in the following 24 hours).

Results: The study included 21,817 patient admissions, of which 1655 (7.6%) experienced clinical deterioration. The
DenseNet121 model pretrained on chest radiograph datasets with histogram normalization and random Gaussian noise
augmentation had the highest discrimination (AUROC 0.734 and AUPRC 0.414), while the vision transformer having 24
transformer blocks with random rotate augmentation had the lowest discrimination (AUROC 0.598).

Conclusions: The study shows the potential of chest radiographs in deep learning models for predicting clinical deterioration.
The DenseNet121 architecture pretrained with chest radiographs performed better than other architectures in most experiments,
and the addition of histogram normalization with random Gaussian noise data augmentation may enhance the performance of
DenseNet121 and pretrained VGG16 architectures.
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Introduction

Clinical deterioration is common in hospitalized patients and
can lead to adverse outcomes, including increased morbid-
ity and mortality if not identified and managed properly
[1]. The early detection of patient deterioration and timely
intervention can improve patient outcomes [2]. Various early
warning scores (EWS) have been developed to identify the
deterioration risk by monitoring different clinical variables,
and the implementation of machine-learning EWS, such as
the electronic cardiac arrest risk triage (eCART) score, has
been associated with improved mortality [3-6]. Current EWS
rely on structured data, such as vital signs and laboratory
values, to predict clinical deterioration and ignore other data
modalities that could potentially enhance prediction accuracy
[7]. This results in lower detection and higher false-positive
rates for these scores that could be mitigated by incorporating
additional modalities [8].

Because respiratory failure is a common cause of
clinical deterioration, the use of computer vision models
with chest radiographs is a promising direction for improv-
ing EWS performance [9]. Although traditional computer
vision models have historically been used to analyze chest
radiographs, prior work on chest radiographs is limited
to identifying specific diagnoses [10-12]. In some recent
studies, chest radiographs are used to detect lung disease
[[13,14]], acute respiratory distress syndrome [15], pneu-
monia [16,17], tuberculosis [18,19], and COVID-19 [20].
However, to facilitate other tasks with comprehensive
machine understanding, chest X-ray interpretation models are
being more commonly used with the help of computer vision
and transformer-based natural language processing models
[21,22]. The advancements in predictive analytics with deep
learning methods have led to increased capabilities to extract
meaningful information from medical images, including
chest radiographs [23]. However, deep learning models have
never been trained with chest radiographs to predict clinical
deterioration outside the intensive care unit (ICU). There are
numerous deep learning architectures for chest radiograph
prediction models, such as VGG16, ResNet50, DenseNet121,
and Vision Transformer, and the performance of these models
is unknown for this specific task. Additionally, there are
different data augmentation techniques available to further
enhance the performance of a vision model by improving
model generalization, but it is unknown whether these data
augmentation techniques would improve the performance of
the prediction model for this task.

To address these knowledge gaps, the objective of this
study was to compare different computer vision architec-
tures and augmentation methods with chest radiographs
for predicting clinical deterioration. Our training pipe-
line incorporates extensive hyperparameter tuning through
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Bayesian optimization and validates the generalizability of
models in a separate hold-out test set. The findings of
our experiments have important implications for researchers
developing computer vision deep learning models for clinical
applications with chest radiographs.

Methods

Ethical Considerations

The study protocol was reviewed and approved by the
University of Wisconsin Institutional Review Board (approval
#2019-1258). This study was a secondary analysis of limited
HIPAA data from hospital electronic health records. The
study was approved with a waiver of informed consent.

All direct identifiers of patients whose data were used
in this study were de-identified prior to analysis to ensure
participants privacy and confidentiality. Minimal necessary
identifiable information was accessed or stored during
the study beyond possible HIPAA data in clinical notes,
radiological images, and real dates.

Participants did not receive any compensation for this data
analysis, as no new data were collected and no direct contact
with participants occurred.

Study Population and Data Collection

All adult patients (age =18 years) hospitalized at the
University of Wisconsin Health System (UW Health)
between 2009 and 2020 with an elevated eCART score
=93 (which is the threshold used in clinical practice at
UW Health) on the medical-surgical wards were eligible
for inclusion in this retrospective cohort study. The eCART
score [3] is a validated EWS currently in clinical practice
and cleared by the Food and Drug Administration that
combines demographics, vital signs, and laboratory results in
a gradient-boosted machine model to predict future clinical
deterioration. The rationale for only including patients with
an elevated score is based on creating an enriched cohort
where chest radiograph models can enhance the prediction
and mitigate the false-positive alerts from these scores.
Furthermore, this simplifies the prediction task to a single
time point, making it more feasible to compare multiple
models and augmentation strategies. Patients with a chest
radiograph within 48 hours before the first elevated eCART
score were included in the study. Available anterior-posterior
or posterior-anterior views were included in the study cohort.
In addition to chest radiographs, additional study variables
that were collected included patient demographics, admis-
sion time, vital signs, laboratory values, patient location,
and discharge disposition, which were all collected via the
clinical research data warehouse. Figure 1 shows the patient
encounter flow chart for inclusion into the analytic cohort.
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Figure 1. Study inclusion criteria flow diagram.
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The study outcome of clinical deterioration was defined as a
direct ward-to-ICU transfer or ward death within 24 hours of
the time of the patient’s first elevated eCART score.

Data Preprocessing

The chest radiograph closest to (but before) the time of
the elevated eCART score was used to predict the corre-
sponding deterioration outcome. To address variations in
image acquisition and processing protocols, all radiographs
were rescaled to a uniform size of 224x224 pixels using
nearest neighbor interpolation. Additionally, to address the
variabilities in imaging exposure levels, pixel intensity values
were normalized to a range of [0, 1] by applying min-max
scaling. The clinical deterioration outcome (ie, ICU transfer
or mortality within 24 hours from the prediction time point)
was encoded as binary labels, with one-hot encoding used for
the binary prediction task. These preprocessing steps ensured
the creation of a high-quality robust dataset for training deep
learning models to predict clinical deterioration from chest
radiographs.

Model Development

For the prediction task, computer vision deep learning models
were trained and optimized with the dataset created from the
cohort. Five publicly available computer vision models were
compared for our task: (1) VGG16 [24], (2) DenseNetl121
[25], (3) Vision Transformer [26], (4) ResNet50 [27], and
(5) Inception V3 [28]. DenseNet121 is a convolutional neural
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n=368(8.4%) n=3,996(91.6%)

network notable for its dense connections between layers,
improving efficiency and reducing risk of overfitting, and
VGG16 is known for its simplicity using a series of con-
volutional layers with small filters followed by max pool-
ing layers. The Vision Transformer model is based on the
transformer architecture and uses the self-attention mecha-
nism to process the images. The main rationale of adopt-
ing these computer vision models for clinical deterioration
tasks is that they are widely used in other chest radiograph
detection tasks in clinical setups [29-31]. In addition, these
models are easy to implement, and various pretrained weights
are readily available. As clinical tasks require fine-grained
image understanding for different tasks, these models provide
that performance with a manageable model size. However,
the main shortcoming of using these models is they do not
provide any generalized image understanding for explainabil-
ity.

We used two different versions of the VGG16 architecture,
one using randomly initialized weights (without pretraining)
and the other using model weights pretrained on ImageNet
[32]. Two different versions of the DenseNet121 architec-
ture were also used: one with model weights pretrained
on Imagenet [32] and one pretrained on publicly available
radiograph datasets [33]. Specifically, the radiograph datasets
used for pretraining consisted of the following datasets: NIH
aka Chest X-rayl4 [34], PC aka PadChest [35], CheX aka
CheXpert [36], MIMIC-CXR [37], Openl [38], Google [39],
and RSNA Pneumonia Detection Challenge [40]. For the
Vision Transformer model, we trained two models without
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any pretrained weights of two different sizes, one with 12
transformer blocks and another with 24 transformer blocks.
We employed batch normalization layers after every block
to ensure the stability of the optimization process during the
model training. Figure 2 presents the overall structure of this
study.

For each of the above architectures, we compared them
with and without different preprocessing and data augmen-
tation approaches. These included histogram normalization,
random rotation (15 degrees), horizontal flipping, and

Rahman et al

the addition of random Gaussian noise. Briefly, histogram
normalization addresses the regional discrepancy of exposure
levels in the case of some images. Additionally, given the
presence of noise and artifacts during the acquisition of the
radiographs, random Gaussian noise, which was implemented
as 0.1 probability with 0 mean and 0.1 standard deviation,
may make the models more robust to noise in the input image
samples. Figure 3 shows the examples of all the augmentation
methods we have used in this work.

Figure 2. Overall structure of this study. *VGG16, DenseNet121, ResNet50, and Inception V3 models were trained from randomly initialized
weights and pretrained weights. Other models were trained with randomly initialized weights only.
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Figure 3. Examples of different image augmentation methods we have utilized. HN: histogram normalization; RGN: random Gaussian noise.
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We used the Bayesian optimization algorithm to find the
optimal hyperparameters that maximize the area under the
receiver operating characteristic curve (AUROC). Details of
the hyperparameters are presented in Multimedia Appendix
1. To make the training procedure faster, we used Ray
Tune [41] to parallelize the hyperparameter search process
in a multi-GPU environment. We trained the model with a
randomly selected 60% of the encounters in the dataset and
validated it with the development set consisting of 20% of
the encounters to optimize hyperparameters and determine
the final settings. The remaining 20% of the encounters were
completely separated for independent final model evaluation
of the optimized models as a test set. We trained the models
for 20 epochs and decreased the learning rate by a factor
of 0.5 in every epoch. During the training, early stopping
was used if the validation AUROC failed to improve in
three consecutive epochs. We used Adam mini-batch gradient
descent optimization with a batch size from the search space
of 32,64, and 128.

Model Evaluation

All combinations of image augmentations and deep learning
computer vision architectures for the clinical deterioration
task were evaluated using the test dataset. Predicted probabil-
ities for the deterioration outcome were calculated for every
encounter during the evaluation. Model discrimination was
assessed using the AUROC and its 95% CI, calculated via
the DeLong method [42] as the primary metric and the area
under the precision-recall curve (AUPRC) as the secondary
metric. The p-values of the AUROC scores are presented in

Table 1. Population characteristics of the study cohort (N=21,817).

Rahman et al

Multimedia Appendix 1. As P<.001 in all cases, our AUROC
scores are statistically significant.

Data cleaning and cohort selection with descriptive
analysis were conducted using Stata version 16.1 (StataCorp).
We used Python version 3.8.10, along with the Monai
framework version 1.2.0 (NVIDIA) and Pytorch version 2.0.0
(Facebook) to develop the deep learning models. Addition-
ally, the AUROC score and its 95% CI were calculated using
FastDeLong implementation from VMAF (Video Multime-
thod Assessment Fusion; Netflix) [43].

Results

Cohort Characteristics

A total of 258,621 admissions occurred during the study
period, and 92,845 had an elevated eCART score. Of these,
for 21,817 admissions, a chest radiograph was obtained
within 48 hours of the time of the elevated score and was
included in the analysis (Figure 1). The characteristics of the
final cohort are presented in Table 1. The patients in the
final cohort had a median age of 63 (IQR 52-74) years, with
a higher likelihood of being male (56.1%, 12,249/21,817);
5.7% were black (1252/21,187). The median time to eCART
score elevation from admission was 21.8 (7.1-47.6) hours
and the median time to eCART score elevation from the last
radiograph was 9 (7.1-47.6) hours. About 7.5% (1655/21,817)
of the encounters had an outcome event, including 4.1%
(893/21,817) cases of in-hospital death.

Variable Value

Age, years, median (IQR) 63 (52-74)
Female, n (%) 9568 (43.9)
Black race, n (%) 1252 (5.7)
Elevated eCART? score, n (%) 1655 (7.59)
Time to the elevated eCART score from admission, hours, median (IQR) 21.8 (7.1-47.6)
Time to the elevated eCART score from the last radiograph, hours, median (IQR) 9.0 (7.1-47.6)
In-hospital mortality, n (%) 893 (4.1)

4eCART: electronic cardiac arrest risk triage

Model Discrimination

The model performance AUROC and AUPRC values for all
models across all image augmentation methods are presented
in Tables 2 and 3, respectively, and the 95% CI of the

AUROC and AUPRC are presented in Multimedia Appendix
1. Additionally, receiver operating characteristic (ROC curves
and precision-recall curves are shown in Figures 4 and 5,
respectively.

Table 2. Model performance area under the receiver operating characteristic curve (AUROC) with the validation dataset across different model

architectures, pretrained weights, and image augmentation methods.

Histogram Random Average

Pretrained No normalization Random Gaussian noise Random AUROC
Model weights transformation (HN) flip (RGN) rotate HN + RGN  score?
VGGI16 Random init 0.694 0.723 0.698 0.701 0.674 0.712 0.700
VGG16 ImageNet 0.712 0.717 0.692 0.710 0.689 0.719 0.707
DenseNet121 ImageNet 0.683 0.701 0.672 0.700 0.678 0.716 0.692
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Histogram Random Average

Pretrained No normalization Random Gaussian noise Random AUROC
Model weights transformation (HN) flip (RGN) rotate HN + RGN  score?
DenseNet121 Radiographs 0.723 0.716 0.713 0.696 0.701 0.734 0.714
ResNet50 Random init 0.588 0.684 0.629 0.678 0.638 0.651 0.645
ResNet50 ImageNet 0.715 0.707 0.694 0.694 0.669 0.712 0.700
Inception V3 Random init 0.691 0.672 0.671 0.661 0.703 0.690 0.681
Inception V3 ImageNet 0.714 0.712 0.710 0.706 0.686 0.713 0.707
Vision Random init 0.661 0.648 0.617 0.652 0.623 0.652 0.642
Transformer (12
Blocks)
Vision Random init 0.654 0.663 0.609 0.651 0.598 0.662 0.640
Transformer (24
Blocks)
Average Score —€ 0.684 0.694 0.671 0.685 0.666 0.696 —
over modelsP
Average — — 0.010 -0.013 0.001 -0.028 0.012 —
Improvementd

3The average AUROC score is for a particular model over different augmentation methods

PThe “Average score over models” row presents the average AUROC score of a particular augmentation method over different models.
¢"—” indicates not applicable.

dThe “Average improvement” row shows the average AUROC improvement of an augmentation method over the baseline score without any
transformation.

Table 3. Model performance area under the precision-recall curve (AUPRC) scores with the validation dataset across different model architectures,
pretrained weights, and image augmentation methods.

No Histogram Random

Pretrained transformatio normalization Gaussian Random Average
Model weights n (HN) Random flip noise (RGN) rotate HN + RGN AUPRC score?
VGG16 Random init 0.346 0.398 0.329 0.349 0.320 0.378 0.353
VGG16 ImageNet 0.371 0.403 0.306 0.343 0.311 0.389 0.354
DenseNet121 ImageNet 0.321 0.373 0.360 0.355 0.365 0.379 0.359
DenseNet121 Radiographs 0.395 0.326 0.338 0.360 0.358 0414 0.365
ResNet50 Random init 0.135 0.229 0.147 0.243 0.215 0.174 0.191
ResNet50 ImageNet 0.405 0.378 0.357 0.320 0.288 0.344 0.349
Inception V3 Random init 0.319 0.247 0.247 0.304 0.343 0.339 0.300
Inception V3 ImageNet 0.440 0.340 0.421 0.399 0.361 0.369 0.388
Vision Transformer Random init 0.205 0.189 0.143 0.209 0.139 0.204 0.182
(12 Blocks)
Vision Transformer Random init 0.187 0219 0.121 0.177 0.118 0.196 0.170
(24 Blocks)
Average score over —€ 0313 0.310 0277 0.306 0.282 0319 —
modelsP
Average improve- = — — —0.003 —0.036 —0.007 -0.031 0.006 —
mentd

4The average AUPRC score is for a particular model over different augmentation methods

bThe “Average score over models” row presents the average AUROC score of a particular augmentation method over different models.

¢" > indicates not applicable.

dThe “Average improvement” row shows the average AUROC improvement of an augmentation method over the baseline score without any
transformation.
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Figure 4. Receiver operating characteristic (ROC) curve of the best-performing models in every network architecture. Actual AUROC values
are included in the corresponding label. HN: histogram normalization; RGN: random Gaussian noise; AUROC: area under the receiver operating

characteristic curve.
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Figure 5. Precision-recall curves of the best-performing models in every network architecture. Actual AUPRC values are included in the correspond-
ing label. Best viewed in color. HN: histogram normalization; RGN: random Gaussian noise; AUPRC: area under the precision-recall curve.
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Across all architectures and augmentation combinations, the
DenseNet121 model pretrained with chest radiographs and
augmented with histogram normalization and Gaussian noise
had the highest AUROC (0.734) across all the models.
Similarly, when averaged across all augmentation methods,
the DenseNet121 models pretrained with chest radiographs
had a higher average discrimination than any other architec-
ture in terms of the AUROC (0.714). The vision transformer
architectures (12 and 24 transformer blocks) performed
similarly to each other on average and had worse aver-
age AUROC than other models (0.642 and 0.640 for 12
and 24 transformer blocks, respectively). In terms of the
AUPRC, DenseNetl21 pretrained with chest radiographs

https://ai.jmir.org/2025/1/e67144
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and augmented with histogram normalization and Gaussian
noise also had the highest performance (0.414). Accordingly,
compared with other models, Inception V3 pretrained with
ImageNet had the highest AUPRC (0.388) on average.

In terms of the image augmentation methods, the
histogram normalization with random Gaussian noise image
augmentations had the best mean AUROC (0.696) when
averaged across all architectures, followed by histogram
normalization augmentation alone (0.694). The random rotate
augmentation had the worst average performance in terms
of the AUROC (0.666). In terms of the AUPRC, histogram
normalization with random Gaussian noise image augmenta-
tions also had the highest average AUPRC (0.319) across the
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models, and the models with no transformation alone had the
next highest average AUPRC of 0.310. Unlike the AUROC
results, the random flip augmentation had the worst AUPRC
among all the four other augmentation methods.

Discussion

Principal Findings and Comparison With
Previous Works

In this retrospective study with over 20,000 hospital
admissions, we compared three deep learning computer
vision architectures and four image augmentation methods
for the early detection of clinical deterioration. We found
that the DenseNet121 model pretrained on different publicly
available chest radiographs had better discrimination than
the VGG16 and Vision Transformer models based on the
average AUROC metric. Among different image augmen-
tation methods, a combination of histogram normalization
and random Gaussian noise augmentations achieved higher
AUROCs and AUPRCs on average than random flip and
random rotate transformation. In all of the cases, we found
that random flip and random rotate transformation lowered
the discrimination compared to the baseline model in terms
of both AUROC and AUPRC metrics. To the best of
our knowledge, this is the first study to compare different
computer vision models and image augmentation methods
for predicting clinical deterioration outside the ICU. These
findings have important implications in the field of using
deep learning models to correctly identify patients showing
clinical deterioration and to improve existing EWS applica-
tions in health systems.

Although DenseNetl121 pretrained on chest radiographs
achieved the maximum discrimination with histogram
normalization and random Gaussian noise data augmentation,
our investigation found multiple models exhibiting competi-
tive performance across different data augmentation methods
considering the AUROC. This may be due to our exten-
sive hyperparameter search with Bayesian optimization that
enables all models to achieve similar performances. Over-
all, the pretrained models performed better with respect to
the models trained from scratch. This is consistent with
the existing literature, as pretrained models already learned
the fundamental building blocks of features (eg, lines and
shades) from large number of images of the pretrained dataset
[44 .45]. However, as the VGG16 model was pretrained on
the ImageNet [32] dataset, which is a collection of thousands
of general-purpose images, and our dataset only contains
chest radiographs, there may be a domain gap present in this
scenario that prohibits the maximum benefits of the pretrain-
ing network. To analyze and mitigate that domain gap,
we compared the performance of the DenseNet121 network
pretrained on ImageNet and on a collection of the radiograph
dataset. In almost all of the cases, DenseNet121 pretrained on
radiographs outperformed the DenseNet121 model pretrained
on ImageNet in terms of both the AUROC and AUPRC
metrics. These experimental results proved our hypothesis
and provided important insights into the use of pretrained
networks with chest radiograph datasets. A prior study
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involving the classification of chest radiographs also found
DenseNet networks achieving superior performance [10],
which aligns with our findings. For example, Alhudhaif et al
found that DenseNet201 achieved the highest discrimination
in determining COVID-19 pneumonia with chest radiographs
[10]. However, another work by Sitaula et al found that
the VGG-16 model performed better than the DenseNet121
model for the classification of COVID-19 chest radiographs
[11]. This discrepancy may be explained by differences in
hyperparameter settings and the use of pretrained weight
initialization. They tuned the hyperparameters manually,
whereas we tuned the hyperparameters automatically with
Bayesian optimization. As the DenseNetl21 network is
deeper than VGG-16 in terms of the number of layers,
better hyperparameter tuning may enable DenseNetl121 to
learn more complex relationships without overfitting, hence
achieving better performance than the VGG-16 network.
Although DenseNet121 has more layers than VGG-16,
DenseNet121 has fewer parameters than VGG-16 (7.98M vs
138.36M parameters). This parameter efficiency may reduce
the risk of overfitting, which is important in medical imaging
applications where datasets are often small. We also found
that the Vision Transformer model underperformed in almost
all the cases compared to other CNN-based models in the
clinical deterioration prediction task. This finding contrasts
with the recent success of Vision Transformer in general
computer vision tasks [46]. However, in the case of classifica-
tion tasks with radiographs, the lack of pretraining may harm
the performance of the Vision Transformer models [47]. For
the networks where we compared performance with random
initialization and a pretrained model, in most of the cases,
the pretrained model performed better than the randomly
initialized one. This could be the main cause for the underper-
formance of the Vision Transformer models in our work, as
we trained it from scratch.

In this study, we found that the models trained with
histogram normalization combined with random Gaussian
noise among different image augmentation methods achieved
better performance, exhibiting the highest AUROC four times
and the highest AUPRC three times for different architectures
with different combinations of pretraining methods. However,
the other two augmentation methods, random flip and random
rotate, actually worsened the performance. Our findings
align with the existing literature presenting performance
improvements with histogram normalization and Gaussian
random noise. Gielczyk et al showed that the combination of
histogram normalization and Gaussian random noise achieved
higher performances than the baseline method in detecting
COVID-19 and pneumonia with chest radiographs [48].
However, this can be task dependent involving the useful
features of that particular task. Lakhani et al presented a deep
convolutional neural network for determining the presence
and position of endotracheal tubes where random rotation
and random flip augmentation achieved higher performances
over the baseline values [12]. As that task was geometry-
dependent, regularization introduced by random rotate and
random flip augmentation might improve the performance.
In contrast, our task of predicting clinical deterioration is
not geometry dependent and hence did not benefit from
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geometric transformations like random rotate and random
flips. These insights might be helpful in selecting appropriate
image augmentation techniques in models involving chest
radiographs.

Strengths

Our study has several important strengths. First, our study
cohort consisted of elevated-risk patients with an eCART
score 293. Predicting deterioration in these patients is more
challenging due to their rapid and unpredictable progres-
sions compared to lower-risk patients. Second, we com-
pared multiple deep learning architectures to evaluate their
efficacy in predicting clinical deterioration. This compara-
tive approach allows for a more robust understanding of a
model’s performance in this context. Furthermore, by testing
different data augmentation methods, the study explores ways
to improve model performance. This aspect is crucial for
enhancing the generalizability and robustness of the models.
Incorporating Bayesian optimization with a large search space
provides the models to achieve the most optimal performance.

Limitations

Our study also has some limitations. First, we only consid-
ered the latest radiograph for our models to avoid bias and
complexity. Although we reasoned that the latest radio-
graph conveys the most updated features of patients, prior
radiographs and trends over time might carry important

Rahman et al

features for the model to predict clinical deterioration.
Second, we focused on a few popular deep learning architec-
tures with four different augmentation methods. Although
recent studies have introduced numerous computer vision
architectures, a more comprehensive study would be difficult
considering our study’s dataset size. Third, in the deteriora-
tion prediction model, we only considered the features on
chest radiographs. Incorporating other modalities, such as
structured data and clinical notes, could improve the accuracy
and robustness of our models and will be an interesting future
work. Finally, even though our study is the largest of its kind,
this was a single-center study, and future studies in other
centers are needed to evaluate the external validity of our
models.

Conclusion

Our study demonstrates that the DenseNetl21 model
pretrained on chest radiographs often outperforms VGG16
and the Vision Transformer model with chest radiographs for
the prediction of clinical deterioration. Furthermore, we found
that model performance improves with histogram normaliza-
tion along with random Gaussian noise augmentation in most
models in terms of both the AUROC and AUPRC metrics.
These results show that accurate prediction of patient clinical
deterioration is feasible by utilizing chest radiographs while
offering valuable insights into the use of computer vision-
aided risk prediction.
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