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Abstract

Background: Deep learning techniques have shown promising results in the automatic classification of respiratory sounds.
However, accurately distinguishing these sounds in real-world noisy conditions poses challenges for clinical deployment. In
addition, predicting signals with only background noise could undermine user trust in the system.

Objective: This study aimed to investigate the feasibility and effectiveness of incorporating a deep learning–based audio
enhancement preprocessing step into automatic respiratory sound classification systems to improve robustness and clinical
applicability.

Methods: We conducted extensive experiments using various audio enhancement model architectures, including time-domain
and time-frequency–domain approaches, in combination with multiple classification models to evaluate the effectiveness of the
audio enhancement module in an automatic respiratory sound classification system. The classification performance was compared
against the baseline noise injection data augmentation method. These experiments were carried out on 2 datasets: the International
Conference in Biomedical and Health Informatics (ICBHI) respiratory sound dataset, which contains 5.5 hours of recordings,
and the Formosa Archive of Breath Sound dataset, which comprises 14.6 hours of recordings. Furthermore, a physician validation
study involving 7 senior physicians was conducted to assess the clinical utility of the system.

Results: The integration of the audio enhancement module resulted in a 21.88% increase with P<.001 in the ICBHI classification
score on the ICBHI dataset and a 4.1% improvement with P<.001 on the Formosa Archive of Breath Sound dataset in multi-class
noisy scenarios. Quantitative analysis from the physician validation study revealed improvements in efficiency, diagnostic
confidence, and trust during model-assisted diagnosis, with workflows that integrated enhanced audio leading to an 11.61%
increase in diagnostic sensitivity and facilitating high-confidence diagnoses.

Conclusions: Incorporating an audio enhancement algorithm significantly enhances the robustness and clinical utility of automatic
respiratory sound classification systems, improving performance in noisy environments and fostering greater trust among medical
professionals.

(JMIR AI 2025;4:e67239) doi: 10.2196/67239
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Introduction

Background
Respiratory sounds play a crucial role in pulmonary pathology.
They provide insights into the condition of the lungs
noninvasively and assist disease diagnosis through specific
sound patterns and characteristics [1,2]. For instance, wheezing
is a continuous high-frequency sound that often indicates typical
symptoms of chronic obstructive pulmonary disease and asthma
[3]; crackling, on the other hand, is an intermittent
low-frequency sound with a shorter duration that is a common
respiratory sound feature among patients with lung infections
[4]. The advancement of machine learning algorithms and
medical devices enables researchers to investigate approaches
for developing automated respiratory sound classification
systems, reducing the reliance on manual inputs from physicians
and medical professionals.

In earlier studies, researchers have engineered handcrafted audio
features for respiratory sound classification [5]. Recently, neural
network–based methods have become the de facto methods for
lung sound classification. For example, Kim et al [6] fine-tuned
the pretrained VGG16 algorithm, outperforming the
conventional support vector machine (SVM) classifier.
Wanasinghe et al [7] incorporated mel spectrograms,
mel-frequency cepstral coefficients, and chroma features to
expand the feature set input to a convolutional neural network
(CNN), demonstrating promising results in the identification
of pulmonary diseases. Pessoa et al [8] proposed a hybrid CNN
model architecture that integrates time-domain information with
spectrogram-based features, delivering a satisfactory
performance. Moreover, various advanced architectures have
been proposed to extract both long-term and short-term
information from respiratory sounds based on the characteristics
of crackle and wheeze sounds and have shown enhanced
performance [9-13]. Recent works have used advanced
contrastive learning strategies to enhance intraclass compactness
and interclass separability for further improvements [14-17].
These advancements in neural network structures have shown
increasing promise in achieving reliable respiratory sound
classification.

Despite these advancements, significant challenges remain for
the clinical deployment of automatic respiratory sound
classification systems due to complex real-world noisy
conditions [6,18]. Augmentation techniques, such as time
shifting, speed tuning, and noise injection, have been key
strategies to effectively improve the noise robustness and
generalizability of a machine learning model [9,14,16,19-23].
While these approaches have shown promising results in
respiratory sound classification tasks, their practical utility as

modules for building clinical decision support systems remains
in doubt. This is primarily attributed to their inability to provide
clinicians with intelligible raw audio to listen to facilitate
decision-making, thus making the current augmentation-based
approach seem black box and hindering acceptance and adoption
by medical professionals.

In fact, given the blooming use of artificial intelligence (AI) in
health care, the issue of liability has been the focus. The
prevailing public opinion suggests that physicians are the ones
to bear responsibility for errors attributed to AI [24]. Hence,
when these systems are opaque and inaccessible to physicians,
it becomes challenging to have them assume responsibility
without a clear understanding of the decision-making process.
This difficulty is particularly pronounced for seasoned and
senior physicians, who hesitate to endorse AI recommendations
without transparent rationale. The resulting lack of trust
contributes to conflicts in clinical applications. Therefore,
elucidating the decision-making process is crucial to establishing
the trust of physicians [25]. Moreover, exceptions are frequent
in the field of medicine. For instance, in cases in which
bronchioles undergo significant constriction, the wheezing sound
may diminish to near silence, a phenomenon referred to as silent
wheezing. This intricacy could confound AI systems,
necessitating human intervention (ie, listening directly to the
recorded audio) [26].

To address these challenges, we propose an approach that
involves integrating an audio enhancement module into the
respiratory sound classification system, as shown in Figure 1.
This module aims to achieve noise-robust respiratory sound
classification performance while providing clean audio
recordings on file to support physicians’ decision-making. By
enhancing the audio quality and preserving critical information,
our system aimed to facilitate more accurate assessments and
foster trust among medical professionals. Specifically, we
devised 2 major experiments to evaluate this approach in this
study. First, we compared the performance of our noise-robust
system through audio enhancement to the conventional method
of noise augmentation (noise injection) under various clinical
noise conditions and signal-to-noise ratios (SNRs). Second, we
conducted a physician validation study to assess confidence and
reliability when listening to our cleaned audio for respiratory
sound class identification. To the best of our knowledge, this
is the first study showing that deep learning enhancement
architecture can effectively remove noise while preserving
discriminative information for respiratory sound classification
algorithms and physicians. Importantly, this study validates the
clinical potential and practicality of our proposed audio
enhancement front-end module, contributing to more robust
respiratory sound classification systems and aiding physicians
in making accurate and reliable assessments.
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Figure 1. An overview of our proposed noise-robust respiratory sound classification system with audio enhancement. CNN: convolutional neural
network; CNN14: 14-layer CNN; conformer: convolution-augmented transformer; ISTFT: inverse short-time Fourier transform; STFT: short-time
Fourier transform; TS: 2 stage.

Related Work

Audio Enhancement
Audio enhancement is a technique that has been widely used
in the speech domain, where it is referred to as speech
enhancement. These techniques are primarily used in the
front-end stage of automatic speech recognition systems to
improve intelligibility [27-29]. Within speech enhancement,
deep neural network approaches can be categorized into 2 main
domains: time-frequency–domain approaches and time-domain
approaches.

Time-frequency–domain approaches are used to estimate clean
audio from the short-time Fourier transform (STFT)
spectrogram, which provides both time and frequency
information. Kumar and Florencio [30] leveraged noise-aware
training [31] with psychoacoustic models, which decided the
importance of frequency for speech enhancement. The result
demonstrated the potential of deep neural network–based speech
enhancement in complex multiple-noise conditions, such as
real-world environments. In the research by Yin et al [32], they
designed a 2-stream architecture that predicts amplitude and
phase separately and further improves the performance.
However, various research studies [33-35] have indicated that
the conventional loss functions used in regression models (eg,
L1 and L2) do not strongly correlate with speech quality,
intelligibility, and word error rate. To address the issue of
discriminator evaluation mismatch, Fu et al [36] introduced
MetricGAN. This approach tackles the problem of metrics that
are not entirely aligned with the discriminator’s way of
distinguishing between real and fake samples. They used
perceptual evaluation of speech quality (PESQ) [37] and
short-time objective intelligibility (STOI) [38] as evaluation
functions, which are commonly used for assessing speech quality
and intelligibility, as labels for the discriminator. Furthermore,
the performance of MetricGAN can be enhanced by adding a

learnable sigmoid function for mask estimation, including noisy
recording for discriminator training, and using a replay buffer
to increase sample size [39]. Recently, convolution-augmented
transformers (conformers) have been widely used in automatic
speech recognition and speech separation tasks due to their
capacity in long-range and local contexts [40-42]. Cao et al [43]
introduced a conformer-based metric generative adversarial
network (CMGAN), which leverages the conformer structure
along with MetricGAN for speech enhancement. In the CMGAN
model, multiple 2-stage conformers are used to aggregate
magnitude and complex spectrogram information in the encoder.
In the decoder, the prediction of the magnitude and complex
spectrogram are decoupled and then jointly incorporated to
reconstruct the enhanced recordings. Furthermore, CMGAN
achieved state-of-the-art results on the VoiceBank+DEMAND
dataset [44,45].

On the other hand, time-domain approaches directly estimate
the clean audio from the raw signal, encompassing both the
magnitude and phase information, enabling them to enhance
noisy speech in both domains jointly. Macartney and Weyde
[46] leveraged Wave-U-Net, proposed in the study by Thiemann
et al [44], to use the U-Net structure in a 1D time domain and
demonstrated promising results in audio source separation for
speech enhancement. Wave-U-Net uses a series of
downsampling and upsampling blocks with skip connections
to make predictions. However, its effectiveness in representing
long signal sequences is limited due to its restricted receptive
field. To overcome this limitation, the approaches presented in
the studies by Pandey and Wang [47] and Wang et al [48]
divided the signals into small chunks and repeatedly processed
local and global information to expand the receptive field. This
dual-path structure successfully improved the efficiency in
capturing long sequential features. However, dual-path structures
are not memory efficient as they require retaining the entire
long signal during training. To address the memory efficiency
issue, Park et al [49] proposed a multi-view attention network.
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They used residual conformer blocks to enrich channel
representation and introduced multi-view attention blocks
consisting of channel, global, and local attention mechanisms,
enabling the extraction of features that reflect both local and
global information. This approach also demonstrated
state-of-the-art performance on the VoiceBank+DEMAND
dataset [44,45].

Both approaches have made significant progress in performance
improvements in recent years. However, their suitability for
enhancing respiratory sounds collected through stethoscopes
remains unclear. Therefore, for this study, we applied these 2
branches of enhancement models and compared their
effectiveness in enhancing respiratory sounds in real-world
noisy hospital settings [32,43,46,49].

Respiratory Sound Classification
In recent years, automatic respiratory sound classification
systems have become an active research area. Several studies
have explored the use of pretrained weights from deep learning
models, showing promising results. Kim et al [6] demonstrated
improved performance over SVMs by fine-tuning the pretrained
VGG16 algorithm. Gairola et al [22] used effective
preprocessing methods, data augmentation techniques, and
transfer learning from ImageNet [50] pretrained weights to
address data scarcity and further enhance performance.

As large-scale audio datasets [51,52] become more accessible,
pretrained audio models are gaining traction, exhibiting
promising performance in various audio tasks [53-55]. Studies
have explored leveraging these pretrained audio models for
respiratory sound classification. Moummad and Farrugia [17]
incorporated supervised contrastive loss on metadata with the
pretrained 6-layer CNN architecture [53] to improve the quality
of learned features from the encoder. Chang et al [56] introduced
a novel gamma patch-wise correction augmentation technique,
which they applied to the fine-tuned 14-layer CNN (CNN14)
architecture [53], achieving state-of-the-art performance. Bae
et al [16] used the pretrained Audio Spectrogram Transformer
(AST) [54] with a Patch-Mix strategy to prevent overfitting and
improve performance. Kim et al [57] proposed a
representation-level augmentation technique to effectively
leverage different pretrained models with various input types,
demonstrating promising results on the pretrained ResNet,
EfficientNet, 6-layer CNN, and AST.

However, few of these studies have explicitly addressed the
challenge of noise robustness in clinical settings. To improve
noise robustness, data augmentation techniques such as adding
white noise, time shifting, stretching, and pitch shifting have
been commonly used [9,14]. These augmentations enable
networks to learn efficient features under diverse recording
conditions. Nonetheless, the augmented recordings may not
accurately represent the conditions in clinical settings,
potentially introducing artifacts and limiting performance
improvement. In contrast to the aforementioned works,
Kochetov et al [18] proposed a noise-masking recurrent neural
network to filter out noisy frames during classification. They
concatenated a binary noise classifier and an anomaly classifier
with a mask layer to suppress the noisy parts, allowing only the
filtered frames to pass through, thereby preventing noises from

affecting the classification. However, the International
Conference in Biomedical and Health Informatics (ICBHI)
database lacks noise labels in the metadata, and the paper did
not specify how these labels were obtained, rendering the results
nonreproducible. Emmanouilidou et al [58] used multiple noise
suppression techniques to address various noise sources,
including ambient noise, signal artifacts, heart sounds, and
crying, using a soft-margin nonlinear SVM classifier with
handcrafted features. Similarly, our work uses a pipeline for
noise enhancement and respiratory sound classification.
However, we advanced this approach by using deep learning
models for both tasks, enabling our system to handle diverse
noise types and levels without the need for bespoke strategies
for each noise source. Furthermore, we validated our system’s
practical utility through experiments across 2 respiratory sound
databases and a physician validation study, demonstrating its
improved performance and clinical relevance.

Methods

Datasets
This section presents 2 respiratory sound datasets and 1 clinical
noise dataset used in this study.

ICBHI 2017 Dataset
The ICBHI 2017 database is one of the largest publicly
accessible datasets for respiratory sounds, comprising a total of
5.5 hours of recorded audio [59]. These recordings were
independently collected by 2 research teams in Portugal and
Greece from 126 participants of all ages (79 adults, 46 children,
and 1 unknown). The data acquisition process involved
heterogeneous equipment and included recordings from both
clinical and nonclinical environments. The duration of the
recorded audio varies from 10 to 90 seconds. Within this
database, 6898 respiratory cycles result in 920 annotated audio
samples. Among these samples, 1864 contain crackles, 886
contain wheezes, and 506 include both crackles and wheezes,
whereas the remaining cycles are categorized as normal.

Formosa Archive of Breath Sound
The Formosa Archive of Breath Sound (FABS) database
comprises 14.6 hours of respiratory sound recordings collected
from 1985 participants. Our team collected these recordings at
the emergency department of the Hsin-Chu Branch at the
National Taiwan University Hospital (NTUH). We used the
CaRDIaRT DS101 electronic stethoscope, where each recording
is 10 seconds long.

To ensure the accuracy of the annotations, a team of 7 senior
physicians meticulously annotated the audio samples. The
annotations focused on identifying coarse crackles, wheezes,
or normal respiratory sounds. Unlike the ICBHI 2017 database,
our annotation process treated each audio sample in its entirety
rather than splitting it into respiratory cycles. This approach
reduces the need for extensive segmentation procedures and
aligns with regular clinical practice. To enhance the quality of
the annotations, we implemented an annotation validation flow
called “cross-annotator model validation.” This involved training
multiple models based on each annotator’s data and validating
the models on data from other annotators. Any data with
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incongruent predictions were initially identified. These data
then underwent additional annotation by 3 senior physicians
randomly selected from the original annotation team for each
sample to achieve the final consensus label. The FABS database
encompasses 5238 annotated recordings, with 715 containing

coarse crackles, 234 containing wheezes, and 4289 labeled as
normal respiratory sound recordings. The detailed comparison
between the ICBHI 2017 dataset and the FABS database is
shown in Table 1.

Table 1. Comparison between the International Conference in Biomedical and Health Informatics (ICBHI) and Formosa Archive of Breath Sound
(FABS) datasets.

FABS (n=1985 patients)ICBHI (n=126 patients)

66.04 (17.64)42.99 (32.08)Age (y), mean (SD)

23.95 (4.72)27.19 (5.34)BMI (kg/m2), mean (SD)

Sex, n (%)

974 (49.1)79 (62.7)Male

841 (42.4)46 (36.5)Female

170 (8.6)1 (0.8)Unknown

164-44.1Sampling rate (kHz)

14.65.5Duration (hours)

Coarse crackle, wheeze, and normalCrackle and wheeze, crackle, wheeze, and normalLabel

CaRDIaRT DS101 electronic stethoscopeAKG C417L microphone, Littmann Classic II SE stethoscope,
Littmann 3200 electronic stethoscope, and Welch Allyn Meditron
electronic stethoscope

Equipment

NTUH Clinical Noise Dataset
The noise dataset used in this study was sourced from the NTUH
Hsin-Chu Branch. To replicate the noise sounds that physicians
typically encounter in real-world clinical settings, we used the
CaRDIaRT DS101 electronic stethoscope for collecting the
noise samples. The NTUH clinical noise dataset consists of 3
different types of clinical noises: 8 friction noises produced by
the stethoscope moving on different fabric materials; 18
environment noises recorded at various locations within the
hospital; and 12 patient noises generated by patients during
auscultation through conversations, coughing, and snoring.

Proposed Methods
As shown in Figure 1, our proposed noise-robust respiratory
sound classification system includes two main components: (1)
audio enhancement and (2) respiratory sound classifier.

Audio Enhancement Module
Audio enhancement is usually approached as a supervised
learning problem [30,31,33-36,39,43], where the goal is to map
noisy respiratory sound inputs to their clean counterparts.
Mathematically, this task can be represented as learning a
function f, mapping Xnoisy to Xclean, where Xnoisy represents the
input noisy sound and Xclean denotes the corresponding clean
sound. The enhanced output, X’clean, is obtained as
X’clean=f(Xnoisy) (1), where f is the audio enhancement model
optimized during training.

To achieve high-quality enhancement, it is crucial to carefully
select reference clean recordings from the respiratory sound
database to generate high-quality paired noisy-clean sound data.
To address this, we used an “audio-tagging filter” approach.
This approach leverages a large pretrained audio-tagging model

to identify clean samples and exclude recordings with irrelevant
tags from the database. Specifically, we used the CNN14
pretrained audio neural network [53] that was trained on
AudioSet [51], a comprehensive audio dataset containing
2,063,839 training audio clips sourced from YouTube covering
527 sound classes. Audio samples with the following audio
event labels were filtered out: “music,” “speech,” “fire,”
“animal,” “cat,” and “domestic animals, pets.” These labels
were chosen as they were among the top commonest predictions
of the audio-tagging model, indicating a higher likelihood of
significant irrelevant noise in the recordings. By excluding these
labels, we could ensure that the selected recordings could be
used as reference clean audio. To validate the effectiveness of
the filtering process, we manually checked the filtered
recordings. The results showed that the tagging precision was
92.5%, indicating that this method is efficient and trustworthy.
Moreover, as it is fully automatic, it is easy to reproduce the
results.

In the ICBHI 2017 database, 889 clean audio samples were
retained after filtering, consisting of 1812 cycles with crackling
sounds, 822 cycles with wheezing sounds, 447 cycles with both
crackling and wheezing sounds, and 3538 cycles with normal
respiratory sounds. Alternatively, the filtered FABS clean
samples comprised 699 recordings of coarse crackle respiratory
sounds, 225 recordings of wheeze respiratory sounds, and 4238
recordings of normal respiratory sounds.

In this study, we used Wave-U-Net [46],
Phase-and-Harmonics–Aware Speech Enhancement Network
(PHASEN) [32], Multi-View Attention Network for Noise
Erasure [49], and CMGAN [43] to compare the effectiveness
of different model structures in enhancing respiratory sounds.
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Respiratory Sound Classification
Training a classification model from scratch using a limited
dataset may lead to suboptimal performance or overfitting.
Therefore, we selected the CNN14 model proposed in the study
by Kong et al [53], which had been pretrained on AudioSet [51],
as our main classification backbone, and we further fine-tuned
it on our respiratory datasets. We used log-mel spectrograms
as the input feature, similar to previous works in respiratory
sound classifications [6,9-11,14]. As the dataset is highly
imbalanced, we used the balanced batch-learning strategy. To
further improve model generalizability and performance, we
incorporated data augmentation techniques, including Mixup
[60] and SpecAugment [61], along with triplet loss [15,62] to
enhance feature separability.

Mathematically, the classification task is formulated as a
multi-class classification problem. The goal is to learn a
mapping function, g: Z→Y (2), where Z represents the extracted
features and Y denotes the target class labels. To obtain Z,
input-enhanced audio signals X’clean are transformed using the
STFT to generate a spectrogram, followed by mel-filter banks
to convert the frequency scale to the mel scale:
Z=log-mel(STFT[X’clean]) (3).

During training, the total loss function Lc combines
cross-entropy loss and triplet loss: Lc=LCE+λLtriplet (4).

Through grid search, λ=0.01 leads to the best performance.

Physician Validation Study
To further evaluate the effectiveness of audio enhancement for
respiratory sound, we conducted a physician validation study

using the clean, noisy, and enhanced recordings from a randomly
selected 25% of the testing set on the ICBHI 2017 database. In
this study, we invited 7 senior physicians to independently
annotate these recordings without access to any noise level or
respiratory sound class label. We instructed the physicians to
label the respiratory class with a confidence score ranging from
1 to 5. The objective was to demonstrate that our proposed
method not only enhances the performance of the classification
model but also improves the accuracy of the respiratory sound
classification and increases the confidence in manual judgment
done by physicians. The physician validation study was a critical
step in validating the clinical practicality and effectiveness of
our proposed audio enhancement preprocessing technique in
clinical settings.

Ethical Considerations
This study was approved by the institutional review board of
the NTUH Hsin-Chu Branch (109-129-E) and complies with
ethical guidelines for human research. It involved both
prospective and retrospective data collection, with retrospective
data fully deidentified to protect participant privacy. All
prospective participants provided informed consent before data
collection. No financial compensation was provided to
participants, ensuring voluntary and unbiased participation.

Results

Overview
To assess the noise robustness of our proposed method, we
conducted a comparative analysis using methods across various
levels of noise intensity, as outlined in Textbox 1.

Textbox 1. Methods for various levels of noise intensity.

Clean

The respiratory sound classification models were only trained on clean data and tested on clean data. This approach served to establish the upper-bound
performance for the overall comparison.

Noisy

The respiratory sound classification models were trained on clean data but tested on noisy data. As the models were not optimized for noise robustness,
a significant drop in performance was expected.

Noise injection

The respiratory sound classification models were trained on synthesized noisy data and tested on noisy data. This approach represents the conventional
method to enhance the noise robustness of the model.

Audio enhancement

The audio enhancement model functions as a front-end preprocessing step for the classification model. To achieve this, we first optimized the audio
enhancement model to achieve a satisfactory enhancement performance. Subsequently, the respiratory sound classification model was trained on the
enhanced data and tested on the enhanced data.

Experiment Setup
To evaluate the efficiency of our proposed method, we followed
a similar setup as that in prior work [6,11,14] to have an
80%-20% train-test split on the database. Furthermore, the
training set was mixed with the noise recordings from the NTUH
clinical noise dataset with 4 SNRs (15, 10, 5, and 0 dB) with
random time shifting. The test set was mixed with unseen noise
data with 4 SNRs (17.5, 12.5, 7.5, and 2.5 dB), also subjected
to random time shifting. For evaluation, we used the metrics of

accuracy, sensitivity, specificity, and ICBHI score. Sensitivity
is defined as the recall of abnormal respiratory sounds.
Specificity refers to the recall of normal respiratory sounds. The
ICBHI score, calculated as the average of sensitivity and
specificity, provides a balanced measure of the model’s
classification performance.
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Implementation Details

Technical Setup
The models were implemented using PyTorch (version 1.12;
Meta AI) with the CUDA Toolkit (version 11.3; NVIDIA
Corporation) for graphics processing unit acceleration. Training
was conducted on an NVIDIA A100 graphics processing unit
with 80 GB of memory. For clarity and reproducibility, the
detailed implementation and computational setup is provided
in Multimedia Appendix 1.

Preprocessing
We first resampled all recordings to 16 kHz. Next, each
respiratory cycle was partitioned into 10-second audio segments
before proceeding with feature extraction. In cases in which
cycles were shorter in duration, we replicated and concatenated
them to form 10-second clips in the ICBHI dataset. As the
recordings in the FABS dataset are initially labeled per
recording, there was no requirement for a segmentation process.
Subsequently, these audio clips were mixed with the NTUH
clinical noise dataset, generating pairs of noisy and clean data
for further processing.

Enhancement Model Training
For enhancement model training, the 10-second audio clips
were divided into 4-second segments. When implementing
Wave-U-Net [43], the channel size was set to 24, the batch size
was set to 4, and the number of layers of convolution
upsampling and downsampling was set to 8. The model was

trained using the Adam optimizer with a learning rate of 10−5

for 40 epochs when training using pretrained weights and 10−4

for 30 epochs when training from scratch. For the Multi-View
Attention Network for Noise Erasure model [49], the channel
size was set to 60, the batch size was set to 4, and the number
of layers of up and down convolution was set to 4. The model
was trained using the Adam optimizer with a learning rate of

10−6 for 10 epochs when training using pretrained weights and

a learning rate of 10−5 for 10 epochs when training from scratch.
When implementing PHASEN [32], which is trained in the
time-frequency domain, we followed the original setup using
a Hamming window of 25 ms in length and a hop size of 10 ms
to generate STFT spectrograms. The number of 2-stream blocks
was set to 3, the batch size was set to 4, the channel number for
the amplitude stream was set to 24, and the channel number for
the phase stream was set to 12. The model was trained using

the Adam optimizer with a learning rate of 5 × 10–5 for 20
epochs when training using pretrained weights and a learning

rate of 5 × 10–4 for 30 epochs when training from scratch. For
CMGAN [43], we followed the original setting using a
Hamming window of 25 ms in length and a hop size of 6.25 ms
to generate STFT spectrograms. The number of 2-stage
conformer blocks was set to 4, the batch size was set to 4, and
the channel number in the generator was set to 64. The channel
numbers in the discriminator were set to 16, 32, 64, and 128.
The model was trained using the Adam optimizer with a learning

rate of 5 × 10–5 for 20 epochs when training using pretrained

weights and a learning rate of 5 × 10–4 for 30 epochs when
training from scratch. These hyperparameters are also listed in
Multimedia Appendix 2.

The pretrained weights for these models were trained on the
VoiceBank+DEMAND dataset [44,45], which is commonly
used in speech enhancement research.

Classification Model Training
For the classification model, the 4-second enhanced segments
were concatenated back into 10-second audio clips. To generate
the log-mel spectrogram, the waveform was transformed using
STFT with a Hamming window size of 512 and a hop size of
160 samples. The STFT spectrogram was then processed through
64 mel filter banks to generate the log-mel spectrogram. In the
training stage, we set the batch size to 32 and used the Adam

optimizer with a learning rate of 10−4 for 14,000 iterations using
pretrained weights from the model trained on the 16-kHz
AudioSet dataset [51]. These hyperparameters are also listed in
Multimedia Appendix 2.

Evaluation Outcomes
In this study, we compared the classification performance of
conventional noisy data augmentation with our proposed
audio-enhanced preprocessing. The test set was split into 2
groups, and each classification model was trained 10 times,
yielding 20 values for statistical analysis. We conducted a
1-tailed t test to assess whether models trained on
CMGAN-enhanced audio using pretrained weights showed
significant improvements over other models. In addition, we
reported speech quality metrics for various audio enhancement
models and analyzed their correlation with classification
performance.

The experiment results, as shown in Table 2, highlight the
effectiveness of our proposed audio enhancement preprocessing
strategy for noise-robust performances. In the case of the ICBHI
2017 database, the model trained solely on clean data
experienced a 33.95% drop in the ICBHI score when evaluated
on the synthesized noisy dataset. Noise injection improved the
score by 19.73%, but fine-tuning PHASEN achieved the highest
score, outperforming noise injection by 2.28%. Regarding the
FABS database, using the classification model trained on clean
recordings on the noisy recordings led to a 12.48% drop in the
ICBHI score. Noise injection improved performance by 1.31%,
but fine-tuning CMGAN outperformed noise injection by 2.79%.
Across both datasets, the audio enhancement preprocessing
method consistently improved performance compared to the
noise injection augmentation technique. Furthermore, it showed
improved sensitivity for all enhancement model structures, with
the most significant improvement being 6.31% for the ICBHI
database and 13.54% for the FABS database. This indicates that
the audio enhancement preprocessing method enhanced the
classification model’s ability to distinguish abnormal respiratory
sounds, which is crucial for the early detection of potential
illnesses in clinical use.
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Table 2. Comparison of classification performance on both the International Conference in Biomedical and Health Informatics (ICBHI) and Formosa
Archive of Breath Sound (FABS) datasets.

P valueICBHI
score,
mean (SD)

P valueSpecificity, mean
(SD)

P valueSensitivity, mean
(SD)

P valueAccuracy, mean
(SD)

Enhancement
model

Method

ICBHI

>.9979.35
(0.01)

>.9987.27 (0.01)>.9971.43 (0.02)>.9979.90 (0.01)—aClean

<.00145.40
(0.03)

<.00149.80 (0.08)<.00140.99 (0.04)<.00145.70 (0.03)—Noisy

<.00165.13
(0.01)

.9875.37 (0.04)<.00154.89 (0.04)<.00165.85 (0.01)—Noise injec-
tion

<.00160.50
(0.02)

<.00165.66 (0.05)<.00155.35 (0.04)<.00160.86 (0.02)Wave-U-NetAEb

<.00160.88
(0.02)

<.00166.72 (0.04)<.00155.04 (0.02)<.00161.29 (0.02)Wave-U-NetcAE

.00566.21
(0.01)

.9174.81 (0.04).00157.61 (0.03).0266.81 (0.01)PHASENdAE

.6467.41e

(0.01)

>.9977.12f (0.04).00457.71f (0.03).8468.09e (0.01)PHASENcAE

.0366.67
(0.01)

>.9980.26e (0.04)<.00153.09 (0.03).3967.62 (0.01)MANNERgAE

<.00160.19
(0.02)

<.00162.70 (0.04)<.00157.67 (0.02)<.00160.36 (0.02)MANNERcAE

<.00164.17
(0.01)

.1772.50 (0.02)<.00155.84 (0.03)<.00164.75 (0.01)CMGANhAE

—67.28f

(0.01)

—73.35 (0.02)—61.20e (0.03)—67.70f (0.01)CMGANcAE

FABS

>.9976.04
(0.02)

<.00190.01 (0.02)>.9962.07 (0.04)>.9985.02 (0.01)—Clean

<.00163.56
(0.02)

.00490.71 (0.02)<.00136.41 (0.04)<.00181.02 (0.02)—Noisy

<.00164.87
(0.02)

>.9995.44 (0.01)<.00134.29 (0.05)>.9984.53 (0.01)—Noise injec-
tion

.0466.70
(0.01)

>.9996.66f (0.01)<.00136.74 (0.03)>.9985.97e (0.01)Wave-U-NetAE

<.00163.65
(0.02)

>.9998.22e (0.01)<.00129.08 (0.05)>.9985.88f (0.01)Wave-U-NetcAE

<.00165.07
(0.01)

>.9996.51 (0.01)<.00133.64 (0.02)>.9985.29 (0.004)PHASENAE

<.00165.95
(0.02)

>.9996.09 (0.01)<.00135.82 (0.03)>.9985.33 (0.01)PHASENcAE

.00465.20
(0.03)

.6792.89 (0.03).0137.50 (0.08).0583.01 (0.01)MANNERAE

.0866.80f

(0.02)

<.00185.77 (0.05)>.9947.83e (0.06)<.00179 (0.03)MANNERcAE

<.00164.91
(0.02)

.1992.22 (0.01)<.00137.61 (0.05)<.00182.47 (0.01)CMGANAE

—67.66e

(0.01)

—92.55 (0.01)—42.77f (0.03)—83.67 (0.01)CMGANcAE

aWithout any audio enhancement module.
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bAE: audio enhancement.
cThe model is fine-tuned from the pretrained weight.
dPHASEN: Phase-and-Harmonics–Aware Speech Enhancement Network.
eBest performance across all methods for this metric.
fSecond-best performance across all methods for this metric.
gMANNER: Multi-View Attention Network for Noise Erasure.
hCMGAN: convolution-augmented transformer–based metric generative adversarial network.

Comparing the 2 types of enhancement approaches, the
time-frequency domain models (PHASEN and CMGAN)
exhibited better performance in terms of ICBHI scores. In
addition, CMGAN consistently showed high sensitivity across
both datasets, indicating its potential for preserving respiratory
sound features during audio enhancement. The spectrogram of
the audio enhanced using CMGAN also revealed that it
preserves more high-frequency information across all respiratory
sound classes, as illustrated in Figure 2. In contrast, audio
enhanced using other models either lost high-frequency

information or retained too much noise, leading to
misclassification as normal, resulting in higher specificity for
those models. Moreover, we observed that, while our focus was
on training a respiratory sound enhancement model, using
pretrained weights from models trained on the
VoiceBank+DEMAND dataset, which were originally designed
for speech, still significantly improved classification
performance in most cases. This highlights the cross-domain
effectiveness of pretrained weights from the speech domain in
respiratory sound tasks.

Figure 2. The log-mel spectrograms of 4 different types of respiratory sounds on the International Conference in Biomedical and Health Informatics
2017 database. Each subfigure contains clean audio, noisy audio, and 4 types of enhanced audio from different audio enhancement approaches. CMGAN:
convolution-augmented transformer–based metric generative adversarial network; MANNER: Multi-View Attention Network for Noise Erasure;
PHASEN: Phase-and-Harmonics–Aware Speech Enhancement Network.
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To evaluate whether speech quality metrics, originally designed
for speech, are effective for respiratory sounds, we analyzed
their correlation with the ICBHI score and sensitivity. As shown
in Table 3, the mean opinion score (MOS) of background noise
intrusiveness (CBAK) and segmental SNR (SSNR) exhibited
relatively higher correlations than other metrics, such as PESQ,
STOI, the MOS of signal distortion, and the MOS of overall
quality. Unlike these other metrics, which are primarily designed
to assess speech intelligibility and quality, CBAK and SSNR
focus on background noise intrusiveness and the SNR between
recordings. This distinction explains why CBAK and SSNR
show stronger correlations with classification performance,
highlighting their potential applicability for respiratory sound
analysis.

We evaluated the inference times of 4 audio enhancement
models. Wave-U-Net generates 1 second of enhanced audio in
just 1.5 ms, PHASEN does so in 3.9 ms, and MANNER does
so in 11.7 ms. In contrast, CMGAN processes 1 second of audio
in 26 ms—a longer time that is offset by its superior
classification performance.

To further analyze the effectiveness of our proposed audio
enhancement preprocessing method in handling different types

of noise, we compared its performance using the noise injection
method across various SNR levels. On the basis of the
consistently outstanding performance of CMGAN across both
datasets, we selected it for further analysis.

On the ICBHI database, as illustrated in Figure 3, the noise
injection method performed better with environmental noises
at SNR values of 2.5 and 12.5 dB. However, the front-end audio
enhancement consistently performed better for patient and
friction noises across almost all noise levels.

Regarding the FABS dataset, as shown in Figure 4, the noise
injection method performed better with environmental and
friction noises at an SNR value of 17.5 dB and patient noises
at an SNR value of 2.5 and 7.5 dB. In all other situations, the
audio enhancement preprocessing method demonstrated superior
ICBHI scores.

These results suggest that our proposed strategy effectively
mitigates the effects of various noise types while maintaining
strong classification performance. This highlights the robustness
and reliability of our approach in handling diverse noise
scenarios and intensities, showcasing its potential for practical
applications in clinical settings.

JMIR AI 2025 | vol. 4 | e67239 | p. 10https://ai.jmir.org/2025/1/e67239
(page number not for citation purposes)

Tzeng et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Comparison of audio enhancement (AE) performance on both the International Conference in Biomedical and Health Informatics (ICBHI)
and Formosa Archive of Breath Sound (FABS) datasets.

STOIk,lSSNRi,jCOVLg,hCBAKe,fCSIGc,dPESQa,bParameters (mil-
lions)

Enhancement modelMethod

ICBHI

0.5014.102.132.832.980.58——mNoisy

0.4920.302.183.253.070.563.3Wave-U-NetAE

0.5020.202.203.253.100.573.3Wave-U-NetnAE

0.5221.412.193.343.070.577.7PHASENoAE

0.5121.262.173.323.040.567.7PHASENnAE

0.5519.852.273.243.230.5924MANNERpAE

0.60r19.172.39r3.243.38q0.6624MANNERnAE

0.61q22.06r2.40q3.46r3.31r0.75q1.8CMGANsAE

0.61q22.31q2.383.47q3.290.74r1.8CMGANnAE

FABS

0.62r12.993.03q3.413.80q2.10——Noisy

0.5210.971.903.161.961.783.3Wave-U-NetAE

0.5010.741.863.131.891.753.3Wave-U-NetnAE

0.5811.542.193.262.341.937.7PHASENAE

0.5711.272.033.202.111.847.7PHASENnAE

0.6112.872.813.44r3.352.14r24MANNERAE

0.63q12.572.95r3.44r3.57r2.18q24MANNERnAE

0.5913.59r1.963.421.792.011.8CMGANAE

0.5913.98q1.913.48q1.682.061.8CMGANnAE

aPESQ: perceptual evaluation of speech quality.
bICBHI: sensitivity correlation coefficient=0.36 and ICBHI score correlation coefficient=0.23; FABS: sensitivity correlation coefficient=0.72 and
ICBHI score correlation coefficient=0.16.
cCSIG: mean opinion score (MOS) of signal distortion.
dICBHI: sensitivity correlation coefficient=0.51 and ICBHI score correlation coefficient=0.40; FABS: sensitivity correlation coefficient=0.34 and
ICBHI score correlation coefficient=–0.25.
eCBAK: MOS of background noise intrusiveness.
fICBHI: sensitivity correlation coefficient=0.92 and ICBHI score correlation coefficient=0.90; FABS: sensitivity correlation coefficient=0.71 and ICBHI
score correlation coefficient=0.23.
gCVOL: MOS of overall quality.
hICBHI: sensitivity correlation coefficient=0.52 and ICBHI score correlation coefficient=0.39; FABS: sensitivity correlation coefficient=0.42 and
ICBHI score correlation coefficient=–0.20.
iSSNR: segmental signal-to-noise ratio.
jICBHI: sensitivity correlation coefficient=0.92 and ICBHI score correlation coefficient=0.93; FABS: sensitivity correlation coefficient=0.59 and ICBHI
score correlation coefficient=0.22.
kSTOI: short-time objective intelligibility.
lICBHI: sensitivity correlation coefficient=0.45 and ICBHI score correlation coefficient=0.36; FABS: sensitivity correlation coefficient=0.68 and ICBHI
score correlation coefficient=0.13.
mWithout any audio enhancement module.
nThe model is fine-tuned from the pretrained weight.
oPHASEN: Phase-and-Harmonics–Aware Speech Enhancement Network.
pMANNER: Multi-View Attention Network for Noise Erasure.
qBest performance across all methods for this metric.
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rSecond-best performance across all methods for this metric.
sCMGAN: convolution-augmented transformer–based metric generative adversarial network.

Figure 3. Performance comparison of different approaches for each noise type with various signal-to-noise ratio (SNR) values on the International
Conference in Biomedical and Health Informatics (ICBHI) 2017 database.

Figure 4. Performance comparison of different approaches for each noise type with various signal-to-noise ratio (SNR) values on the Formosa Archive
of Breath Sound database. ICBHI: International Conference in Biomedical and Health Informatics.
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Physician Validation Study
To assess the practical utility of our proposed approach in
clinical settings, we conducted a physician validation study
using the ICBHI dataset. This study involved comparing the
annotation results provided by 7 senior physicians under 3
different conditions: clean, noisy, and enhanced recordings. By
evaluating physician assessments across these conditions, we
aimed to determine the effectiveness of our enhancement
approach in improving diagnostic accuracy and confidence.

As shown in Table 4, the presence of noise in the recordings
had a noticeable impact on the physicians’ ability to conduct a
reliable judgment, reducing accuracy by 1.81% and sensitivity
by 6.46% compared to the clean recordings. However, the
recordings with audio enhancement exhibited notable

improvement, with a 3.92% increase in accuracy and an 11.61%
increase in sensitivity compared to the noisy recordings. The
enhanced audio successfully preserved sound characteristics
crucial for physicians in classifying respiratory sounds, leading
to higher true positive rates in distinguishing adventitious
sounds.

The enhanced audio recordings also received higher annotation
confidence scores than the noisy recordings, as indicated in
Figure 5 and Table 4. Moreover, the speech quality metrics
PESQ, MOS of signal distortion, CBAK, MOS of overall
quality, SSNR, and STOI positively correlated with the
physicians’ annotation confidence, as shown in Figure 6. These
results underscore the potential of audio enhancement
preprocessing techniques for practical application in real-world
clinical settings.

Table 4. Annotation results from physicians on different types of recordings.

Confidence mean (SD)ICBHIa score (%)Specificity (%)Sensitivity (%)Accuracy (%)Type of recording

2.88 (1.50)47.7772.3223.2349.4Clean

2.32 (1.29)45.6874.5816.7747.59Noisy

2.65 (1.36)50.0771.7528.3851.51Enhanced

aICBHI: International Conference in Biomedical and Health Informatics.

Figure 5. Physicians’ annotation confidence score comparison among clean, noisy, and enhanced recordings.
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Figure 6. Relationship between physicians’ annotation confidence score and speech quality metrics. CBAK: mean opinion score (MOS) of background
noise intrusiveness; CSIG: MOS of signal distortion; CVOL: MOS of overall quality; PESQ: perceptual evaluation of speech quality; SSNR: segmental
signal-to-noise ratio; STOI: short-time objective intelligibility.

Ablation Study

Other Classification Model
To assess the effectiveness of our proposed speech enhancement
preprocessing technique with different classification models,
we conducted an ablation study. The hyperparameters used in
this study are detailed in Multimedia Appendix 2. We used the
fine-tuned CMGAN as the speech enhancement module as it
showed consistently outstanding performance in previous
experiments, as shown in Table 2.

For the ICBHI dataset, the speech enhancement preprocessing
technique increased the sensitivity by 11.71% and the ICBHI
score by 1.4% when using the AST model [54]. Similarly, when
using the AST model with the Patch-Mix strategy [16], the
speech enhancement preprocessing technique increased the

sensitivity by 17.08% and the ICBHI score by 1.6%, as shown
in Tables 5 and 6.

Regarding the FABS dataset, the speech enhancement
preprocessing technique increased the sensitivity by 18.48%
and the ICBHI score by 5.46% when fine-tuning the AST model
[54]. When fine-tuning the AST model using the Patch-Mix
strategy [16], the speech enhancement preprocessing technique
increased the sensitivity by 13.04% and the ICBHI score by
0.68%, as shown in Tables 7 and 8.

These results demonstrate that the speech enhancement
preprocessing technique effectively improves the performance
of various respiratory sound classification models, including
fine-tuning the AST and AST using the Patch-Mix strategy, on
both the ICBHI and FABS datasets.

Table 5. Comparison of the classification performance on the International Conference in Biomedical and Health Informatics (ICBHI) database by
fine-tuning the Audio Spectrogram Transformer [54].

ICBHI score (%)Specificity (%)Sensitivity (%)Accuracy (%)

70.2775.6764.8870.65Clean

24.5418.6730.4124.13Noisy

52.5869.8735.2853.78Noise injection

53.9860.9646.9954.46Audio enhancement
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Table 6. Comparison of the classification performance on the International Conference in Biomedical and Health Informatics (ICBHI) database using
the Patch-Mix training strategy from the Audio Spectrogram Transformer pretrained weight [16].

ICBHI score (%)Specificity (%)Sensitivity (%)Accuracy (%)

70.1478.561.7970.73Clean

29.4623.4835.4529.05Noisy

55.887.6923.958.02Noise injection

57.473.8340.9858.55Audio enhancement

Table 7. Comparison of the classification performance on the Formosa Archive of Breath Sound database by fine-tuning the Audio Spectrogram
Transformer [54].

ICBHIa score (%)Specificity (%)Sensitivity (%)Accuracy (%)

70.4894.2146.7485.74Clean

6593.0336.9683.03Noisy

63.3495.1631.5283.8Noise injection

68.887.65080.89Audio enhancement

aICBHI: International Conference in Biomedical and Health Informatics.

Table 8. Comparison of the classification performance on the Formosa Archive of Breath Sound database using the Patch-Mix training strategy from
the Audio Spectrogram Transformer pretrained weight [16].

ICBHIa score (%)Specificity (%)Sensitivity (%)Accuracy (%)

69.0195.6342.3986.13Clean

61.4993.6229.3582.15Noisy

67.6290.6744.5782.44Noise injection

68.378.9857.6175.17Audio enhancement

aICBHI: International Conference in Biomedical and Health Informatics.

Metric Discriminator
Given that the metric discriminator optimizes PESQ, a metric
primarily used in the speech domain for speech quality, a
potential mismatch problem may arise when applied to
respiratory sound tasks. To explore this issue, we conducted
ablation studies on CMGAN’s discriminator, examining the

conformer generator-only model, the conformer generative
adversarial network without PESQ estimation discriminator
(with normal discriminator), and the complete setup (with metric
discriminator). As shown in Table 9, the addition of a metric
discriminator improved overall accuracy, sensitivity, and ICBHI
score. This outcome indicates a positive contribution of the
metric discriminator on PESQ to respiratory sound classification.

Table 9. Classification results of the convolution-augmented transformer–based metric generative adversarial network with different discriminator
setups on the International Conference in Biomedical and Health Informatics (ICBHI) 2017 database.

ICBHI score (%)Specificity (%)Sensitivity (%)Accuracy (%)Setup

65.3272.4258.2165.81Generator only

65.575.3955.6166.19With normal discriminator

66.4370.5862.2866.72With metric discriminator

Discussion

Principal Findings
This paper proposes a deep learning audio enhancement
preprocessing pipeline for respiratory sound classification tasks.
We also introduced a collection of clinical noise and a real-world
respiratory sound database from the emergency department of
the Hsin-Chu Branch at the NTUH. Our noise-robust method
enhances model performance in noisy environments and

provides physicians with improved audio recordings for manual
assessment even under heavy noise conditions.

The experimental results indicated that audio enhancement
significantly improved performance across all 3 types of noise
commonly encountered during auscultation. Specifically, our
approach achieved a 2.15% improvement (P<.001) over the
conventional noise injection method on the ICBHI dataset and
outperformed it by 2.79% (P<.001) on the FABS dataset.
Moreover, time-frequency–domain enhancement techniques
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demonstrated superior performance for this task. Analyzing the
correlation between classification performance and speech
quality metrics, we observed that CBAK and SSNR exhibited
higher correlations with ICBHI scores. These metrics are
strongly influenced by background noise but are unrelated to
speech intelligibility, aligning with the experimental settings.
In the physician validation study, enhanced recordings showed
an 11.61% increase in sensitivity and a 14.22% improvement
in classification confidence. A positive correlation was also
observed between speech quality metrics and diagnostic
confidence, highlighting the effectiveness of enhanced
recordings in aiding physicians in detecting abnormal respiratory
sounds. Our ablation study on various classification model
structures revealed that audio enhancement preprocessing
consistently improved performance. The findings showed
enhanced sensitivity and higher ICBHI scores across both
databases when tested with 2 state-of-the-art respiratory sound
classification models. Furthermore, incorporating the metric
discriminator PESQ was found to enhance downstream
classification performance.

These findings validate the feasibility and effectiveness of
integrating deep learning–based audio enhancement techniques
into respiratory sound classification systems, addressing the
critical challenge of noise robustness and paving the way for
the development of reliable clinical decision support tools.

Limitations and Future Work
Despite the encouraging findings in this study, there is a need
to explore the co-optimization of front-end audio enhancement
and classification models. As most audio enhancement tasks
primarily focus on speech, the evaluation metrics are not highly
correlated with respiratory sounds, potentially leading to
inefficient optimization. Addressing this issue is crucial for
achieving better performance in respiratory sound classification
in future work. Furthermore, future studies should incorporate

other types of noise and more complex noise mixture strategies
to enable the development of a more noise-robust respiratory
sound classification model for real-world clinical use. By
considering a diverse range of noise scenarios, the model can
be better prepared to handle the variability and challenges
encountered in actual clinical settings. In addition, we have to
speed up the model inference by simplifying the model to make
it suitable for real-time applications. At the same time, we must
ensure that enhancement quality is maintained and critical
respiratory sound characteristics are preserved. In our long-term
future work, we aim to deploy this model in real clinical
environments by integrating it into electronic stethoscopes. To
ensure the method’s generalizability, we plan to collect cross-site
respiratory sound recordings from 100 patients across various
clinical environments. Of these recordings, data from 80 patients
will be used for training, whereas data from the remaining 20
patients will be reserved for testing as part of a validation
process aligned with Food and Drug Administration
requirements. This approach will help validate the model’s
performance and facilitate its adoption for practical use in
clinical settings.

Conclusions
In this study, we investigated the impact of incorporating a deep
learning–based audio enhancement module into automatic
respiratory sound classification systems. Our results
demonstrated that this approach significantly improved the
system’s robustness and clinical applicability, particularly in
noisy environments. The enhanced audio not only improved
classification performance on the ICBHI and FABS datasets
but also increased diagnostic sensitivity and confidence among
physicians. This study highlights the potential of audio
enhancement as a critical component in developing reliable and
trustworthy clinical decision support systems for respiratory
sound analysis.
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