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Abstract
Background: Tacrolimus forms the backbone of immunosuppressive therapy in solid organ transplantation, requiring precise
dosing due to its narrow therapeutic range. Maintaining therapeutic tacrolimus levels in the postoperative period is challenging
due to diverse patient characteristics, donor organ factors, drug interactions, and evolving perioperative physiology.
Objective: The aim of this study is to design a machine learning model to predict the next-day tacrolimus trough concentra-
tions (C0) and guide dosing to prevent persistent under- or overdosing.
Methods: We used retrospective data from 1597 adult recipients of kidney and liver transplants at UC San Diego Health to
develop a long short-term memory (LSTM) model to predict next-day tacrolimus C0 in an inpatient setting. Predictors included
transplant type, demographics, comorbidities, vital signs, laboratory parameters, ordered diet, and medications. Permutation
feature importance was evaluated for the model. We further implemented a classification task to evaluate the model’s ability
to identify underdosing, therapeutic dosing, and overdosing. Finally, we generated next-day dose recommendations that would
achieve tacrolimus C0 within the target ranges.
Results: The LSTM model provided a mean absolute error of 1.880 ng/mL when predicting next-day tacrolimus C0. Top
predictive features included the recent tacrolimus C0, tacrolimus doses, transplant organ type, diet, and interactive drugs.
When predicting underdosing, therapeutic dosing, and overdosing using a 3-class classification task, the model achieved a
microaverage F1-score of 0.653. For dose recommendations, the best clinical outcomes were achieved when the actual total
daily dose closely aligned with the model’s recommended dose (within 3 mg).
Conclusions: Ours is one of the largest studies to apply artificial intelligence to tacrolimus dosing, and our LSTM model
effectively predicts tacrolimus C0 and could potentially guide accurate dose recommendations. Further prospective studies are
needed to evaluate the model’s performance in real-world dose adjustments.
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Introduction
Background
Tacrolimus is a mainstay of immunosuppressive therapy
for patients undergoing solid organ transplants. Despite
widespread use and health care provider comfort in manag-
ing tacrolimus dosing in the posttransplant period, maintain-
ing the tacrolimus trough concentrations (C0) within the
narrow therapeutic range comes with its own set of chal-
lenges. In the immediate postoperative period, maintenance of
tacrolimus C0 within the therapeutic range is challenging due
to baseline patient characteristics, donor organ characteristics,
drug-drug interactions, and evolving perioperative physiol-
ogy resulting in variable day-to-day exposures [1-4]. This
variability and, more so, the time out of therapeutic range put
patients undergoing solid organ transplants at increased risk
of both the development of de novo donor-specific antibod-
ies (dnDSA) from persistent underdosing and tacrolimus
toxicity from significantly supratherapeutic levels [5]. Given
the risk that inappropriate dosing poses to patients undergoing
transplants in terms of organ rejection and tacrolimus toxicity,
a considerable amount of time and effort is spent by clinicians
to determine and adjust a patient’s dose.
Challenges and Study Objective
There have been several efforts to reduce this burden on
clinicians and improve the time in therapeutic range for
recipients of solid organ transplants by using both clini-
cal and genetic variables in the form of publicly available
population pharmacokinetics and machine learning models to
predict dose-adjusted tacrolimus C0 and recommend optimal
tacrolimus dosages [6-11]. However, some of these models
require genotyping (ie, CYP3A5 single nucleotide polymor-
phisms [SNPs]), which may not be widely available in all
institutions [6]. In addition, user interface and data require-
ments for commercially available third-party vendors limit
generalizability and practicality for use in the inpatient
setting [7]. Methods based on the area under the concentra-
tion-time curve require multiple concentration measurements
at different time points, making them resource intensive
[8,9]. Some studies attempted to predict the optimal sta-
ble tacrolimus dosage directly, but this approach is flawed
because the “stable” dose may be reached weeks or months
after the transplant, during which dnDSA may develop
[10,11].

In this work, we describe the development of a machine
learning model using electronic health record (EHR) data
from Epic Systems to predict the next-day tacrolimus C0
and guide dosing via a recommendation system for clini-
cians to prevent persistent over- or underdosing in the
inpatient setting. Our model accurately predicts tacrolimus
C0 by using comprehensive clinical features from a patient’s
medical history, including transplant type, demographics,
comorbidities, vital signs, laboratory parameter results, and
medications, resulting in more personalized tacrolimus C0
predictions and dose recommendations.

Methods
Study Design and Dataset
We extracted retrospective data for adult recipients of kidney
or liver transplants who received inpatient care at UC San
Diego Health from January 2016 to May 2024. These dates
were selected to ensure a sufficient sample size and stand-
ardization of immunosuppressive therapy. We included adult
patients (aged ≥18 years) who received their first liver or
kidney transplant. We excluded patients who were transplan-
ted with more than one organ or were receiving a second
transplant. Data from 2016 to 2023 were randomly split into
90% for the training set and 10% for the validation set, and
the test set contained patients from 2024. The intended use
of our model is to predict the next-day tacrolimus C0 based
on the features extracted from the patients’ EHRs. To make
predictions on the tacrolimus C0 for the next day, we require
data of both the tacrolimus C0 and dosage for the current day.

Ethical Considerations
This study was completed in accordance with the STROBE
(Strengthening the Reporting of Observational Studies
in Epidemiology) guidelines [12] (Checklist 1) and was
approved by the institutional review board at the University
of California San Diego (protocol 802489). This retrospec-
tive study involved secondary analysis of existing EHR
data, for which the institutional review board granted a
waiver of informed consent. Only the minimum necessary
protected health information was accessed and stored on
HIPAA (Health Insurance Portability and Accountability
Act)–compliant UC San Diego Health servers; the informa-
tion will be destroyed upon study closure. No compensation
was provided.
Features
We selected 62 variables as features for each patient,
including transplant type, demographics, comorbidities, vital
signs, standard inpatient laboratory parameters, ordered diet,
and medications, all of which were used to train the model.
Transplant type identifies the organ received by the patient
(eg, liver or kidney) and is represented as a binary varia-
ble. As previously mentioned, only patients who received a
single transplant of one type were included. Demographics
include age, gender, race, weight, and height. Medications
for inpatients were recorded each time they were adminis-
tered, with timestamps and dose details. This allowed us to
calculate the daily dose for each medication. Our medication
list included tacrolimus and other drugs known to interact
with tacrolimus [13], with a comprehensive list provided
in Multimedia Appendix 1. This list includes a total of 12
medications. We recorded the daily tacrolimus dosage in
mg, excluding the tacrolimus extended-release dosage, which
is rarely used at our institution, particularly for inpatient
admissions and in the immediate postoperative period. At our
institution, tacrolimus levels are measured using a chemilumi-
nescent microparticle immunoassay on whole blood samples.
Any level <2 ng/mL is reported as “<2 ng/mL,” and we
used 1 ng/mL to represent data in this range. For other
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medications, we used a binary variable to indicate whether
the patient took the medication within the 3 days prior to
the prediction date, accounting for the cumulative drug effect.
Vital signs and standard inpatient laboratory parameters were
recorded using the built-in measurement unit. Forward filling
was applied for imputation, and if no previous data were
available for a patient, the global median of nonmissing data
was used. Comorbidities considered included hypertension
and diabetes. Diabetes was categorized as type 1, type 2, and
others, with each category encoded as a binary variable. For
categorical features, we used one-hot encoding.
Long Short-Term Memory Model
We used a long short-term memory (LSTM) [14-16] model
in a multistep forecasting approach to predict daily tacrolimus
C0 after transplant. The LSTM model architecture is well
suited for handling sequential data, as it is designed to capture
long-range dependencies by using memory cells to retain
information over time.

For each patient, we modeled a sequence of daily
features, where each feature vector represents the clinical
and demographic information available for that specific day.
The LSTM model processes this sequence chronologically,
leveraging the information from all preceding days to predict
the tacrolimus C0 for each subsequent day. Importantly,
when predicting the tacrolimus C0 for a particular day, only
the features from previous days were considered, ensuring
that future information was not used and thus aligning with
real-world clinical scenarios. This approach allows the model
to dynamically incorporate the evolving clinical profile of the
patient as more data become available over time, effectively
capturing the temporal dependencies inherent in the patient’s
posttransplant clinical course progression. The architecture of
our LSTM model is illustrated in Figure 1.

Figure 1. Long short-term memory (LSTM) model architecture with detailed feature representation. ALT: alanine aminotransferase; BUN: blood
urea nitrogen; Temp: temperature.

Studying the influence of different features is necessary
for clinicians to understand the potential relationship with
predicted tacrolimus concentrations. To evaluate the feature
importance of the model, we used permutation importance
(also known as model class reliance) [17]. This was obtained
by randomly shuffling the values of each feature and
observing the impact on the model’s predictive performance,
thereby quantifying the reliance of the model on each specific
feature. A higher performance decrease indicates the feature
is more important.
Data Processing, Training, and
Hyperparameters
Feature normalization was performed to scale values into the
(0,1) range. The LSTM models were trained using the Adam
optimizer. Regularization was applied to minimize overfitting
and enhance generalizability. A hyperparameter search was
conducted for the LSTM model by optimizing the size and
number of LSTM layers, dropout rate, learning rate, and
the regularization parameter using 5-fold cross-validation on
the training cohorts using Bayesian optimization [18]. The
loss function used in the hyperparameter search is mean

squared error (MSE). In addition, other model architectures
(Multimedia Appendix 2) were trained and compared, and
the LSTM model was selected as the best-performing model
based on the MSE on the validation set. All experiments
were performed using Jupyter Notebook 6.5.6 (Jupyter) in a
secure cloud environment within AWS SageMaker (Amazon
Web Services). The model was implemented using Python
(version 3.8.18), with data preprocessing performed using
NumPy (version 1.24.4) and pandas (version 2.0.3), and
model training was conducted using PyTorch (version 2.0.0).
Metrics for Tacrolimus C0 Prediction
Mean absolute error (MAE) and mean absolute percentage
error (MAPE) were calculated on the test set to evaluate
the performance of the models. MAE is calculated as the
average of the absolute differences between the predicted
and actual concentrations. MAPE is calculated as the average
of the absolute differences between the predicted and actual
concentrations divided by the actual concentrations and is
expressed as a percentage.
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Tacrolimus Underdosing, Overdosing,
or Therapeutic Dosing Concentrations
Classification
We designed a 3-class classification task to assess the
model’s ability to predict underdosing, overdosing, or
therapeutic dosing, based on our institution’s defined
therapeutic window for patients undergoing kidney transplant
with good kidney function and patients undergoing liver
transplant with high risk factors for rejections across different
posttransplant periods. The target tacrolimus C0 for patients
undergoing kidney transplant are 10 to 13 ng/mL during the
first 0 to 3 months after the transplant and 8 to 10 ng/mL after
3 months. For patients undergoing liver transplant, the target
concentrations are 7 to 10 ng/mL within the first year after the
transplant and 5 to 7 ng/mL 1 year after the transplant. The
models were evaluated using precision, recall, and F1-scores.
Given the multiclass nature of the task, we report both the
microaverage (equal weight to each instance) and macroaver-
age (equal weight to each class) for precision, recall, and
F1-scores to represent the overall and per-class performance,
respectively.

Due to the limited data available on underdosing and
overdosing cases, we implemented an oversampling strategy
[19] to balance the training dataset. Specifically, we
duplicated instances with tacrolimus C0 below 5 ng/mL or
above 13 ng/mL 3 times, resulting in a total of 4 instances
for each of these cases during training. This approach aims
to enhance the model’s ability to recognize these critical yet
underrepresented cases. We report the classification results
for both the original dataset (uniform sampling) and the
oversampled dataset, providing a comprehensive evaluation
of the model’s performance under different training condi-
tions.
Dose Recommendation
We calculated the recommended dose based on the predicted
tacrolimus C0. This was achieved by considering all possible
dose options within a 15-mg range for a single dose, with
increments of 0.5 mg, administered twice daily. We ensured
that the difference between the morning and evening doses
was limited to 0 mg, 0.5 mg, or 1 mg, with the additional
restriction that the recommended daily dose remains within
1.5 times the previous day’s dose. This threshold was chosen
after discussion with our multidisciplinary group, which
included transplant pharmacists and health care providers, to
increase the usability of this recommendation system. The
recommended dose selected was the one that resulted in the
best predicted C0, specifically the mean value within the
therapeutic window defined for the patient.

We evaluated the effectiveness of the recommended dose
by defining a reward function, R(.), using the formula from

Lin et al [20]. It translates the measured outcomes into a
continuous reward using the following function:

R(x) = c1 + e−(x − blower) − c1 + e−(x − bupper)
Here, x is the tacrolimus C0, and blower and bupper are the

lower and upper bounds, respectively, given by our institu-
tion’s defined therapeutic windows. The constant c scales
the reward function appropriately within the range [0,1]. See
Multimedia Appendix 3 for the shape of the reward function.
This function yields a high reward close to 1 when x is within
the target range, and the reward gradually decreases to 0 as x
moves outside this range.

Results
Patient Characteristics
We identified 1597 patients undergoing transplants who
received at least one kidney or liver transplant between
January 1, 2016, and May 31, 2024. Of these, 1495 patients
received only one type of transplant, with 1033 patients
undergoing kidney transplant and 462 patients undergoing
liver transplant. The cohort was further refined to 1262
patients after ensuring that they had consistent patient
records, including taking tacrolimus, having their tacrolimus
C0 measured on 2 consecutive mornings, and administering
the medication after the first measurement. This includes
825 kidney recipients and 437 liver recipients. A detailed
flowchart of the patient selection process is provided in
Figure 2.

The final dataset consisted of 9601 tacrolimus C0
measurements to be predicted, with 4602 from kidney
recipients and 4999 from liver recipients. On average, patients
undergoing kidney transplant contributed 5.6 predictions
and patients undergoing liver transplant contributed 11.4
predictions to the entire cohort. The median daily tacrolimus
dose was 5.0 mg for both kidney and liver recipients. The
median (IQR) tacrolimus concentration was 8.4 (6.4‐10.8)
ng/mL for kidney and 7.5 (5.5‐9.7) ng/mL for liver recipients.
The median (IQR) age was 58 (47-65) years, with 47% of
kidney recipients and 44.8% of liver recipients identifying
as White. Notably, hypertension was more prevalent among
kidney recipients (86.5%) than liver recipients (54%), while
the prevalence of diabetes was similar between the two
groups (51.9% for kidney and 49.2% for liver recipients). The
dataset spanned a median (IQR) of 15 (3-123) days after the
transplant for kidney recipients and 19 (5-113) days for liver
recipients. See Table 1 for a detailed description of patient
characteristics.
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Figure 2. Patient selection and data processing flowchart.

Table 1. Patient characteristics.
Kidney recipients (n=825; 4602 days) Liver recipients (n=437; 4999 days)

Age (years), median (IQR) 58 (47-65) 58 (47-65)
Gender (man), n (%) 540 (65.5) 258 (59.0)
Weight (kg), median (IQR) 77.2 (67.0‐90.1) 73.3 (61.1‐87.5)
Height (cm), median (IQR) 170.0 (160.7‐177.0) 167.6 (160.0‐176.5)
Time after transplant (day), median (IQR) 15 (3-123) 19 (5-113)
Race, n (%)
  American Indian or Alaska Native 5 (0.6) 0 (0)
  Asian 134 (16.2) 20 (4.6)
  Black or African American 79 (9.6) 12 (2.7)
  Native Hawaiian or other Pacific Islander 7 (0.8) 2 (0.5)
  Other race or mixed race 206 (25.0) 201 (46.0)
  White 388 (47.0) 196 (44.9)
  Skip or prefer not to answer or not indicated 6 (0.7) 6 (1.4)
Ethnicity, n (%)
  Hispanic or Latino 364 (44.1) 214 (49.0)
  Non-Hispanic or Latino 460 (55.8) 218 (49.9)
  Skip or prefer not to answer or not indicated 1 (0.1) 5 (1.1)
Comorbidities, n (%)
  Hypertension 714 (86.5) 236 (54.0)
  Diabetes 428 (51.9) 215 (49.2)
Medications
  Daily tacrolimus (mg), median (IQR) 5.0 (2.0‐7.0) 5.0 (2.5‐8.0)
  Use of mycophenolate mofetil, n (%) 366 (44.4) 238 (54.5)
  Daily mycophenolate mofetil (mg), median (IQR) 1500 (1000‐2000) 1500 (1000‐2000)
  Use of antithymocyte globulin, n (%) 154 (18.7) 4 (0.9)
  Daily antithymocyte globulin (mg), median (IQR) 75 (100-125) 75 (50-100)
  Use of sirolimus, n (%) 8 (1.0) 7 (1.6)
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Kidney recipients (n=825; 4602 days) Liver recipients (n=437; 4999 days)

  Daily sirolimus (mg), median (IQR) 1.0 (0.5‐2.0) 1.0 (1.0‐1.5)
Labs
  Tacrolimus (ng/mL), median (IQR) 8.4 (6.4‐10.8) 7.5 (5.5‐9.7)

Performance
The LSTM model demonstrated an MAE of 1.880 ng/mL in
predicting the next day’s tacrolimus C0, taking both patients
undergoing kidney and liver transplants into consideration. If
analyzed separately, the MAE was 1.973 ng/mL for patients
undergoing kidney transplant and 1.744 ng/mL for patients
undergoing liver transplant. In addition, we computed the
MAE if the measured levels were below, within, and above
the tacrolimus target window, which was 1.427, 1.521, and
4.365 ng/mL, respectively. When evaluated using the MAPE,
the model achieved an average rate of 24.3% for both patients
undergoing kidney and liver transplants, with a MAPE of
23.8% for patients undergoing kidney transplant and 25.0%

for patients undergoing liver transplant. We observed a 21%
decrease in the MAE when evaluating predictions from days
5 to 10 after the transplant compared to days 1 to 5. The final
hyperparameters were 2 LSTM layers with a hidden state size
of 48, a dropout rate of 0.1, a learning rate of 2e–3, a batch
size of 16, and an L2 regularization (weight decay) of 1e–5.

The model’s capability to predict underdosing or over-
dosing was evaluated using the target concentration ranges
in a 3-class classification task. As shown in Table 2, the
model achieved an overall microaverage F1-score of 0.653.
The F1-score for predicting underdosing was notably higher
at 0.795, reflecting the model’s strong ability to forecast
underdosing.

Table 2. Three-class classification results with an oversampling of underdosing and overdosing cases during training.
Underdosing Therapeutic Overdosing Macroaveraged Microaveraged

Precision 0.851 0.427 0.405 0.561 0.673
Recall 0.746 0.571 0.357 0.558 0.642
F1-score 0.795 0.489 0.380 0.555 0.653

Important Features for Tacrolimus C0
Prediction
Here, we report on the top 10 most important features
for the proposed LSTM model. The feature importance
analysis revealed that the most recent tacrolimus C0
(tacro_level_today) is the most critical factor in predict-
ing future concentrations, indicating that the model heav-
ily relies on the latest available concentration. The type
of organ transplanted (eg, kidney) and variables related to
the tacrolimus dose—specifically, tacro_dose_prev_16_24,
tacro_dose_0_8, and tacro_dose_16_24, which represent the
dose administered 16 to 24 hours earlier, 0 to 8 hours
on the current day, and 16 to 24 hours on the current
day, respectively—also demonstrate significant importance.
Medications such as ketoconazole, fluconazole, posacona-
zole, and prednisone, which are known for their interac-
tions with tacrolimus, are also key predictors, aligning with
clinical expectations. The number of recorded meals (ie,
standard diet) also contributes meaningfully to the model’s

predictions, potentially due to the impact of nutritional status
on drug absorption and metabolism [21]. Overall, the analysis
highlights the model’s reliance on recent tacrolimus C0,
tacrolimus doses, organ type, diet, and drug interactions in
predicting tacrolimus C0.
Dose Recommendation
We analyzed the relationship between the difference in actual
and recommended daily doses and the corresponding reward
in terms of means and SEs (Figure 3). We observed that
when this difference approaches zero, the average rewards
are the highest, suggesting that when clinicians select doses
closer to the recommended values, the tacrolimus C0 are
optimal. Conversely, as the difference increases, the reward
tends to decline. These findings suggest that our recom-
mended algorithm, based on the level prediction model
using LSTM, provides reasonable and useful guidance for
tacrolimus dosing.
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Figure 3. Association between the difference in actual and recommended daily doses (distance) and average reward (mean and SE).

Discussion
Principal Findings
We presented a data-driven clinical decision support tool for
optimizing posttransplant immunosuppressive therapy with
the potential to improve patient outcomes. In comparison
to other previously described attempts that use Bayesian
modeling or machine learning methods, we have accom-
plished the development of an accurate prediction model
using only clinical variables available within the EHR. The
LSTM model is designed to process sequential data, capturing
long-term dependencies that are crucial in clinical settings
where patient responses to medication evolve over time [22].

In using institutional data for model development,
we recognized that SEs associated with daily laboratory
measurements likely impact prediction accuracy. This error
is present in all tacrolimus C0 measurements regardless of
institution; however, previous studies aiming to predict daily
tacrolimus C0 measurements for patients undergoing solid
organ transplants fail to address this [6,23]. At our institu-
tion, precision and accuracy rates of daily quality control
C0 measurements are both 5%. This SE, in combination
with the variability of tacrolimus administration times and
tacrolimus C0 lab draw times, likely plays a significant role
in the accuracy of our prediction model and may prove to
be a challenge when moving to real-world implementation of
prediction and dose recommendation models.

In practice, dosing adjustments are based on a clear
and comprehensive clinical picture, considering possible
medication interactions and patient physiology. For the
experienced and thorough health care provider, these
adjustments are made fairly easily, whereas an inexper-
ienced or nonspecialist health care provider adjusting these
medications in an inpatient setting may experience diffi-
culty consistently maintaining tacrolimus C0 measurements

within the therapeutic window. Our dosing recommendation
system offers a tool for health care providers to guide
dosing adjustment, and next steps for this study include
clinical validation. Previous dosing recommendations have
largely been focused on initial dosing strategies, based on
genotypes and clinical variables [24,25], but do not give
daily recommendations. For large-volume transplant centers,
these recommendations can save considerable time and effort,
particularly with complex patients.
Comparison With Prior Work
Previous studies have developed predictive models based on
genotype data, highlighting the potential for incorporating
genetic information into future models to further enhance
prediction accuracy [6]. We opted not to incorporate this
for several reasons: the prediction and dose recommenda-
tion models were developed with the intention of clinical
implementation, and health care providers at our institution
do not routinely use genomics in their practice. Min et al
[6] reported on 3 tacrolimus C0 prediction models using
clinical variables alone, genomic variables alone, and a
combination of clinical variables with CYP3A5 SNPs. The
hybrid model performed the highest with a log-transformed
MSE of 0.61 for their LASSO (least absolute shrinkage
and selection operator) model. Meanwhile, our model using
clinical variables alone achieves a log-transformed MSE of
0.10, outperforming the LASSO model. This suggests that
while CYP3A5 SNPs may be important in determining initial
dosing regimens, they may be less important when consid-
ering day-to-day tacrolimus C0 and dosing, although this
may also be due to differences in the models used for our
predictions.
Limitations
Hospital admissions following the index transplant typically
occur due to significant illnesses, particularly infections,
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at which point pharmacokinetics are difficult to predict
and lead to higher MAEs. Conditions such as diarrhea,
infections (particularly those requiring azole antifungals),
emesis, presence of continuous tube feeding, periods of
fasting states, and additional surgeries that lead to bleeding
further complicate accurate dosage prediction. We conduc-
ted a manual review of patient charts where the model
showed significant inaccuracies and found that many relevant
factors are better documented in clinical notes than in flow
sheets and flowcharts. This indicates that using natural
language processing techniques to extract this information
could improve prediction accuracy, highlighting a promising
area for future research [26,27]. Due to the frequency with
which patients who have undergone solid organ transplants
are admitted to the hospital, this population may benefit
from the development of their own unique model, that is,
separate models for the immediate postoperative period and
subsequent readmissions. In addition, because each patient
contributes to multiple predictions and later-stage predictions
tend to be more accurate, the overall MAE may be biased
depending on the distribution of predictions across different
stages of hospitalization.

Given the variability in patient conditions, some patients
may experience a departure from the baseline “steady state”
physiology. However, as our model requires input of the
current day’s dose and tacrolimus C0, critically ill patients
whose tacrolimus C0 is on hold will not be incorporated in

the model. Nevertheless, we captured patients who are not
critically ill, such as those with delayed graft function [28]
or biliary stricture [29]. Therefore, our model can account for
moderate deviations from baseline with reasonable accuracy,
providing clinicians with a valuable tool for managing various
cases. For future research, we consider developing a separate
model for nonstable patients and using an ensemble model
to jointly predict outcomes for both steady and nonsteady
patients.
Conclusions
By accurately forecasting tacrolimus C0, the proposed LSTM
model can provide valuable guidance for dosage adjustments
among patients undergoing kidney and liver transplants, with
the potential to improve clinical outcomes by maintaining
therapeutic drug levels and reducing the risk of underdos-
ing or overdosing. The model performs particularly well in
identifying patients likely to be subtherapeutic, suggesting
that clinical implementation of the tool may aid in improv-
ing metrics, such as time to therapeutic concentration and
days spent within the therapeutic window, and in limiting
the risk of acute rejection. Integrating genetic data and using
natural language processing techniques to capture additional
clinical nuances may further refine the model’s accuracy
and applicability. Future directions include clinical imple-
mentation and assessment of real-time utility of this clinical
decision support tool for dosing recommendations.
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