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Abstract

Background: Pressure ulcers (PUs) and incontinence-associated dermatitis (IAD) are prevalent conditions in clinical settings,
posing significant challenges due to their similar presentations but differing treatment needs. Accurate differentiation between
PUs and TIAD is essential for appropriate patient care, yet it remains a burden for nursing staff and wound care experts.

Objective: This study aims to develop and introduce a robust multimodal deep learning framework for the classification of
PUs and IAD, along with the fine-grained categorization of their respective wound severities, to enhance diagnostic accuracy
and support clinical decision-making.

Methods: We collected and annotated a dataset of 1555 wound images, achieving consensus among 4 wound experts.
Our framework integrates wound images with categorical patient data to improve classification performance. We evaluated
4 models—2 convolutional neural networks and 2 transformer-based architectures—each with approximately 25 million
parameters. Various data preprocessing strategies, augmentation techniques, training methods (including multimodal data
integration, synthetic data generation, and sampling), and postprocessing approaches (including ensembling and test-time
augmentation) were systematically tested to optimize model performance.

Results: The transformer-based TinyViT model achieved the highest performance in binary classification of PU and IAD,
with an Fl-score (harmonic mean of precision and recall) of 93.23%, outperforming wound care experts and nursing staff on
the test dataset. In fine-grained classification of wound categories, the TinyViT model also performed best for PU categories
with an F1-score of 75.43%, while ConvNeXtV2 showed superior performance in IAD category classification with an F1-score
of 53.20%. Incorporating multimodal data improved performance in binary classification but had less impact on fine-grained
categorization. Augmentation strategies and training techniques significantly influenced model performance, with ensembling
enhancing accuracy across all tasks.

Conclusions: Our multimodal deep learning framework effectively differentiates between PUs and IAD, achieving high
accuracy and outperforming human wound care experts. By integrating wound images with categorical patient data, the model
enhances diagnostic precision, offering a valuable decision-support tool for health care professionals. This advancement has
the potential to reduce diagnostic uncertainty, optimize treatment pathways, and alleviate the burden on medical staff, leading
to faster interventions and improved patient outcomes. The framework’s strong performance suggests practical applications
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in clinical settings, such as integration into hospital electronic health record systems or mobile applications for bedside
diagnostics. Future work should focus on validating real-world implementation, expanding dataset diversity, and refining
fine-grained classification capabilities to further enhance clinical utility.
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Introduction

Background

Pressure ulcers (PUs) and incontinence-associated dermatitis
(IAD) are significant challenges in clinical settings due to
their prevalence and impact on patient health and well-being.
The global prevalence of PUs is estimated to be 12.8%
[1], while studies have estimated the IAD prevalence to be
between 5.6% and 50% [2]. These wounds not only cause
physical discomfort but also pose risks of infection and
prolonged hospital stays, increasing health care costs and
diminishing the quality of life for affected individuals.

Accurately distinguishing between PUs and IAD poses a
considerable challenge for health care providers and wound
care experts. Both conditions share similar presentations, yet
their underlying causes and optimal treatment approaches
differ vastly. This ambiguity not only complicates diagno-
sis but also delays appropriate interventions, potentially
exacerbating patient discomfort and prolonging healing times

[3].

To address this challenge, the KIADEKU project [4] was
initiated to develop an innovative artificial intelligence (AI)
system capable of distinguishing between PUs and IAD using
wound image data and key patient information.

Goal of This Study

The goal of this study is to advance wound care by
developing a robust multimodal deep learning framework
for the fine-grained classification of PUs and IAD. By
integrating wound images with categorical patient data,
we aim to enhance diagnostic accuracy in distinguishing
between these conditions and in categorizing their respective
wound severities. We conduct extensive benchmarking of
state-of-the-art convolutional and transformer-based models,

emphasizing optimal performance while ensuring computa-
tional efficiency for practical deployment in clinical settings.
The optimized model addresses the challenging task of
accurately classifying PU and IAD wounds, providing
valuable insights and tools to support clinical decision-mak-
ing and guide future research in wound classification.

Related Work

Deep learning has significantly advanced wound classifica-
tion, including PUs and other wound types. Various stud-
ies have explored different deep learning architectures and
techniques to improve diagnostic accuracy and efficiency.
Table 1 summarizes key contributions in this domain.

While previous studies have demonstrated the effective-
ness of deep learning for wound classification, they pre-
dominantly rely on image data alone. However, accurate
wound diagnosis often depends on both visual appearance
and key clinical factors, such as wound location, patient
mobility, and incontinence severity. To our knowledge, no
existing study rigorously integrates multimodal data fusion,
combining wound images with categorical patient informa-
tion. Our approach leverages this additional patient context,
allowing the model to capture clinically relevant patterns that
purely image-based models may overlook, thereby signifi-
cantly improving diagnostic precision and decision support.
Furthermore, our approach involves extensive benchmark-
ing of state-of-the-art convolutional and transformer-based
models, as well as various training techniques, augmenta-
tions, and postprocessing methods to enhance performance.
This comprehensive evaluation sets our method apart in both
scope and effectiveness, contributing to a novel multimodal
framework for fine-grained wound classification that can
support clinical decision-making and guide future research in
this domain.

Table 1. Summary of related work in wound classification and pressure ulcer classification.

Authors Method

Key contributions

Pressure ulcer classification
Aldughayfiq et al [5] YOLOV5-based classification

Chang et al [6] Superpixel segmentation

Seo et al [7] CNN®?-based classification

Garcia-Zapirain et al [8] 3D CNNs

Classified pressure ulcers into 4 stages and non-pressure ulcer categories
with real-time detection capabilities.

Used superpixel techniques for automatic pressure ulcer diagnosis,
enhancing wound segmentation and classification accuracy.

Developed a deep learning model to visually classify pressure injury
stages, aiding nurses in diagnostic accuracy.

Explored 3D CNNs for classifying pressure ulcer tissues, capturing
spatial features for precise tissue type classification.
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Authors Method

Key contributions

Liu et al [9] CNN-based assessment system

Lau et al [10] AlIP-¢nabled smartphone app

Kimetal [11] Deep learning model for staging

Swerdlow et al [12] Mask R-CNN

Zahia et al [13] CNN:s for classification

Pandey et al [14] Thermal imaging classification

Wound classification

Huang et al [15] CNN-based tool

Oura et al [16] Deep learning in forensic analysis

Rostami et al [17] Ensemble CNN classifier

Patel et al [18] Integrated image and location analysis

Liu et al [19] EfficientNet models

Lee et al [20] Ultrasound imaging with deep learning

Afzaetal [21] Hybrid deep features selection

Cheng et al [22] ConvNext Tiny, Gun Shot Classification

Odame et al [23] CLAHE-enhanced images, DWT, FixCaps

Introduced a system to aid in pressure ulcer diagnosis and clinical
decision-making, enhancing speed and accuracy.

Developed an app for real-time pressure injury assessment using
advanced Al algorithms.

Assessed a deep-learning model’s clinical utility for pressure injury
staging, enhancing decision-making in wound care.

Proposed simultaneous segmentation and classification of pressure
injury images, improving diagnostic efficiency.

Focused on classification and segmentation of pressure injury tissues,
identifying different tissue types accurately.

Developed and validated a deep learning-based thermal imaging
framework to automatically stage pressure ulcers

Developed a tool for automatic classification of various wound types,
supporting accurate diagnoses.

Applied deep learning for gunshot wound interpretation, demonstrating
versatility in wound classification contexts.

Explored multiclass wound image classification using ensemble methods
to enhance accuracy.

Incorporated visual and locational data for wound classification,
highlighting multimodal data integration’s importance.

Applied EfficientNet to classify diabetic foot ulcer ischemia and
infection, handling complex wound classification tasks.

Developed a model for burn depth classification using ultrasound images
for non-invasive assessment.

Investigated skin lesion classification using deep features and extreme
learning machines, enhancing medical image analysis.

Pioneers the application of deep learning in forensic pathology by
demonstrating that Al can reliably differentiate between entrance and
exit gunshot wounds using digital color images.

Developed a multi-wound classification framework that integrates image
enhancement (using CLAHE and DWT) with deep learning

4CNN: convolutional neural network.
bAT: artificial intelligence.

Methods

Dataset

In this study, we use a new wound dataset collected and
annotated over a 2-year period as part of the KIADEKU
project. The data originate from the project partners Lud-
wig Maximilian University University Hospital and Essen
University Hospital and were annotated by 4 wound experts
with extensive clinical experience in wound management
using the Label Studio Software [24]. Considering the
difficulty of the task, we enforced a strong ground truth by
having all images annotated by 3 wound experts and only
used images where 2 wound experts reached consensus in
their annotations.

The annotators categorized each image as either IAD,
PU, invalid, or borderline case (both wounds present) and
assessed the categorization of each wound type. For PU
classification, we followed the International Classification of
Diseases-10 standard [25], which defines 4 degrees (1-4) of
PU wounds. Similarly, for IAD classification, we used the
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Ghent Global IAD Categorization Tool (GLOBIAD) [26],
which categorizes IAD wounds into 4 distinct categories: 1A,
1B, 2A, and 2B. Figure 1 shows an exemplary annotation
interface.

Employing the described annotation protocol, a dataset
of 1555 images was annotated, from which 1514 images
received consensus validation among the annotators. Analysis
of the data revealed a generally balanced distribution between
the 2 principal wound types under study, PUs and IAD, as
depicted in Figure 2. The dataset comprised 763 images of
PU and 339 images of IAD.

Of the 763 images categorized as PUs, consensus was
achieved for 742 images regarding their specific PU category.
The distribution of these categories, as illustrated in Figure
2, reveals a significant class imbalance. Notably, categories
1 and 4 are markedly underrepresented, containing only 25
and 27 images, respectively, compared to 187 images in
category 2 and 503 in category 3. This pronounced disparity
in class sizes is a critical factor that must be considered when
interpreting the training results.
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Of the 339 images initially classified as IAD, a consensus
on the specific IAD category was reached for 327 images.
The class distribution within these categories, as depicted
in Figure 2, is relatively balanced compared to the distribu-
tion observed in PU categories. Category 2B is the most

Brehmer et al

represented, with 120 images, followed by category 2A with
105 images, 1B with 57 images, and 1A with 45 images.
Although this distribution is less skewed than that observed in
the PU categories, the smaller sample size overall remains a
significant consideration for model training and validation.

Figure 1. Dataset composition with distribution of wound types and categories. PU: pressure ulcer; IAD: incontinence-associated dermatitis.

PU|(763)

IAD)(339)

Invalid Image (269)

PU.1(25) ==

pu 2 (187) 1]
PU Consense (742) D
PU 3 (503)
= No PU Consense (21) PU'4 (27) =
1A (45) ==
DIAD Consense (327) 1B/(57) ==
2A(105) [0
- No IAD Consense (12) 28/(120) [0

Borderline Case (143)

Figure 2. Exemplary annotation process in Label Studio. PU: pressure ulcer; IAD: incontinence-associated dermatitis.

Wound

Task #10224

Methodology

Our proposed classification framework is specifically
designed to handle and classify both images and categorical
data effectively, as shown in Figure 3.

Initially, the original images undergo several preprocess-
ing steps. These steps include image augmentations and
normalization to standardize the input data, alongside the
generation of synthetic data points by fine-tuning a sta-
ble diffusion model and using these synthetic samples to
oversample the minority classes across tasks. We then
compare the performance of this approach with traditional
oversampling techniques that rely on original data points.
For categorical patient data (eg, wound location, mobility,
perception ability, and continence status), missing values
were addressed using mode imputation, where the most
frequent value for each feature was assigned. In cases where
missing values exceeded 20% of the dataset for a particular
feature, the affected samples were excluded to prevent bias.
Additionally, images with conflicting expert annotations (ie,
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cases where consensus was not reached) were removed to
maintain ground truth integrity. After data preprocessing,
we extract features from each modality. Image features are
extracted using various feature extractors from the Timm
[27] library, renowned for their robustness and efficiencys;
in parallel, categorical features are derived using a simple
feed-forward neural network designed to capture the essential
characteristics of the embedded categorical data.

In the final stage of our framework, we employ 3 distinct
modality fusion techniques to integrate image and categori-
cal features before classification. In the concatenation-based
fusion, features from both modalities are directly concaten-
ated to form a comprehensive feature set, which is then
passed to a classification head. In the cross-attention-based
fusion, categorical features are projected into the image
feature space, and a multihead attention mechanism is applied
to capture their interactions. In the gated fusion, a gating
mechanism adaptively balances the contributions of both
modalities, allowing the model to learn the optimal weight-
ing before classification. Each approach ensures effective
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multimodal integration while leveraging different fusion
strategies. The combined feature set is then fed into a final
classification head, which is tasked with making the final
prediction based on the integrated data.

This setup facilitates a systematic examination and
evaluation of various data preprocessing strategies, training

Brehmer et al

techniques, and postprocessing approaches, both independ-
ently and in combination. This rigorous methodology allows
for a comprehensive comparison and assessment of their
efficacy in various combinations across our designated tasks.

Figure 3. Multimodal architecture visualization illustrating the use of data preprocessing and feature extraction, before fusing the features for the

final classification.
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Experimental Setup

To maintain a manageable number of experiments, we
did not evaluate every possible combination. Instead, we
benchmarked various components individually and sequen-
tially integrated the optimal variations for subsequent tests.
Specifically, we first identify the model architecture that
achieves the highest average rank across our metrics and use
this model as the basis for testing different augmentation

techniques. The best performing augmentation variation, as
determined by the average metric rank, is then used to assess
different training techniques. Finally, the best combination
of model, augmentation, and training technique is used to
benchmark the most effective postprocessing strategy. For
a visual representation of this benchmarking flow, refer to
Figure 4.

Figure 4. Visualization of experiment setup and benchmark flow. TTA: test-time augmentation.
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Training

The general training procedure involves setting the learning
rate to 0.0001 and resizing the input images to 384x384
pixels. We use a batch size of 64, with the AdamW opti-
mizer to manage weight decay, and the CrossEntropyLoss
loss function for training. The learning rate is adjusted using
a CosineAnnealingWarmRestarts scheduler, starting with a
cycle length of 10 epochs and a minimum learning rate of
le-6. Training is performed on an NVIDIA A100 graphics
processing unit, with early stopping enabled and a patience of
15 epochs to prevent overfitting. The dataset is initially split
into an 80:20 ratio for training and testing. The training set is
further divided into 5 equal parts (folds) for cross-validation
to enable robust model evaluation.

Models

To evaluate and identify the best possible model for the
binary classification task of IAD and PU, as well as
the fine-grained wound category classification within these
wound types, we selected 4 models with approximately
25 million parameters to ensure a fair comparison and
fast inference speed. Using transfer learning, we employed
pretrained models from the Timm library, which were
originally trained on ImageNet [27]. Our selection includes
2 convolution-based models and 2 transformer-based models,
chosen for their exceptional performance relative to their
parameter count, as evidenced by Timm’s test results on
the ImageNet benchmark. For the convolution-based models,
we selected a pretrained ConvNeXtV2 model [28,29] and a
pretrained EfficientNetV2 model [30,31]. These models are
chosen for their state-of-the-art performance and efficiency,
making them highly suitable for a wide range of com-
puter vision tasks. The ConvNeXtV?2 incorporates advanced
architectural enhancements, while EfficientNetV2 uses a
novel scaling approach for optimal accuracy and computa-
tional efficiency. For the transformer models, we included the
MetaFormer [32] and TinyViT [33,34]. The MetaFormer is
selected for its innovative design that enhances transformer
capabilities, while TinyViT, a distilled vision transformer, is
designed to retain high accuracy with fewer parameters and
computational resources, making it suitable for resource-con-
strained environments.

Augmentations

We evaluate 6 distinct augmentation techniques comprising 3
randomized methods and 2 custom-designed variants and the
use of CutMix/MixUp [35]. Initially, we test the RandAug-
ment [36] method using its PyTorch implementation with
default settings. To explore more robust options, we employ
an intensified version of RandAugment, increasing the
augmentation count to 4 and the magnitude to 12. Addition-
ally, we assess the PyTorch implementation of TrivialAug-
mentWide [37] with default parameters, a straightforward
approach that applies a single, random augmentation to
each image. Moreover, we introduce 2 proprietary augmen-
tations developed for exploratory purposes. The first, a
mild augmentation set, incorporates random affine transfor-
mations, perspective adjustments, and rotations. The second,
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a more intensive augmentation suite, applies random flips,
rotations, color jittering, affine transformations, perspective
adjustments, and Gaussian blurring, all implemented using
the torchvision transformation library. Finally, we evaluate
CutMix and MixUp augmentation using the PyTorch v2
implementation, where images are randomly augmented with
either CutMix or MixUp using a random selection strategy,
ensuring diverse augmentation during training.

Training Techniques and Postprocessing

Next, we explore various training variations and postprocess-
ing techniques used in this study. Initially, we incorporate
multimodal data in our training, which includes both patient
images and tabular data detailing wound location, mobility,
perception ability, and urinary plus fecal continence. Each
factor of mobility, perception, and continence is quantified
on a scale from 0 to 4. A joint fusion approach is adopted
for multimodal classification, where image embeddings are
combined with tabular data embeddings, followed by a final
classification head.

Concerning sampling strategies, we address the low
sample size in certain classes by employing oversampling
techniques to balance class distributions. In addition to
classic oversampling, we introduce a synthetic data gener-
ation approach by fine-tuning a stable diffusion model to
generate artificial images for the minority classes. This allows
us to augment underrepresented categories with high-qual-
ity synthetic samples. We compare the performance of this
approach against traditional oversampling methods to assess
its effectiveness in mitigating class imbalance. In terms of
postprocessing, we implement ensembling to enhance model
performance and robustness by averaging predictions from all
5 folds. Furthermore, test time augmentation is employed by
averaging predictions of the original image with 4 additional
variants that have undergone mild augmentations such as
random flips, rotations, and slight color jitter.

Evaluation Metrics

To assess the performance of the various models and training
strategies, we employ several key metrics. The evaluation
metrics used in this study include F1 score, area under
the receiver operating characteristic curve (AUROC), and
average precision (AP). All metrics were implemented using
the torchmetrics library [38]. These metrics were chosen
based on informed estimations and insights from Maier-Hein
et al [39] recommendations.

Ethical Considerations

Ethical approval for this study was granted by the Ethics
Committee of the Medical Faculty of the University of
Duisburg-Essen on October 4, 2022 (ref number: 22-10905-
BO). The study involved retrospective analysis of de-iden-
tified image data, and no direct contact with participants
occurred. As such, informed consent was not required. All
data were processed in compliance with applicable privacy
and data protection regulations. In addition, the overall
KIADEKU project is registered with the German Clini-
cal Trials Register (Deutsches Register Klinischer Studien
(DRKS)) under the registration number DRKS00029961.
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Results

Overview

Table 2 presents the performance metrics of our best models
across the 3 classification tasks. For the binary classification
between PU and IAD, the model achieved an Fl1-score of
93.23%, an AUROC of 0.9852, and an AP of 0.9813. In the
PU category classification, the model obtained an F1-score of
75.43%, an AUROC of 0.9384, and an AP of 0.8616. For the

Table 2. Performance of the best models.

Brehmer et al

IAD category classification, the Fl-score was 53.20%, with
an AUROC of 0.8391 and an AP of 0.5927.

When examining the optimal combinations per task (refer
to Table 3), it is observed that, from an architectural
standpoint, transformer models exhibit a superior perform-
ance compared to convolution-based models. An exception to
this trend is noted in the JAD Category Classification task,
where the ConvNeXtV2 model achieves the highest overall
performance.

Technique F-score AUROC? APP

Binary 0.9323 0.9852 09813
PU€ category 0.7543 0.9384 0.8616
IADY category 0.5320 0.8391 0.5927

2AUROC: area under the receiver operating characteristic curve.
YAP: average precision.

CPU: pressure ulcer.

dIAD: incontinence-associated dermatitis.

Table 3. Best benchmark result overview.

Task Model Augmentation Multimodal technique Sampling technique Post processing

Binary TinyViT TrivialAugmentWide Cross-attention None Ensemble

PU? category TinyViT RandAug Strong None Synthetic Ensemble
oversampling

IADP category ConvNeXtV2 Heavy None Synthetic Ensemble

oversampling

4pU: pressure ulcer.
YIAD: incontinence-associated dermatitis.

Regarding augmentations, lighter augmentations enhance
performance in the binary classification task. Conversely,
the finer category classification tasks benefit from more
intensive augmentations, including a heavy augmentation set
and significant variations of RandAugment .

Training techniques also show variability across tasks.
Multimodality training proves advantageous for the binary
classification, whereas it detracts from performance in
fine-grained category classification. The cross-attention-based
modality fusion approach shows the best performance for the
binary classification task. Tailored sampling strategies yield
the most substantial performance enhancements, particularly
for the PU and IAD category classification tasks, where
significant class imbalances are present. Both classic and
synthetic oversampling improve performance in these tasks,
with the synthetic approach achieving superior results.
However, for the binary classification task, neither method
provides a noticeable performance increase compared to the
standard training regimen.

In the realm of postprocessing techniques, there is
a discernible preference for ensembling, which enhances
performance across all evaluated tasks. While test-time
augmentation also positively impacts performance most of the

https://ai.jmir.org/2025/1/e67356

time, its effectiveness is not as pronounced as that achieved
through ensembling.

Detailed performance metrics for the tasks are provided in
the multimedia appendices (Multimedia Appendices 1-3).

In examining the outcomes of the confusion matrices for
the optimal combinations per task, as depicted in Figure
5, a more nuanced understanding of the results and the
inherent complexities of the tasks is achieved. The binary
classification task demonstrates a high degree of accuracy,
achieving low rates of false positives and false negatives,
despite the presence of slight class imbalance between the
2 categories. The classification of PU categories presents
notable challenges, particularly for categories 1 and 2, which
are characterized by their low frequency within the dataset.
A mixup between PU-2 and PU-3 is observed to be the most
common misclassification, indicating a degree of ambiguity
in their differentiation.

A similar pattern is observed in the classification of IAD
categories. Categories 1 and 2 prove challenging to classify
accurately due to their limited sample sizes. Conversely,
categories 3 and 4, while yielding better classification results,
also exhibit tendencies for mutual misclassification.

JMIR AI 2025 | vol. 4 167356 | p.7
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Figure 5. Confusion matrices showing the best benchmarks for different classification tasks: (a) binary classification, (b) pressure ulcer (PU)

category, and (c) incontinence-associated dermatitis (IAD) category.

a) Binary classification confusion matrix

PU1

True Label
True Label
PU 2

PU3

PU 4

P! PU 1

U IAD PU 2
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Performance Comparison

To evaluate our model’s performance, we conducted a
comparative analysis against the initial hospital inputs
recorded in the primary hospital systems, as well as the
annotation performance of 2 wound experts and a health
care provider without extensive wound expertise on the
test dataset. Since the primary hospital system does not
include detailed wound degree information, we limited this
comparison to binary classification. Specifically, because the
electronic health records in the hospitals only document the
presence of PU, we assumed that all other labels correspond
to IAD for the purposes of this comparison. Furthermore,
we assessed model performance solely on the subset of data
labeled as PUs.

Table 4. Model performance comparison binary.

b) PU category confusion matrix

Predicted Label

c) IAD category confusion matrix

True Label
1B

2A

2B

PU3

1A

1B 2A 2B
Predicted Label

As shown in Table 4, our AI model demonstrates a
significant improvement in both accuracy and F1 score
compared to the initial hospital inputs and health care
provider annotations. Notably, the model also slightly
outperforms the wound care experts on the test dataset,
indicating its potential to assist in clinical decision-making.

In addition to this binary classification analysis, we
evaluated the model’s performance on the test datasets with
respect to individual wound degree classification, as shown in
Table 5. Also, in this more complex classification task, the Al
model outperforms the individual wound experts and health
care providers.

Method All images PU? only
Accuracy Fi-score Accuracy
AI’ model 0.9412 0.9323 0.9532
Primary system 0.8190 0.7260 0.8366
Wound expert 1 0.8959 0.8774 0.9281
Wound expert 2 0.8914 0.8773 0.8889
Health care provider 0.8190 0.7736 0.9150
4PU: pressure ulcer.
DAL artificial intelligence.
Table 5. Model performance comparison for PU? and IADP categories.
Method PU category IAD category
Accuracy F}-score Accuracy Fi-score
AI° model 0.8255 0.7543 0.5655 0.5320
Wound expert 1 0.7047 0.5284 0.4328 0.3445
Wound expert 2 0.7181 0.5229 0.3881 0.2941
Health care provider 0.4698 0.3295 0.1642 0.1450

4pU: pressure ulcer.
YJAD: incontinence-associated dermatitis.
CAL artificial intelligence.
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Discussion

Principal Findings

In this study, we developed a multimodal deep learning
framework for the fine-grained classification of PUs and TAD,
along with their respective wound severities. By integrating
wound images with categorical patient data, we aimed to
enhance diagnostic accuracy and support clinical decision-
making in wound care management.

Our extensive evaluations demonstrated that transformer-
based architectures, particularly TinyViT, achieved superior
performance across the classification tasks. The TinyViT
model attained an Fi-score of 93.23% in the binary classi-
fication of PU and IAD, outperforming both wound care
experts and nursing staff on the test dataset. This highlights
the model’s effectiveness in handling complex visual data
and its potential to assist clinicians in accurately distinguish-
ing between these 2 conditions. In the fine-grained classifica-
tion of PU categories, the TinyViT model again showed the
best performance with an Fj-score of 75.43%. However, the
performance was notably lower than in the binary classifica-
tion task, indicating the increased difficulty in distinguishing
between the stages of PU due to subtle visual differences
and class imbalances—particularly in differentiating the PU
categories stages 1 and 2. Similarly, for IAD category
classification, the ConvNeXtV2 model performed best with
an Fi-score of 53.20%, but the overall performance was
modest, reflecting challenges in differentiating between IAD
severity levels.

These findings indicate that while our models effectively
distinguish between PU and IAD, their performance in
classifying the specific categories within each condition can
be enhanced, particularly due to challenges posed by subtle
visual differences and class imbalances. Misclassifications
often occurred between adjacent categories, which may be
due to overlapping visual features and insufficient samples in
certain classes. This underscores the need for larger and more
balanced datasets to enhance model training and improve
classification accuracy in fine-grained tasks. To address this,
future research could focus on targeted data collection to
increase underrepresented classes. Additionally, exploring
advanced synthetic data generation techniques could provide
valuable insights, as our study demonstrated the effectiveness
of stable diffusion—based synthetic oversampling.

The integration of multimodal data, which combines
images with patient information, was beneficial in the
binary classification task, enhancing the model’s ability
to differentiate between PU and IAD. This highlights the
importance of contextual clinical information in supporting
image-based diagnoses. However, the inclusion of multimo-
dal data had less impact on the fine-grained classification
tasks. This may be because the categorical patient data do
not provide sufficient granularity to assist in distinguishing
between wound severities within PU or IAD. Augmentation
strategies played a significant role in model performance.
Lighter augmentations were more effective for the binary
classification task, possibly because they preserved essential
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image features while providing variability. In contrast, more
intensive augmentations benefited the fine-grained classifi-
cation tasks by helping the models generalize better to
subtle variations in wound appearances. This indicates that
augmentation techniques should be tailored to the specific
requirements of each classification task.

Synthetic data generation and oversampling proved
particularly effective in mitigating class imbalances in the PU
and IAD category classification tasks, enhancing the model’s
ability to learn from underrepresented classes. Notably,
the synthetic oversampling approach demonstrated superior
performance compared to traditional oversampling, high-
lighting its potential for improving classification in highly
imbalanced settings. In terms of postprocessing, ensembling
predictions from multiple folds consistently improved model
performance across all tasks, providing more robust and
reliable results. While test-time augmentation also contrib-
uted to performance gains, its impact was less pronounced
compared to ensembling.

These findings contribute valuable insights into the
development of more effective diagnostic tools and algo-
rithms for wound classification. By addressing the challenges
identified, future work can focus on enhancing the preci-
sion and utility of clinical assessments, ultimately improving
patient care outcomes.

Limitations

This study, while providing significant insights into the
classification of PU and IAD using advanced Al techni-
ques, has certain limitations that warrant consideration. The
dataset used, although comprehensive, may not adequately
represent the vast diversity of clinical environments and
patient demographics. This could limit the generalizability
of the findings to other settings or populations. Additionally,
inherent class imbalances within the dataset, despite efforts to
mitigate their effects through techniques like oversampling
and synthetic data generation, might have influenced the
model’s learning, potentially skewing the accuracy toward
more frequently represented classes.

Moreover, the integration of multimodal data did not
uniformly improve performance, indicating that its effective-
ness varies depending on the data’s context and characteris-
tics. This suggests a need for further investigation into which
data types are most useful and how they should be integrated.

Furthermore, the study did not exhaustively evaluate every
conceivable combination of models, augmentations, training
techniques, and postprocessing methods. Instead, selections
were based on educated predictions, leveraging the highest-
performing techniques from prior phases of the research. This
approach, while efficient, may have overlooked potentially
effective combinations that could offer further insights or
enhanced performance. Additionally, fine-grained classifica-
tion remains a challenging task due to subtle visual differen-
ces between wound categories. Future work should explore
attention mechanisms to highlight key image regions and
improve model focus, as well as few-shot learning techniques
to enhance performance on underrepresented classes. Lastly,
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the comparison of the model’s performance with wound care
experts and primary systems is constrained by the specific test
dataset used in this study, and as such, the findings may not
be fully generalizable to broader and more diverse datasets or
clinical scenarios.

Conclusions

This study has successfully implemented a framework for
classifying PUs and IAD using advanced artificial intelli-
gence methodologies. By systematically evaluating various
computational strategies, including different model archi-
tectures, augmentation techniques, training methods, and
postprocessing approaches, this research provides valuable
insights into optimizing Al-driven wound classification
models and their potential for real-world clinical application.

The exploration revealed that transformer-based models,
notably the TinyViT, generally outperform other architec-
tures, highlighting their suitability for complex visual data
processing in fine-grained applications. The effectiveness of
different augmentation strategies varied with the complexity
of the classification task, emphasizing the need for tailored
approaches depending on the specific requirements of the data
and the classification objectives.

Furthermore, the study highlights the value of multimo-
dal data integration in enhancing classification accuracy

Brehmer et al

in specific contexts, though its effectiveness varies across
tasks. In addition, our findings emphasize the importance of
addressing class imbalances, where both classic and synthetic
oversampling significantly improved performance, particu-
larly in tasks with severe class disparities. Notably, synthetic
oversampling demonstrated superior effectiveness, suggesting
that generative models can serve as a powerful tool for
augmenting underrepresented classes. Finally, the superior
performance of ensembling in postprocessing underscores
its potential as a robust strategy for improving prediction
reliability, particularly in clinical applications.

In conclusion, our work presents a highly effective
classification model capable of accurately distinguishing
between PU and IAD images. This model can serve as a
valuable tool to assist health care providers in making correct
diagnoses, thereby enhancing clinical decision-making and
improving patient outcomes in wound care management. The
application of our model has the potential to streamline the
diagnostic process, reduce the burden on medical staff, and
ensure that patients receive appropriate and timely treatment.
Furthermore, our extensive benchmarking provides a valuable
reference and guidance for future research and development
in wound image classification, contributing to the advance-
ment of practical applications within the domain.
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