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Abstract

Background: Large language models (LLMs) have demonstrated powerful capabilities in natural language tasks and are
increasingly being integrated into health care for tasks like disease risk assessment. Traditional machine learning methods rely
on structured data and coding, limiting their flexibility in dynamic clinical environments. This study presents a novel approach
to disease risk assessment using generative LLMs through conversational artificial intelligence (AI), eliminating the need for
programming.

Objective: This study evaluates the use of pretrained generative LLMs, including LLaMA2-7b and Flan-T5-xl, for COVID-19
severity prediction with the goal of enabling a real-time, no-code, risk assessment solution through chatbot-based,
question-answering interactions. To contextualize their performance, we compare LLMs with traditional machine learning
classifiers, such as logistic regression, extreme gradient boosting (XGBoost), and random forest, which rely on tabular data.

Methods: We fine-tuned LLMs using few-shot natural language examples from a dataset of 393 pediatric patients, developing
a mobile app that integrates these models to provide real-time, no-code, COVID-19 severity risk assessment through clinician-patient
interaction. The LLMs were compared with traditional classifiers across different experimental settings, using the area under the
curve (AUC) as the primary evaluation metric. Feature importance derived from LLM attention layers was also analyzed to
enhance interpretability.

Results: Generative LLMs demonstrated strong performance in low-data settings. In zero-shot scenarios, the T0-3b-T model
achieved an AUC of 0.75, while other LLMs, such as T0pp(8bit)-T and Flan-T5-xl-T, reached 0.67 and 0.69, respectively. At
2-shot settings, logistic regression and random forest achieved an AUC of 0.57, while Flan-T5-xl-T and T0-3b-T obtained 0.69
and 0.65, respectively. By 32-shot settings, Flan-T5-xl-T reached 0.70, similar to logistic regression (0.69) and random forest
(0.68), while XGBoost improved to 0.65. These results illustrate the differences in how generative LLMs and traditional models
handle the increasing data availability. LLMs perform well in low-data scenarios, whereas traditional models rely more on
structured tabular data and labeled training examples. Furthermore, the mobile app provides real-time, COVID-19 severity
assessments and personalized insights through attention-based feature importance, adding value to the clinical interpretation of
the results.

Conclusions: Generative LLMs provide a robust alternative to traditional classifiers, particularly in scenarios with limited
labeled data. Their ability to handle unstructured inputs and deliver personalized, real-time assessments without coding makes
them highly adaptable to clinical settings. This study underscores the potential of LLM-powered conversational artificial intelligence
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(AI) in health care and encourages further exploration of its use for real-time, disease risk assessment and decision-making
support.

(JMIR AI 2025;4:e67363) doi: 10.2196/67363
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Introduction

Background
Disease risk assessment is a critical tool in public health
surveillance, where demographic variables and social
determinants are often used to assess a patient’s susceptibility
to disease, predict treatment response, and forecast severity
outcomes. Traditionally, these predictions have been carried
out using machine learning models trained de novo for each
disease or condition using curated tabular data [1-3]. For
example, Wang et al [2] developed a linear model–based,
multitask learning approach to predict the risk of childhood
obesity based on geolocation data. Li et al [3] proposed a
mixture neural network to stratify patients and predict heart
failure risk within each subgroup.

The advent of transformers has marked a significant shift,
allowing researchers to deploy advanced models that improve
prediction accuracy and handle complex data structures more
effectively. Bidirectional Encoder Representations from
Transformers (BERT)–style models [4] have been extensively
used in various health care tasks. Notable examples include
ClinicalBERT [5] and BioClinicalBERT [6], both trained on
clinical notes in the MIMIC-III database. MedBERT [7], further
trained on electronic health records (EHRs), achieved a high
area under the curve (AUC) scores for disease risk prediction.
However, BERT-based models, primarily designed for
discriminative tasks, face limitations in processing streaming
question-and-answer (QA) pairs typical in conversational data
science applications due to their architectural constraints.

Generative Large Language Models for Health Care
Generative large language models (LLMs), such as OpenAI’s
GPT-3 [8], have transcended the limitations of discriminative
models by excelling at handling diverse data formats, including
both structured clinical data and unstructured text like patient
narratives and medical histories. This versatility allows them
to integrate and synthesize information from multiple sources,
making them highly effective for complex tasks such as
predicting disease severity. Generative LLMs have been applied
in health care across various domains, including diagnostic
support, clinical decision-making, clinical knowledge extraction,
and risk prediction with personalized monitoring.

In diagnostic support, generative LLMs like ChatGPT and
GPT-4 [9] have been used to aid clinical diagnosis by leveraging
structured and unstructured data. Gilson et al [10] assessed
ChatGPT’s ability to answer the United States Medical
Licensing Examination (USMLE) Step 1 and Step 2
multiple-choice questions, highlighting its potential for medical
education and diagnostic assistance. Kung et al [11] evaluated
ChatGPT’s clinical reasoning by testing it on structured

questions from the USMLE, simulating clinical decision-making
tasks without domain-specific training. Ali et al [12] explored
the use of ChatGPT to generate patient-friendly clinical letters
based on semistructured prompts, aiming to improve
communication efficiency while ensuring accessibility for
patients. Xv et al [13] used ChatGPT to assist in diagnosing
urological diseases using semistructured patient data,
demonstrating its potential as a tool for preliminary diagnostic
support. Kanjee et al [14] evaluated GPT-4’s diagnostic accuracy
in complex clinical cases, showing its ability to generate
differential diagnoses based on patient history and clinical
findings.

Generative LLMs have also become valuable tools in
synthesizing vast amounts of medical literature, enabling
clinicians and researchers to stay current with scientific
advancements. Tang et al [15] evaluated LLMs in summarizing
medical evidence, demonstrating that models like GPT-4 [9]
can generate concise summaries of research articles, facilitating
faster knowledge assimilation. Sallam [16] discussed how LLMs
could assist in systematic reviews and meta-analyses, reducing
the effort required in literature search and data extraction.

In risk prediction and personalized patient monitoring,
generative LLMs have shown significant potential. Health-LLM
[17] integrates wearable sensor data, such as physical activity
and heart rate, to predict stress, fatigue, and other health metrics.
Leveraging zero-shot learning, the model generalizes effectively
across various health prediction tasks without task-specific
training. ClinicalMamba [18] excels in analyzing longitudinal
EHR notes for disease progression prediction and patient cohort
selection by processing unstructured clinical notes over extended
sequences.

With increasingly longer context windows, up to 8192 tokens
in OpenAI’s GPT-4 [19], generative LLMs can efficiently
manage extensive patient records and interaction histories. This
capability to process long, varied inputs allows them to
generalize effectively even with limited labeled domain-specific
data. Furthermore, their ability to handle multiturn conversations
positions them uniquely for real-time applications, facilitating
no-code disease assessment through interactive patient
engagements.

Despite the remarkable performance of proprietary black-box
LLMs like GPT-4 and MedPaLM-2 [20], there is growing
interest in deploying white-box models in health care and other
high-stakes domains. White-box models mitigate risks related
to data privacy breaches and hallucination by allowing for full
transparency and control over the model’s architecture and
parameters. Their smaller size enables deployment on local
devices, enhancing data security by keeping sensitive
information on the device. Furthermore, the transparent nature
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of these models facilitates interpretability, which is crucial for
explainability in clinical settings.

This shift towards transparent and customizable models is
exemplified by PMC-LLaMA [21], adapted from the LLaMA
architecture and fine-tuned on extensive health and medical
corpora. PMC-LLaMA has outperformed larger models in
several health and medical QA benchmarks, highlighting the
effectiveness of domain-specific fine-tuning. One of the few
studies exploring generative LLMs for disease diagnosis and
risk assessment is CPLLM [22]. CPLLM fine-tunes Llama2
[23] as a general LLM and uses BioMedLM [24], a model
trained extensively on biological and clinical texts, to perform
various prediction tasks, including disease diagnosis and patient
outcome forecasting. These models demonstrate the potential
of LLMs in understanding complex medical language and
reasoning. However, their application to direct disease risk

assessment using streaming QA interactions remains limited,
and they do not fully leverage the interpretability benefits of
white-box models for explainability.

Our work builds upon these advancements by transitioning from
traditional machine learning–based health outcome
prediction—which typically relies on structured tabular data—to
chatbot-based, no-code prediction using streaming QA
interactions. We develop a generative artificial intelligence
(GenAI)–powered mobile app that integrates fine-tuned
white-box LLMs—including LLaMA2, Flan-T5, and T0
models—as the core for personalized risk assessment and
patient-clinician communication. The app provides a natural
language interface for risk assessment, processes user responses
in real time, and can be deployed locally on devices to enhance
data privacy and security. Figure 1 shows a comparison of our
work to traditional methods.

Figure 1. Comparison between large language model (LLM)–based conversational AI (Conv-AI) and traditional machine learning methods for disease
risk assessment. The Conv-AI leverages pretrained models that require only very few-shot fine-tuning, can handle unstructured textual data, provide
real-time feature importance for each risk assessment it provides, and offer transferability with zero to very few shots for new risk assessment tasks. In
contrast, traditional machine learning methods require large datasets for de novo training, process structured data, rely on extra computational steps for
instance-specific post hoc feature importance (eg, Shapley additive explanations), and need retraining for each new task.

Contributions
Our contributions to the field of LLM-based disease risk
assessment are diverse. First and foremost, we transition from
traditional machine learning–based health outcome
prediction—which typically relies on structured tabular data—to
chatbot-based, no-code prediction using streaming QA
interactions. This is realized through the development of a
GenAI-powered mobile app that integrates fine-tuned LLMs as
the core for personalized risk assessment and patient-clinician
communication. The app not only assesses disease risk for
patients but also provides contextual insights related to risk
surveillance and mitigation through natural language
conversation.

Second, we demonstrate that generative LLMs can outperform
traditional machine learning methods, such as logistic regression
[25], random forest [26], and extreme gradient boosting
(XGBoost) [27], in low-data regimes, which is critical for
medical applications where labeled data are scarce. For instance,
our results show that LLMs like the T0-3b model achieve an
AUC of 0.75 in zero-shot settings, demonstrating their potential
for disease risk assessment even without task-specific training.

In addition, we provide a comprehensive comparison of both
decoder-only and encoder-decoder models, fine-tuned using the
widely adopted, parameter-efficient, low-rank adaptation
(LoRA) method [28].

Third, we introduce a feature importance analysis derived from
the LLM’s attention layers, providing personalized insights into
the most influential factors driving the model’s predictions.
This enhances the interpretability and usability of the risk
assessment for both patients and clinicians, offering real-time,
instance-specific explanations during inference.

Methods

Our Research Objective
The primary objective of this study is to explore the
effectiveness of pretrained generative LLMs in no-code risk
assessment of disease severity using few-shot multihop QA
interactions. We aim to evaluate how these generative
LLM-powered chatbots can use streaming QA interactions to
accurately classify patient outcomes as severe or nonsevere,
which is crucial for early risk assessment and optimizing health
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care resource allocation. Through a case study of COVID-19
severity risk assessment, we developed an app that uses
open-source generative LLMs to determine the severity of
COVID-19 outcomes. This involves leveraging the models’
capabilities in zero-shot and few-shot settings, with a focus on
the use of serialization techniques to enhance their effectiveness

and generalizability. We also integrate real-time feature
importance to provide interpretable risk assessments. Figure 2
shows the workflow of our approach, from fine-tuning
generative LLMs using serialized QA pairs to real-time risk
assessment through a conversational interface.

Figure 2. Workflow for few-shot COVID-19 severity risk assessment using generative large language models (LLMs) with different serialization
techniques. The top section, labeled "Backend - system developer," shows the fine-tuning phase where a few-shot sample of patient data, serialized
through list and text templates, is used to fine-tune the LLMs. This backend process includes the creation of prompts and corresponding labels for model
fine-tuning. The bottom section, labeled "Frontend - user," illustrates how a conversational chatbot interacts with users through our application to gather
responses through streaming QA interactions. These responses are analyzed by the fine-tuned LLM in real time, providing risk assessments and
highlighting the top attributing features that explain the model’s risk assessment. QA: question-and-answer.

Data Collection
A dataset was collected from the emergency departments of
Children’s Hospital of Michigan and UPMC Children’s Hospital
of Pittsburgh between March 2021 and February 2022. Table
1 provides an overview of the binary features used in our study,
including demographic, clinical, and social determinants that
may influence COVID-19 severity risk. The dataset includes a
total of 393 participant records, each characterized by responses
to a series of carefully designed questions (see Figure 3 for
sample QA pairs).

The severity of illness was defined based on the presence of
any of the following criteria:

1. Requirement for supplemental oxygen (≥50% fraction of
inspired oxygen)

2. Need for mechanical ventilation or noninvasive positive
pressure ventilation (bilevel positive airway pressure and
continuous positive airway pressure)

3. Need for vasopressors or inotropes
4. Requirement for extracorporeal membrane oxygenation
5. Cardiopulmonary resuscitation
6. Death from a related cause within 4 weeks after discharge

Children meeting any of these criteria were categorized as
having severe illness. These outcomes were determined through
chart reviews and parent surveys conducted 30 days after
discharge [29].

Outliers were removed, and feature selection was performed
using Shapley additive explanations values [30], resulting in
the final dataset used for analysis.
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Table 1. Binary features used in the study. The dataset consists of 393 patient records with 15 features representing demographics, clinical symptoms,
and social determinants. These features serve as inputs for traditional machine learning models and are also serialized for fine-tuning generative large
language models (LLMs).

Count, nFeature and label

f1. Ages 5 to 11 years

294No

99Yes

f2. Gender

332Female

61Male

f3. Hispanic

359No

34Yes

f4. African American

215No

178Yes

f5. Service at stores

335Good

78Poor

f6. Insurance

387No

6Yes

f7. Headache

332No

61Yes

f8. Fever

211No

182Yes

f9. Cough

210No

183Yes

f10. Shortness of breath

292No

101Yes

f11. Exposed to COVID-19 individuals

343No

50Yes

f12. Nausea or vomiting

272No

121Yes

f13. Lungs check

317Bad

76Good

f14. Eye redness
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Count, nFeature and label

381No

12Yes

f15. COVID-19 antibody test

364Negative

29Positive

f16. Outcome (severity)

284No

109Yes

Figure 3. Overview of our mobile app design, showcasing patient data collection, real-time risk assessment using large language models (LLMs), and
clinician review interface.

Tabular Data for Traditional Models
As traditional machine learning methods require tabular data

as input, we formalize the questionnaire QA pairs ,

where n=393, represents the binary feature

vector of the i-th instance where d=15, and 
denotes the binary class label indicating the presence or absence
of severe COVID-19 symptoms determined by clinicians.

Each feature vector xi consists of binary indicators representing
social determinants and clinical and demographic factors that
may influence the severity of COVID-19, such as age,
preexisting conditions, vital signs, and laboratory test results.
These features are shown in Table 1. The feature names are

denoted as , where each fj is a natural-language
string describing the corresponding attribute.

The task is to predict the binary outcome yi based on the
information provided in xi. This constitutes a supervised learning
problem where the objective is to train a model to minimize
prediction error on unseen data.

Serialization for New Conversational AI
At the time of data collection from 2021 to 2022, we did not
yet have a chatbot for automated data donations from users, so
we used a questionnaire to collect answers from each patient
based on a set of questions designed for this study. As a result,
the native format of the dataset consists of QA pairs, which
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were subsequently serialized to fine-tune the generative LLMs
for the risk assessment task. It is important to note that the
fine-tuned model is capable of assessing risk using streaming
QA interactions in real time (Figures 2 and 3).

To achieve serialization, the features in our dataset are denoted

as , and their associated values as

. This notation provides a structure that is
transformed into natural language prompts for the LLM.

We used two main serialization methods from TABLLM [31],
the list template and the text template, to create natural language
representations of the data. As shown in Figure 2, the list
template links each feature with its value using an equal sign
(“=”), while the text template uses a narrative structure with the
word “is” to connect each feature with its value. These templates
enable us to evaluate which serialization approach better
translates the data into actionable insights by the LLM.

Generative LLMs
We explore the capabilities of 3 white-box LLMs—LLaMA2
[23], T0 [32], and Flan-T5 [33]—focusing on their application
in risk prediction for COVID-19 using both the native QA pairs
and the formatted tabular dataset.

To our knowledge, this is one of the first attempts leveraging
generative LLMs and conversational data science for disease
risk assessment across various LLMs and few-shot settings.
Our selection includes both decoder-only (LLaMA2) and
encoder-decoder architectures (T0 and Flan-T5), allowing for
a comprehensive assessment and comparison of their
performance. The white-box nature of these models is
particularly advantageous as it enables setup on local hosts with
private datasets, ensuring precise risk assessment by allowing
direct access to model weights and logits.

The input to the LLMs is a serialized string generated from the
tabular data using the previously explained serialization

strategies. Given a feature vector . and

their associated values , the serialized input
string Si can be represented using either the list template or text
template serialization methods (Figure 2).

These feature vectors originate from the structured dataset
described in Table 1, which provides the foundation for both
traditional and generative model comparisons.

The LLM processes the serialized input string Si and outputs
logits for the next token in the sequence. We focus on the logits
corresponding to the tokens “yes” and “no,” which indicate
severe or nonsevere symptoms, respectively. The probabilities
for these tokens are obtained by applying the softmax function
to the logits:

The probability indicates the likelihood of severe
symptoms based on the input data Si. This probability is directly
used as the severity risk score for evaluation purposes.

To determine the binary predicted label from this
probability:

The probability score , reflecting the severity risk,
is used to compute the AUC for evaluation (Figure 2).

Evaluation Setting

Zero-Shot Setting
In the zero-shot setting, our approach leverages the intrinsic
capabilities of LLMs. These models, unlike traditional classifiers
such as logistic regression and XGBoost, have been extensively
pretrained on diverse datasets. This extensive pretraining enables
them to apply their accumulated world knowledge directly to
specific classification tasks without additional training,
demonstrating exceptional generalizability.

We assess the zero-shot prediction effectiveness of these LLMs
by presenting them with tasks aligned with our study’s
objectives that they have not been specifically trained on. The
models interpret and classify new, unseen data solely based on
their pretrained knowledge. This approach not only highlights
the potential of LLMs in real-world applications but also
evaluates their ability to generalize from their training to novel
scenarios in healthcare.

This zero-shot methodology allows us to evaluate how well
these LLMs can recognize and classify complex, previously
unseen patterns in health care data, providing valuable insights
into their practical applicability and limitations in clinical
settings.

Few-Shot Fine-Tuning
In the few-shot setting, we use sample sizes of 2, 4, 8, 16, and
32 to fine-tune the LLMs, aiming to examine the effect of
training sample size on model performance compared to
traditional classifiers. To ensure fairness and reduce bias in the
fine-tuning process, we maintain a balanced ratio of positive

and negative samples, with an equal number
of examples from each class in each sample size.

To enhance computational efficiency in adapting the LLMs to
our specific tasks, we employ a parameter-efficient fine-tuning
approach using LoRA [27]. Instead of adjusting all parameters
within the model, LoRA involves training a small proportion
of parameters by integrating trainable low-rank matrices into
each layer of the pretrained model. This method allows the
model to quickly adapt to new tasks by optimizing only a subset
of parameters, thereby preserving the general capabilities of the
LLM while enhancing its performance on task-specific features.

Feature Importance Analysis
In disease risk assessment, interpretability is as critical as
accuracy, particularly when both are provided to the user in real
time. Here, we introduce a novel approach for analyzing feature
importance by leveraging the attention mechanisms inherent in
the output layers of generative LLMs. This method provides
additional insights into the risk assessment process of the model,
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which is valuable for both clinicians and patients in
understanding the factors contributing to the model's output.

Our approach involves extracting attention scores from the
model’s output layer, where the attention assigned to each input
token is interpreted as an indicator of feature importance. We
compute the attention for each feature-value pair and associate
the average attention score with the corresponding feature. This
provides a holistic view of which features, along with their
associated values, influence the model’s output.

In Figure 4, the attention map illustrates the attention scores for
a predicted positive case by the LLM, where darker shades
represent higher attention scores assigned to specific
feature-value pairs.

For an input sequence such as:

A patient 

Do the descriptions of this patient show severe
symptoms of COVID-19? Yes or no? Result:

We calculate attention scores for each feature-value pair in the
original sequence. The average attention score for each
feature-value pair is then computed, and the score is associated
with the feature itself, offering a representation of feature
importance in the context of disease severity risk. As shown in

Figure 4, any missing data in both the training and inference
stages could be handled by having the value as “none” and
having the model make the prediction; this will impact the
prediction depending on the feature missing, but the free-text
input of the LLMs still allows for a prediction to happen.

This normalized attention score serves as a proxy for feature
importance, offering clinicians and patients a clearer
understanding of which features (eg, age, preexisting conditions,
vital signs, etc) are most influential in the model's assessment
of COVID-19 severity risk. As illustrated in Multimedia
Appendix 1, the plot shows the normalized attention scores
from the LLaMA2-7b model in the 32-shot setting for two test
cases: one positive (yes) and one negative (no).

For the positive case, the top five features with the highest
attention scores, as shown in this figure, are:

1. f15: COVID-19 antibody test
2. f13: Lungs check
3. f12: Nausea or vomiting
4. f9: Cough
5. f14: Eye redness

By integrating this analysis into our mobile app, we enhance
the interpretability of LLM-based risk assessments, empowering
users with deeper insights into the model's reasoning process.

Figure 4. The attention map for a predicted positive case where the darker color represents larger attention weights for each token. The prompts are
tokenized to mimic the actual inputs to the large language models (LLMs).

Mobile App
To provide users with code-free disease severity risk assessment
and enhance user experience, we developed a mobile chatbot
powered by the aforementioned generative LLMs. This app is
designed to facilitate the assessment and management of
COVID-19 in children, with potential applicability to other
diseases and conditions. It offers two versions: one for patients
to donate their health information via answering the questions
and receiving real-time severity risk assessments, and another
for clinicians to manage, review, and interpret the sessions
donated by patients. The primary goals are to enhance early
detection of severe outcomes, improve patient-clinician
communication, and streamline the overall risk assessment
process.

The app targets patients, clinicians, and other health care
providers involved in managing preclinical cases. It leverages
the capabilities of generative LLMs to analyze patient responses
and provide immediate feedback on the risk of severe symptoms.
Developed using React Native and JavaScript for the front end,
Firebase for database management, and various frontend
technologies, the app provides a user-friendly, efficient, and
effective solution for managing disease risks. It aims to improve
patient outcomes by facilitating timely and informed
decision-making.

Database Structure
Our mobile app uses Firebase for database management,
structured into three primary collections: Users, Questions, and
Answers.

The data flow between the patient, LLM backend, Firebase, and
interfaces for both patients and clinicians is illustrated in Figure
5. This figure highlights the interactions among processes,
including the assessment submission, session management, and
result retrieval.

• Users: This collection includes essential user information
such as ID, Email, and isAdmin. The ID uniquely identifies
each user, the Email serves as contact information, and the
isAdmin field (Boolean) indicates whether the user has
administrative privileges (clinicians) or not (patients).

• Questions: Each document in this collection has a unique
ID and a Description field. The ID is used to reference
questions in the Answers collection, and the Description
contains the text of the question posed to the user, ensuring
clarity and specificity in data mapping.

• Answers: This collection records user responses during
their sessions. Each document includes a session ID and an
array of answers where each entry links to the relevant
Question ID from the Questions collection. In addition, it
contains a Text field for the user's detailed response; an
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Answer field for the LLM-generated response (eg, yes or
no); a Date field marking the session's completion time; a
Risk Score field, which is derived from the user’s responses
and utilized for subsequent risk prediction by the LLM; and

an Important Features field, which stores the key features
identified by the LLM’s attention scores that contributed
to the risk assessment.

Figure 5. Data flow diagram where we map out the flow of information between different processes of large language model (LLM) backend, Firebase,
and mobile app interfaces for both patient and clinician.

User Interface: Assessment
The step-by-step workflow for conducting an assessment and
storing results in Firebase is detailed in Figure 6. This sequence
diagram outlines the interaction between the patient, mobile
app, LLM backend, and database.

As shown in Figure 3, on the Assessment page, we leverage the
power of LLMs to engage in a conversation with the patient.
This interaction allows us to ask questions and gather contextual
information for each response. By doing so, we retrieve a binary
answer (yes or no) using the LLM, which is then provided to
the primary care physician along with the patient’s context to
aid in decision-making.

After the user responds to each question, we use our LLM to
generate a binary answer. This involves providing the LLM

with instructions that include the question and the user’s
response and asking the LLM to interpret the response into a
binary answer (yes or no). This sequential process is performed
for all questions. Currently, the input for the final LLM-based
risk assessment, which predicts the COVID-19 severity risk, is
based solely on the set of binary answers generated by the LLM.
Future enhancements could incorporate the original user
responses to improve context understanding.

We currently use the Llama2-7b application programming
interface (API) for answer retrieval. Our long-term goal is to
integrate a fine-tuned LLM hosted on our servers to ensure
better optimization and accuracy specific to our dataset, as
evidenced by the improved performance results discussed in
this paper.
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Figure 6. Sequence diagram for the Assessment page, where the patient takes the risk assessment and the large language model (LLM) backend
calculates the results, which will be saved to the Firebase. QA: question-and-answer.

User Interface: Patient and Clinician Results
Figure 7 illustrates the interaction flows for both patients and
clinicians as they access session details and results. This
sequence diagram shows how patient data and assessments are
retrieved and displayed in real time.

Patients can submit a session at any time, receiving an
immediate risk assessment in the Patient Interface section
(Figure 3). This section displays all sessions submitted by the
current user, along with their respective risk assessments.

In the Clinician Interface section, clinicians can access all
sessions from their patients, organized by patient ID, for efficient

review. Each session includes a comprehensive report featuring
the predicted risk score, ensuring transparency and aiding in
clinical decision-making.

Upon submission, a patient’s session is instantly available in
both the patient’s and clinician’s panels. While patients can
only view their own sessions, clinicians can review all sessions
from their assigned patients. This setup supports real-time
updates through Firebase, facilitating seamless communication
and follow-up between patients and their health care providers.
Furthermore, the app provides personalized feature importance
analysis based on the LLM’s attention layers, giving both
patients and clinicians additional insights into the most critical
factors influencing the risk assessment.
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Figure 7. Sequence diagram for displaying patients’ session results. As shown, each patient has access to all their own sessions while the clinician can
access all patients’ sessions.

Ethical Considerations
The data collected and used for this study were approved by the
University of Pittsburgh Institutional Review Board
(MOD21010046-003; approval date: February 25, 2021).
Informed consent was obtained from all legal caregivers, and
when age appropriate, an informed assent was also obtained
from the participants. Before the use of this study, the data were
subject to a multistep anonymization procedure with personally
identifying information marked and deleted.

Results

Training and Fine-Tuning Settings
In our experiments, we used a rigorous hyperparameter tuning
strategy to optimize model performance, supported by a robust
setup to ensure diverse dataset initialization and minimize
potential biases. For both traditional machine learning methods
and LLMs, we used 5 specific random seeds—0, 1, 32, 42, and
1024—to create diverse dataset splits. The dataset of 393
samples was divided into 256 training, 59 validation, and 78

testing segments, preserving a consistent positive-to-negative
ratio of approximately 0.38.

For both traditional methods and LLMs, training was conducted
using up to 32 shots to evaluate performance in the few-shot
regime. For few-shot settings ranging from 2 to 32 shots, we
ensured a balanced sampling of positive and negative examples
in the training set, maintaining an equal number of instances
from each class to avoid biases during training. Key
hyperparameters, such as the learning rate, were optimized using

grid search, with the learning rate set to 3 x 10–4. The batch size
matched the number of shots, and training consistently ran for
128 epochs to ensure convergence. During fine-tuning with
LoRA, validation loss was monitored to select the best model
checkpoint, minimizing overfitting and enhancing generalization
to the test set. The optimization used cross-entropy loss, aligning
with the binary classification task of predicting COVID-19
severity. This comprehensive setup ensured robust and
interpretable model performance, particularly in low-data
settings.
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Effects of Serialization

Overview
Table 2 shows the performance of different serialization methods
for the LLMs across various few-shot settings. We evaluated 2
primary serialization methods: list template and text template,
across models tested with 0, 2, 4, 8, 16, and 32 training shots

to observe performance variations with the number of training
examples.

The list template often exhibited better performance at lower
shot counts, while the text template typically outperformed the
list template as the number of training examples increased. The
following summarizes the performance trends for each model.

Table 2. Performance of models across different shot settings. All values represent the average area under the curve (AUC) across 5 random seeds
rounded to 2 decimal places. In addition, SDs given across the 5 random seeds are shown. The suffixes “-L” and “-T” represent list serialization and
text serialization, respectively.

Number of shotsModel

32, AUC (SD)16, AUC (SD)8, AUC (SD)4, AUC (SD)2, AUC (SD)0, AUCa (SD)

0.66 (.07)0.63 (.04)0.68 (.04)0.69 (.06)0.69 (.07)0.54 (.05)Llama2-7b-L

0.69 (.06)0.66 (.05)0.68 (.06)0.63 (.02)0.64 (.02)0.62 (.03)Flan-t5-xl-L

0.65 (.11)0.59 (.10)0.62 (.06)0.61 (.05)0.61 (.03)0.60 (.03)Flan-t5-xxl-L

0.70 (.10)0.68 (.06)0.70 (.05)0.70 (.05)0.70 (.07)0.69 (.04)T0pp(8bit)-L

0.67 (.07)0.67 (.04)0.70 (.04)0.68 (.05)0.67 (.04)0.68 (.04)T0-3b-L

0.67 (.06)0.63 (.05)0.64 (.07)0.69 (.01)0.69 (.03)0.59 (.05)Llama2-7b-T

0.70 (.05)0.69 (.04)0.71 (.05)0.69 (.03)0.69 (.02)0.69 (.03)Flan-t5-xl-T

0.63 (.10)0.62 (.09)0.59 (.10)0.63 (.08)0.58 (.03)0.61 (.04)Flan-t5-xxl-T

0.67 (.08)0.65 (.08)0.68 (.04)0.66 (.05)0.65 (.05)0.67 (.02)T0pp(8bit)-T

0.65 (.08)0.67 (.04)0.68 (.03)0.65 (.05)0.65 (.06)0.75 (.04)T0-3b-T

0.69 (.08)0.61 (.11)0.64 (.06)0.55 (.10)0.57 (.07)—bLogistic regression

0.68 (.07)0.66 (.07)0.62 (.08)0.57 (.06)0.57 (.07)—Random forest

0.65 (.03)0.54 (.06)0.50 (.00)0.50 (.00)0.50 (.00)—XGBoostc

aAverage area under the curve.
bNot applicable.
cXGBoost: extreme gradient boosting.

Llama2-7b
In the zero-shot setting, the text template achieved an AUC of
0.59 compared to 0.54 for the list template. At 2 training shots,
both templates achieved an AUC of 0.69, but the text template
began to outperform, reaching an AUC of 0.67 at 32 training
shots compared with 0.66 for the list template.

Flan-t5-xl
The text template consistently outperformed the list template
across most shot settings. At 2 training shots, the text template
achieved an AUC of 0.69 compared to 0.64 for the list template,
and this lead continued up to 32 shots, where the text template
achieved an AUC of 0.70 compared to 0.69 for the list template.

Flan-t5-xxl
Both templates showed similar performance in the early
few-shot settings. At 2 training shots, the list template achieved
an AUC of 0.61, slightly outperforming the text template, which
achieved an AUC of 0.58. By 32 training shots, the list template
achieved an AUC of 0.65, slightly outperforming the text
template, which achieved an AUC of 0.63.

T0pp (8bit)
In the zero-shot setting, the list template led with an AUC of
0.69 compared to 0.67 for the text template. This lead was
maintained through most shot settings, with both templates
achieving around 0.70 AUC by 32 shots.

T0-3b
The text template outperformed the list template in the zero-shot
setting, achieving an AUC of 0.75 compared to 0.68 for the list
template. In the 2-shot setting, the list template performed
slightly better, with an AUC of 0.67 compared to 0.65 for the
text template. At 32 shots, the text template closed the gap with
an AUC of 0.65 compared with 0.67 for the list template.

In Table 3, we can also compare the best-performing models
across different shots, constraining the recall to be higher than
0.8. This gives us better insights into their performance in
population screening for early health risks, where recall is
considered more important than precision.

Overall, while the list template often provides an initial
advantage in early few-shot settings, the text template shows
competitive performance as the number of training examples
increases. This suggests that serialization choice can be
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important in low-data regimes. The text template’s strong
performance in the zero-shot setting, particularly for the T0-3b

model, highlights its potential when no training data is available.

Table 3. Precision, recall, and F1-score of the best performing models across different shots averaged over 5 random seeds.

F1-scoreRecallPrecisionThresholdBest modelShot

0.520.850.370.04T0-3b0

0.460.810.340.12T0pp2

0.490.830.350.24T0pp4

0.500.800.380.17flan-t5-xl8

0.480.850.340.15flan-t5-xl16

0.490.810.360.16flan-t5-xl32

LLMs Versus Traditional Machine Learning Methods
Our study highlights the versatility of LLMs for various health
care apps, particularly in scenarios with limited data. To
benchmark their performance against traditional machine
learning methods, we compared LLMs with logistic regression,
random forest, and XGBoost.

LLMs benefit from extensive pretraining, allowing them to
generalize well to “unseen” data, unlike traditional methods
that require substantial amounts of training data. As shown in
Table 2, LLMs like T0-3b-T achieved an AUC of 0.75 in the
zero-shot setting, demonstrating a good performance even
without task-specific fine-tuning. This demonstrates the
effectiveness of LLM-powered risk assessment without the need
for additional labeled data.

In the 2-shot setting, LLMs continue to show strong performance
relative to traditional methods. For instance, Figure 8 compares
the average AUC across 5 different seeds in this scenario. The
left panel shows results using the list serialization (-L) approach,
while the right panel shows results using the text serialization
(-T) approach. In this 2-shot scenario, LLMs such as

T0pp(8bit)-L and Flan-t5-xl-T achieve AUCs of 0.70 and 0.69,
respectively, clearly outperforming traditional methods,
including logistic regression, random forest, and XGBoost,
which achieved AUCs of 0.57, 0.57, and 0.50, respectively.

LLMs’ ability to perform well with minimal data highlights
their advantage in low-data regimes. This makes them
particularly suitable for real-time, no-code health care apps
where rapid decision-making is required, even in scenarios
where labeled data is scarce.

Furthermore, LLMs’capacity to handle streaming data formats,
such as multihop QA pairs, enhances their integration into
conversational interfaces, supporting real-time patient-clinician
interactions. This flexibility offers significant usability in clinical
settings where personalized and immediate risk assessments
are needed (Figure 1).

Overall, while traditional methods may improve with larger
datasets, LLMs demonstrate a clear advantage in dynamic,
low-data health care environments. Their ability to handle
incomplete data and streaming input formats makes them robust
for real-world applications requiring adaptability and speed.

Figure 8. Average area under the curve (AUC) in a 2-shot setting over 5 different seeds. The left panel shows results using the list serialization (-L)
approach, while the right panel shows results using the text serialization (-T) approach. XGBoost: extreme gradient boosting.

Discussion

Principal Findings
Our research demonstrates that generative LLMs provide a
robust and no-code approach for predicting COVID-19 severity,

which is particularly effective in low-data regimes. These
models excel in zero-shot and few-shot settings, showcasing
their ability to perform well without extensive domain-specific
training. This is crucial for real-time applications requiring
immediate and reliable predictions, highlighting their
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exceptional generalizability compared with traditional classifiers
like logistic regression, random forest, and XGBoost, which
typically require more labeled data to achieve comparable
performance.

Generative LLMs effectively handle diverse input formats,
integrating both structured clinical data and unstructured natural
language inputs from patient interactions. This flexibility enables
them to synthesize information from various sources, such as
patient medical histories and symptom descriptions, enhancing
their usability in dynamic health care settings. In our study, we
incorporated these models into a conversational interface, which
facilitates real-time patient-clinician interactions and immediate
risk assessments. This setup supports continuous data collection
and leverages the conversational capabilities of LLMs to
optimize clinical decision-making and resource allocation.

Future Directions and Limitations
Future work should focus on integrating continuous
clinician-patient conversational data for fine-tuning or in-context
learning, extending the application of LLMs beyond static
disease prediction models. Techniques like chain of thought
and chain of interaction, which align with the interactive nature
of medical consultations, show promise for enhancing model
performance in interpreting and responding to patient data in
real-time settings. While our study used models like T0pp with
parameter-efficient fine-tuning using LoRA, future research
could explore newer and more advanced small language models
such as LLaMA3-8b and Mistral-7b-Instruct, which have
demonstrated exceptional performance in low-data regimes.
These models could offer greater efficiency and accuracy as
computational resources and methodologies advance, supporting
more sophisticated and scalable applications in health care
[34,35].

However, limitations remain that warrant further exploration.
This study does not address the critical issue of handling

sensitive data, such as personally identifiable information (PII),
within health care datasets. Incorporating a dual dataset that
includes both PII and non-PII data could facilitate machine
unlearning research, allowing models to selectively forget
sensitive information while retaining predictive capabilities
from nonsensitive data. This would ensure compliance with
privacy regulations and enhance the ethical deployment of LLMs
in health care. Advancing privacy-preserving techniques, such
as selective forgetting mechanisms, would not only safeguard
sensitive data but also support broader trust in the use of LLMs
in clinical settings.

As these models evolve, vulnerabilities such as adversarial
attacks during in-context learning pose significant risks. Studies
have shown that manipulated inputs can lead to inaccurate or
harmful predictions, particularly in high-stakes tasks like health
care risk assessment [36]. Addressing these risks is crucial to
ensure that LLMs remain reliable and safe for broader adoption
in health care applications. Enhanced resilience to adversarial
techniques, combined with privacy-preserving methods, will
be key to building robust and trustworthy systems. By
addressing these challenges, future research can ensure that
LLMs not only deliver accurate predictions but also adhere to
ethical and privacy standards in real-world settings.

Conclusions
In conclusion, generative LLMs offer a valuable tool for no-code
risk assessment in low-data regimes. Their ability to perform
zero-shot or few-shot transferability to new diseases or
conditions and handle complex, varied inputs positions them
as key assets for enhancing health care interventions and
resource management. Furthermore, the incorporation of feature
importance analysis derived from the LLM’s attention layers
provides an additional layer of interpretability, offering
personalized insights into the decision-making process for both
patients and clinicians.
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