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Abstract

Generative artificial intelligence (GenAI) is increasingly being integrated into health care, offering a wide array of benefits.
Currently, GenAI applications are useful in disease risk prediction and preventive care, diagnostics via imaging, artificial
intelligence (AI)–assisted devices and point-of-care tools, drug discovery and design, patient and disease monitoring, remote
monitoring and wearables, integration of multimodal data and personalized medicine, on-site and remote patient and disease
monitoring and device integration, robotic surgery, and health system efficiency and workflow optimization, among other aspects
of disease prevention, control, diagnosis, and treatment. Recent breakthroughs have led to the development of reliable and safer
GenAI systems capable of handling the complexity of health care data. The potential of GenAI to optimize resource use and
enhance productivity underscores its critical role in patient care. However, the use of AI in health is not without critical gaps and
challenges, including (but not limited to) AI-related environmental concerns, transparency and explainability, hallucinations,
inclusiveness and inconsistencies, cost and clinical workflow integration, and safety and security of data (ETHICS). In addition,
the governance and regulatory issues surrounding GenAI applications in health care highlight the importance of addressing these
aspects for responsible and appropriate GenAI integration. Building on AI’s promising start necessitates striking a balance between
technical advancements and ethical, equity, and environmental concerns. Here, we highlight several ways in which the transformative
power of GenAI is revolutionizing public health practice and patient care, acknowledge gaps and challenges, and indicate future
directions for AI adoption and deployment.
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Introduction

Artificial intelligence (AI), also referred to as augmented
intelligence, currently plays multiple critical roles in public
health and medical practice, the rapid implementation and
profound impact of which were unforeseen just a few years ago
[1-5]. The emergence of generative AI (GenAI) through the
release of a popular large language model in late 2022 made AI
readily accessible to the general population and brought
transformational shifts in several sectors, including health care
[6,7]. GenAI has changed how people interact with each
other—how they communicate, exercise, work, do business,
relate, and lead. As part of this societal seismic shift, GenAI is
revolutionizing global health care systems.

Digital technology is fast becoming an integral part of public
health and medical practices, providing validated tools for
detecting, screening, diagnosing, caring for patients, and
monitoring health-related parameters. GenAI has measurably
improved patient care and enabled individuals to self-identify
issues, thereby leading to better management of their health and
well-being [8]. According to a 2025 survey of senior health care
leaders, 95% of respondents believed that GenAI will transform
the industry, with 85% of health care providers and 83% of
“payer leaders” stating that it will “reshape clinical

decision-making within three to five years” [9]. In total, 54%
of all respondents reported that they were already seeing a
meaningful return on investment in their organization after the
first year of GenAI adoption.

The introduction of GenAI into public health and medical
ecosystems offers enormous opportunities for training, research,
patient care, and resource management [10]. Nevertheless, the
potential benefits of AI are accompanied by profound ethical
considerations and substantial implementation challenges. In
this viewpoint, we contend that the effective adoption of AI
within health care contexts is contingent upon systematically
addressing these concerns. We further delineate
recommendations intended to inform stakeholders seeking to
foster the responsible development and deployment of
innovative AI systems.

Current Trends in Health Care

GenAI is currently used as a powerful tool to provide diverse
services to health care and public health providers. This includes
the delivery of personalized services to patients and accurate
information to health care leaders, enabling them to improve
the quality of services, efficiency, and effectiveness of care and
to combat the increasingly widespread online dissemination of
health misinformation and disinformation (Table 1).

JMIR AI 2025 | vol. 4 | e67626 | p. 2https://ai.jmir.org/2025/1/e67626
(page number not for citation purposes)

Oleribe et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Common applications of artificial intelligence (AI) in public health and clinical medicine.

Current or expected benefitsRole of AIApplication area

Helps public health professionals plan. Has the poten-
tial to inform early interventions and long-term person-
alized risk estimates.

Predicts future susceptibility to many diseases using health
records, lifestyle factors, and other data sources (eg, Delphi-2M
and BlueDot).

Disease risk prediction and
preventive care [11-13]

Supports faster triage to reduce radiologist workload
and ensures earlier detection with fewer missed cases.

Supports automated detection of anomalies in medical imaging

(x-ray, CTa, and MRIb) for tuberculosis, cancer, and other diag-
noses.

Diagnostics via imaging
[14-16]

Supports faster diagnosis with potential use in nonspe-
cialist settings, freeing specialists’ time and reducing
delays.

Enables faster diagnosis by providing diagnostic insights in real
time for cardiomyopathies and other abnormalities.

AI-assisted devices and
point-of-care tools [17,18]

Reduces time and cost of drug development compared
to the traditional drug discovery process, potentially
compressing decades into months and saving billions
of dollars.

Helps in identifying or designing new drug molecules, predicting
toxicity, optimizing clinical trials, and repurposing existing
drugs, thereby accelerating the drug development process.

Drug discovery and design
[19-21]

Supports early detection of complications, reduces
hospitalizations, promotes better disease management,
and provides more proactive care.

Helps with continuous collection and analysis of physiological
and behavioral data for chronic disease management and early

detection of signs and symptoms (eg, wearables for PGHDc).

Remote monitoring [22,23]

Allows more precise treatments with the potential to
reduce adverse reactions and achieve better patient
outcomes.

Combines genomics, imaging, and EHRsd to tailor treatments
to patients’ specific needs.

Integrating multimodal data
and personalized medicine
[15,23]

Supports care in nonclinical settings to improve pa-
tients’ quality of life through early detection and diag-
nosis.

Provides tools and devices that help track disease progression
to detect early disease symptoms.

Patient and disease monitor-
ing [24]

Improves the effectiveness and efficiency of surgical
procedures by enhancing precision, reducing surgeon
fatigue, and improving safety.

Uses GenAIe-based algorithms to improve precision and control
during surgical procedures.

Robotic surgery [23,25]

Reduces delays in administrative tasks by improving
allocation of resources, leading to cost savings and
fewer preventable complications.

Automates administrative tasks, prioritization, and resource al-
location.

Health system efficiency
and workflow optimization
[15,23,26]

aCT: computed tomography.
bMRI: magnetic resonance imaging.
cPGHD: personally generated health data.
dEHR: electronic health record.
eGenAI: generative artificial intelligence.

Current Gaps in GenAI in Health Care
and Mitigation Strategies

AI is expected to improve health care outcomes by facilitating
early diagnosis, reducing the medical administrative burden,
aiding drug development, personalizing medical and oncological
management, and monitoring health care parameters on an
individual basis, thereby allowing clinicians to spend more time
with their patients [27]. Although the integration of AI into
health care has the potential to transform the industry, it also
raises ethical, regulatory, and safety concerns [28]. AI can
rapidly analyze large and complex datasets; extract tailored
recommendations; support decision-making; and improve the
efficiency of many tasks that involve processing data, text, or
images [29]. As the operability of GenAI in public health and
medicine advances, significant gaps remain. AI systems risk
perpetuating or amplifying existing health disparities when

trained on current available data, which are largely
nonrepresentative and noninclusive in nature [30,31]. AI tools
and resources also lack explainability and transparency, which
undermines clinician trust and introduces legal and ethical issues
in safety-critical care [32,33]. Data silos, poor data quality, and
limited interoperability remain major technical and
organizational barriers to AI integration and use across the health
care sector [34]. Regulatory, governance, and evaluation
frameworks for safe clinical deployment are often incomplete
or inconsistent across jurisdictions. Furthermore, models can
degrade in new settings (dataset shift), and routine monitoring
and maintenance of deployed models are frequently inadequate
[35-38]. Other challenges include environmental concerns,
hallucinations, inconsistent outputs, and various forms of
cultural insensitivities across models in health. Table 2
summarizes some of the current gaps in AI adoption in health
care.
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Table 2. Common gaps in artificial intelligence (AI) adoption in health care and possible mitigation strategies.

Mitigation strategiesClinical and public health implicationsGap in AI technologies

Bias and fairness [30,31] • Use only diverse, inclusive, and representative
datasets.

• Unequal performance across race, sex, and socioeco-
nomic groups may lead to harm and widened dispar-
ities. • Apply fairness-aware MLa techniques (eg,

• For example, pulse oximeters and some AI tools
perform worse for individuals with darker skin tones,

reweighting and adversarial debiasing).
• Ensure routine equity audits during deployment.

and biased AI models can reduce clinician accuracy.

Explainability and transparency
[32,39]

• Develop interpretable models or integrate XAIb

methods.

• “Black box” models are difficult to interpret, making
legal and ethical accountability unclear.

• The lack of explainability and transparency has been
linked to adoption failure.

• Implement regulatory requirements that make ex-
plainability in safety-critical systems a requirement.

• Co-design model explanations with clinicians and
patients.

Data access, quality, and inter-
operability [34]

• Implement common data standards across systems.• Poor data quality, fragmented EHRsc, and gover-
nance issues reduce model utility and transferability. • Establish secure health data–sharing frameworks

protected from cyberattacks and misuse.• To date, many institutions are unwilling or unable
to share data, while legacy systems and nonstandard • Improve data curation pipelines and maintain audit

trails.formats impede seamless integration.

Generalizability and repro-
ducibility [36,40]

• Ensure multisite validation across demographics.• Models validated on narrow cohorts fail in new
hospitals or populations, producing unsafe predic-
tions (overfitting).

• Establish open-source benchmarks and reproducible
pipelines.

• When models move across sites, performance drops
and reproducibility issues arise even in published • Implement stress testing for the dataset shift.

models.

Regulation, governance, and
evaluation standards [35,37]

• Update and operationalize AI-specific regulatory
pathways.

• Inadequate regulatory frameworks delay safe adop-
tion or allow the use of poorly validated tools in
practice, as there are no consistent premarket or • Require premarket validation and postmarket moni-

toring.postmarket standards.

• Establish independent ethics boards to ensure objec-
tive oversight.

Continuous monitoring and
model predictive maintenance
[36,38]

• Establish continuous monitoring pipelines for model
drift.

• As some deployed models degrade over time (drift)
and clinical workflows change, continuous monitor-
ing is necessary to detect safety issues early. • Implement active learning and regular model retrain-

ing.

• Operationalize clear sunset policies for unsafe
models.

Evidence-based clinical evalua-
tion [27,28]

• Fund and conduct prospective clinical trials and

RCTsd.

• A lack of prospective clinical trials or robust impact
evaluations exists for most published models, as
most studies were retrospective. • Apply implementation science frameworks.

• Report findings following approved AI and scientific
guidelines.

Data privacy, security, and
governance [35,41]

• Use privacy-preserving ML techniques.• Consent models for secondary AI data use are un-
clear, and several large health datasets are at risk of
breaches.

• Implement strong cybersecurity frameworks in hos-
pitals.

• Ensure transparent consent and governance systems.

Clinical workflow integration
and usability [42]

• Adopt human-centered design approaches.• Poorly integrated tools disrupt patient care, increase
workload, and provide outputs that are not action-
able.

• Conduct pilot testing in real-world clinical work-
flows.

• Integrate workflow with EHR systems to reduce
burden.
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Mitigation strategiesClinical and public health implicationsGap in AI technologies

• Operationalize AI literacy programs for clinicians.
• Ensure transparent communication with patients.

• Clarify liability and responsibility guidelines.

• Clinicians and the public currently lack adequate AI
literacy, amplifying distrust.

• Inadequate training and limited AI competency im-
pede responsible and appropriate use.

Workforce skills and trust
[42,43]

• Use diverse, inclusive, and representative datasets.
• Proactively include populations considered

marginalized in model development and training.
• Ensure routine equity audits during deployment.

• Current AI models may underrepresent populations
considered marginalized and neglect social determi-
nants of health, leading to misallocation of resources.

Equity in public health contexts
[29,30]

• Ensure commercial interests do not override patient
and public safety.

• Ensure developers sign a conflict of interest declara-
tion form.

• Vendor opacity, commercial incentives, and limited
independent validation bias evidence and deployment
decisions.

Conflicts of interest and trans-
parency [27]

• Develop better energy-efficient architectures.
• Use carbon accounting and offsetting in model

classification.

• Optimize hardware efficiency across models.

• Training and operating large AI models consume
substantial energy and water resources, contributing
to climate change and straining sustainability goals
in the health sector.

Computational cost and environ-
mental impact, including car-
bon footprint [44-46]

• Use RAGe and grounding in trusted medical
databases.

• Ensure use of human-in-the-loop verification.

• Build uncertainty estimation into outputs.

• AI systems may generate incorrect or entirely false
but convincing outputs, posing patient safety risks
if used for diagnosis, clinical advice, or health com-
munication.

Hallucination with fabricated
outputs [47-49]

• Understand the limitations of AI in the patient care
spectrum.

• Ensure use of human-in-the-loop verification.
• Ensure health care service providers such as physi-

cians and nurses take full responsibility for patient
safety regardless of the use of AI tools.

• LLMsf may produce different answers to the same
query depending on prompt wording or repetition,
undermining reliability in clinical decision-making.

Inconsistent outputs (stochastic-
ity and reproducibility) [50-52]

• Include culturally diverse datasets and annotations.
• Partner with local communities to ensure context-

aware AI design.

• Train multilingual and multicultural AI systems.

• AI models trained primarily on Western or English
datasets may overlook cultural beliefs, practices,
idioms, and health priorities of diverse populations,
leading to alienation, mistrust, or unsafe advice.

Cultural insensitivity and lack
of contextual grounding [53]

aML: machine learning.
bXAI: explainable artificial intelligence.
cEHR: electronic health record.
dRCT: randomized controlled trial.
eRAG: retrieval-augmented generation.
fLLM: large language model.

To address these gaps, it is essential to be deliberate and
proactive in the design, development, and deployment of new
AI models by ensuring representative data, appropriate
validation, transparency, and prospective clinical evaluation
before deployment; implementing continuous monitoring for
dataset shifts, retraining policies, and incident reporting after
deployment; and encouraging stakeholders to invest in
interoperable data infrastructure, clinician training, clear
regulation, and system-level equity assessments. This
underscores the ethical imperative to integrate ethics into all
stages of AI design, development, training, and deployment.

Although AI has tremendous potential in public and clinical
health care, there is an urgent need to mitigate these challenges
to effectively harness these benefits for more effective and
efficient health care delivery systems. Leaders and health care

providers must address all or most of the issues identified in
Table 2. This is achievable, as there are documented steps for
the design, development, and deployment of AI models that are
largely free (or relatively free) of these challenges.

Maximizing AI Opportunities in Health
Care

To maximize the opportunities that AI provides, health care
leaders, public health specialists, and providers must work with
biomedical engineers, computer scientists, and AI experts to
develop interoperable data solutions, address biases, and ensure
equity and fairness. In developing and deploying the next
generation of health care AI tools, they must build transparency
and ensure the development of explainable GenAI tools that
enhance health care providers’ trust in AI, thus improving its
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use and subsequent better patient-related decision-making. These
modifications will promote responsible, appropriate, and ethical
practices in health care. For example, GenAI-driven tools such
as Woebot (Woebot Health) [54], AI-powered mental health
chatbots [55], and wearable electrocardiogram (ECG) apps such
as the Apple Watch (Apple Inc) ECG feature [56] demonstrate
how AI is already transforming health care by improving
accessibility, decision-making, and transparency in patient care
and data delivery. AI-powered chatbots and virtual health
assistants, such as Babylon Health (eMed), provide patients
with 24/7 access to health care advice, symptom checks, and
appointment scheduling [57]. Imagine what could happen if
these tools were trained with inclusive datasets that greatly
minimize or eliminate bias, improve generalizability, and are
open to providers. Such unbiased tools will accelerate adoption
and use, saving providers’ time, enabling opportunity for better
provider-patient interactions, and enhancing the accuracy of
diagnosis and treatment, as well as the safety of hospital
procedures.

Creating platforms that ensure high-quality, interoperable data
can significantly enhance GenAI applications in health care.
This will facilitate seamless data integration across different
systems. Currently, GenAI-powered wearable health monitoring
devices such as Apple Watch (Apple Inc), Fitbit (Google Inc),
and Garmin (Google Inc) include pedometers, blood oxygen
sensors, pulse oximeters, and electrodermal activity sensors to
monitor skin temperature and stress. These personally generated
health data, when analyzed, can be used to predict potential
health risks and encourage preventive measures. Most of these
devices are stand-alone products. However, system
interoperability can bridge the gap between real-time monitoring
and clinical decision-making. For instance, the ECG feature of
a smartwatch that leverages GenAI to detect heart health
anomalies can enable remote patient monitoring and provide
explainable alerts to both lay users and health care professionals.
Such alerts will help the wearer and the physician make timely,
informed decisions [58].

Ensuring tools are trained using representative datasets is
essential to ensure that GenAI model outputs appropriately
reflect the entire population. Standardizing data collection
protocols can enable consistency to be achieved across sources.
Developing tools that detect and measure levels of bias in AI
models and incorporating fairness constraints during the
development process may help reduce biases [59].

Focusing on developing explainable GenAI models can help
build trust among clinicians and patients because such models
enable users to trust and understand how decisions are made,
thereby fostering transparency and accountability. Integrating
GenAI into clinical decision support systems that assist health
care providers at the point of care can improve decision-making
and patient outcomes. For example, the AI-driven Woebot
mental health chatbot provides users with clear explanations
for its therapeutic recommendations [54]. When suggesting
cognitive behavioral therapy exercises, it explains their
evidence-based benefits, such as reducing anxiety by addressing
unhelpful thought patterns [37]. Similarly, the Apple Watch’s
ECG feature builds user confidence and empowers individuals
by providing instantaneous, actionable information, while stored

data offer clinicians detailed insights into detected irregularities
[59]. These applications demonstrate the value of transparent
AI in improving user engagement and trust.

Making AI tools more user centered and integrated into health
system workflows is essential to ensure a good user experience.
Such tools will also be able to provide real-time monitoring and
early warnings for health challenges, such as cardiac issues,
thereby facilitating early professional evaluation and reducing
morbidity and mortality [58,60]. In addition, updating and
streamlining ethical guidelines and regulatory frameworks for
AI in health care that prioritize data privacy, inclusivity, and
transparency will facilitate appropriate, responsible, and
equitable use of AI technology [56,57]. To achieve this, health
leaders and biomedical engineers must collaborate with
policymakers and other dominant stakeholders [61].

Moreover, early exposure of future health care professionals to
GenAI at secondary and tertiary levels of education is critical
to producing an AI-astute health workforce for primary,
secondary, and tertiary care. Therefore, it is imperative to
incorporate hands-on training and practical application sessions
into both graduate and undergraduate curricula so that future
health care professionals can work seamlessly with GenAI tools
and datasets. Simulation exercises, case studies, and
project-based learning are pedagogical approaches that can be
tailored to enhance practical understanding. To improve
engagement and effectiveness, learning pathways should be
customizable to meet the needs of individual users, thereby
promoting AI literacy among the emerging health care
workforce. Some companies currently offer excellent case
studies for health care students to learn about GenAI
applications. Similarly, several colleges and institutions have
created new courses on AI at the graduate level. However, more
courses should be created at the undergraduate level, especially
in historically minority-serving institutions. Each program
should consider the diverse backgrounds, expertise levels, and
specialties of participants [61,62].

Fostering interdisciplinary collaboration through joint programs
and projects will enhance stakeholders’ awareness of the
potential and limitations of GenAI technologies and thus identify
their most appropriate use. Interdisciplinary knowledge sharing
between health care professionals, data scientists, biomedical
engineers, policymakers, and computer scientists can accelerate
the discovery of more innovative, appropriate, user-friendly,
inclusive, and applicable solutions [61,62].

Bridging Equity Gaps in AI Adoption and
Use

The future of GenAI in health care is poised to be
transformative, fundamentally altering the landscape of public
health and clinical practice. Similar to wielding a hammer,
GenAI in the hands of trained and experienced health care
providers will augment, rather than replace, skilled and
experienced operators. It is a force for positive change when
appropriately developed, modeled, and used properly. Making
GenAI available to all individuals, irrespective of ethnicity,
race, gender, or socioeconomic status, will reduce inequity and
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improve health outcomes. However, the current adoption and
use of GenAI is not equitable across the health care industry,
as large systems in high-income countries have unhindered
access, while small organizations struggle to afford the tools
they need most. Similarly, AI penetration in low- and
middle-income countries remains limited due to inadequate
infrastructure and insufficient financial resources.
First-generation scholars and students from populations
considered historically marginalized are also behind in AI
adoption and use.

Health care systems adopting GenAI must prioritize people over
profits to prevent inequity and its associated adverse outcomes,
as the integration of advanced machine learning algorithms and
big data analytics is not merely a trend but a paradigm shift that
promises to enhance public health, improve clinical
decision-making and patient experiences, and address systemic
inefficiencies in resource allocation. To leverage these
technological advances equitably and effectively, several key
issues must be considered.

First, limited engagement by key stakeholders on how best to
embed GenAI into health care provision poses a significant risk
[63]. This challenge is exacerbated when medical, nursing, and
allied professions are excluded from conversations that
potentially impact health care services and professional
practices. Establishing formal GenAI leadership roles will help
ensure ethical and equitable use [51]. Health care leaders must
drive the ethical and equitable integration of GenAI into health
care services and ensure proper oversight to promote holistic,
patient-centered, and professional care [64]. They can achieve
this through a deliberate proactive leadership approach that
thinks, plans, provides, processes, and communicates ahead to
ensure seamless and timely transition of health care systems
from a pre-GenAI era to one that is fully GenAI integrated
[65,66].

Second, as the success of GenAI in health care depends on
acceptance by both patients and providers, transparent
communication about the benefits and limitations of GenAI, as
well as demonstrations of its value, is essential for building
trust. Our recent studies have revealed that very few employees
are aware of the process, cost, and implications of GenAI
adoption in their organizations [67,68]. This is worse for
minority populations and underserved communities. Thus,
proper and timely communication systems must be developed,
adopted, and operationalized in accordance with the deliberate
proactive leadership approach [66].

Third, to translate AI research into clinical practice across all
populations, there is an urgent need for system-wide AI
education, including a professional development component
tailored to local contexts, with emphasis on underserved
communities. Limited access to resources, including skilled and
equipped AI trainers and the required infrastructure, hinders
such on-the-job training. Therefore, there is a need to develop
and popularize both accredited instructor-led and self-directed
learning courses that provide introductory content on AI [69],
as its opacity limits widespread adoption. Furthermore, as the
complexities of GenAI and its implementation can negatively
impact its use in health care practice [70], identifying

discrepancies in priorities between health care managers and
GenAI developers will lead to better collaboration. For instance,
the development of GenAI applications with inclusive data that
focus on health care leadership and management priorities
should be a unified goal for all stakeholders [71]. These
innovations must incorporate both the in-out (from providers
to industry) and out-in (from industry to providers) approaches,
placing providers and industry at the center of innovation,
development, and deployment of new GenAI tools [61].

Finally, as much of the early adoption of GenAI has been
concentrated in better-resourced provider settings, such as
hospitals, academic medical centers, and large health system
networks, deliberate steps must be taken to overcome barriers
such as data infrastructure, technical capacity, investment,
governance, and risk management, which tend to
disproportionately impact resource-limited settings [72-74]. In
the United States, for example, this gap is especially apparent
in resource-limited settings, such as essential community
providers, including federally qualified health centers, tribal or
urban Indian clinics, and community or free clinics, which serve
underserved populations in medically disadvantaged areas.
Essential community providers face well-established challenges,
including limited resources and health information technologies,
and they exhibit lower rates of deployment of advanced digital
tools compared to private systems [75]. The adoption of GenAI
by community clinics and hospital departments should be
supported financially and otherwise by governments and relevant
foundations. Some countries, such as Vietnam, are ahead of the
curve in this regard, illustrating how GenAI could enhance
service efficiency, improve outcomes of interventions, and raise
the quality of care provided by the health care industry [76,77].
Efforts to expand the availability of GenAI applications to
underserved health care units across regions should be
intensified, and the global health care community should also
collaborate to ensure that further GenAI developments are
tailored to address identified needs.

Conclusions

GenAI technologies have the potential to transform health care
by improving public health practices, enhancing diagnostic
accuracy, personalizing treatments, automating services, and
increasing administrative efficiency. Future developments in
GenAI should be guided by the need to address health care’s
most pressing AI-related challenges, especially environmental
concerns, transparency and explainability, hallucinations,
inclusiveness and inconsistencies, cost and clinical workflow
integration, and safety and security of data (ETHICS). Similarly,
AI regulation, governance, and clinical validation processes
should be streamlined and strengthened to ensure the responsible
and effective integration of AI in health care settings. Priority
should also be given to establishing appropriate leadership and
management structures and developing interoperability of data
systems. By ensuring fairness, ethical practices, and appropriate
educational and infrastructural initiatives, the global health
community can strengthen the positive impact of GenAI, driving
more efficient health care delivery systems and leading to
improved patient outcomes.
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