
Original Paper

Training Language Models for Estimating Priority Levels in
Ultrasound Examination Waitlists: Algorithm Development
and Validation

Kanato Masayoshi1*, MD; Masahiro Hashimoto1*, MD; Naoki Toda1, MD; Hirozumi Mori1, MD; Goh Kobayashi1,
MD; Hasnine Haque2, PhD; Mizuki So1, MD; Masahiro Jinzaki1, MD,PhD
1Department of Radiology, School of Medicine, Keio University, Tokyo, Japan
2GE Healthcare Japan, Hino, Tokyo, Japan
*these authors contributed equally

Corresponding Author:
Masahiro Hashimoto, MD
Department of Radiology
School of Medicine, Keio University
35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582
Tokyo
Japan
Phone: 81 3-3353-1211 ext 62477
Email: m.hashimoto@rad.med.keio.ac.jp

Abstract
Background: Ultrasound examinations, while valuable, are time-consuming and often limited in availability. Consequently,
many hospitals implement reservation systems; however, these systems typically lack prioritization for examination purposes.
Hence, our hospital uses a waitlist system that prioritizes examination requests based on their clinical value when slots become
available due to cancellations. This system, however, requires a manual review of examination purposes, which are recorded
in free-form text. We hypothesized that artificial intelligence language models could preliminarily estimate the priority of
requests before manual reviews.
Objective: This study aimed to investigate potential challenges associated with using language models for estimating the
priority of medical examination requests and to evaluate the performance of language models in processing Japanese medical
texts.
Methods: We retrospectively collected ultrasound examination requests from the waitlist system at Keio University Hospital,
spanning January 2020 to March 2023. Each request comprised an examination purpose documented by the requesting
physician and a 6-tier priority level assigned by a radiologist during the clinical workflow. We fine-tuned JMedRoBERTa,
Luke, OpenCalm, and LLaMA2 under two conditions: (1) tuning only the final layer and (2) tuning all layers using either
standard backpropagation or low-rank adaptation.
Results: We had 2335 and 204 requests in the training and test datasets post cleaning. When only the final layers were tuned,
JMedRoBERTa outperformed the other models (Kendall coefficient=0.225). With full fine-tuning, JMedRoBERTa continued
to perform best (Kendall coefficient=0.254), though with reduced margins compared with the other models. The radiologist’s
retrospective re-evaluation yielded a Kendall coefficient of 0.221.
Conclusions: Language models can estimate the priority of examination requests with accuracy comparable with that of
human radiologists. The fine-tuning results indicate that general-purpose language models can be adapted to domain-specific
texts (ie, Japanese medical texts) with sufficient fine-tuning. Further research is required to address priority rank ambiguity,
expand the dataset across multiple institutions, and explore more recent language models with potentially higher performance
or better suitability for this task.
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Introduction
Waitlist System
Ultrasound, a noninvasive imaging modality, enables
real-time visualization of organs and blood flow and can
be performed safely in pediatric and obstetric populations.
However, imaging quality depends on the proficiency of the
technician. Most hospitals implement reservation systems that
allocate available slots to physicians due to a shortage of
ultrasound technologists. Frequently, slots for the immediate
future are fully booked, and these systems typically lack
mechanisms for automatic urgency assessment.

Our hospital has implemented a waitlist system in case
an appointment is canceled, and a slot becomes vacant. The

system prioritizes examination requests based on urgency and
clinical value. This approach facilitates more efficient use
of canceled slots, reducing patient wait times, minimizing
hospital stays, and improving overall care quality.

Our waitlist system organizes examination requests into
6 priority tiers, determined by board-certified radiologists
based on the examination purpose, which is recorded as a
brief free-text entry by the requesting physician (Figure 1).
The waitlist is accessible to all physicians, enabling them
to anticipate when their orders might be processed. How-
ever, the delay in updating until radiologists complete their
reviews has led to difficulties in providing real-time wait time
estimates. Therefore, we investigated the potential of artificial
intelligence (AI) language models to provide preliminary
priority estimations.

Figure 1. Artificial intelligence-predicted priority levels will allow physicians to estimate waiting time before the official priority is determined by
radiologists. AI: artificial intelligence.

Use of Language Models in Medicine
To perform this task, the AI models must process free-
form text through natural language processing (NLP).
NLP presents challenges due to the inherent ambiguity
and complexity of natural languages. Historically, NLP
approaches have used simplistic models, such as the bag-of-
words method, which analyzes text as a mere collection of
words without considering their order or contextual relation-
ship. While this approach suffices for basic tasks, it does
not adequately capture the intricacies of human language.
Consequently, researchers have worked to incorporate
linguistic insights into computational models to enhance their
ability to process and understand natural language.

The advent of transformer architecture, particularly
with bidirectional encoder representations from transform-
ers (BERT), has revolutionized NLP [1]. The ability of
BERT to efficiently learn from extensive text corpora
has significantly enhanced its contextual understanding and
performance across various NLP tasks, minimizing strong
inductive biases. BERT has also inspired the development

of several transformer-based models tailored to specific
domains, including medicine. Examples include BioBERT,
ClinicalBERT, PubMedBERT, and BlueBERT [2-5]. Hence,
we used JMedRoBERTa, a model specifically trained on a
substantial corpus of Japanese medical research papers [6].

Large language models (LLMs), which often use
architectures similar to BERT but with increased parameters
and capabilities, particularly in text generation, have gained
prominence. Empirical evidence from GPT-3 has demonstra-
ted that scaling models improve performance, adhering to
the scaling law in NLP [7]. The term “large” is ambiguous,
as BERT can also be considered an LLM. The introduction
of ChatGPT [8] and subsequent models, such as GPT-4 and
PaLM (Pathways Language Model), has shown the success
of LLMs across various fields, including medicine [9-11].
Despite the proprietary nature of leading models due to
high training costs and safety concerns, publicly available
LLMs such as LLaMA2 and OpenCalm offer opportunities
for research and evaluation of their potential and limitations
[12-14].
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Research Gap
The application of AI for priority estimation has been
predominantly investigated in the context of emergency
department (ED) triage [15,16]. Several AI models use
NLP techniques to analyze medical texts [17-19], aiming
to rank patients or requests to optimize the allocation of
limited medical resources to those in urgent need. While
these models have shown promise in improving resource
allocation within ED, extending research into medical priority
estimation beyond ED could further enhance patients’ quality
of life, reduce hospital stay durations, and lower medical
costs. Therefore, additional research is required to explore
AI applications in medical priority estimation across various
clinical settings.

This study provides valuable insights into both priority
estimation and the broader field of medical NLP and LLM
applications. Although LLMs have primarily been used for
generative tasks, demonstrating innovative applications, these
models underperform in scenarios requiring structured and
predictable outputs. Such challenges are evident in health
care settings, where integrating AI into hospital systems
necessitates a high degree of precision and reliability that
generative models do not consistently provide. Furthermore,
current research on medical LLMs predominantly focuses
on question-answering (QA) metrics [9], overshadowing the
exploration of LLM potential for non-QA tasks. Emphasizing
LLM applications beyond QA could reveal new practical uses
in medicine.

A significant challenge in applying LLMs to our context
arises from the linguistic and contextual differences between
the pretraining datasets, primarily in general English, and
our specific use cases involving Japanese medical termi-
nology. This mismatch impairs the model’s understanding
of specialized terms and complicates tokenization. Tokeniz-
ers, though less studied than model size and datasets, can
significantly influence the performance of LLMs in non-
English contexts [20]. Our study addresses this issue by
evaluating and enhancing LLMs’ linguistic and contextual
adaptability for diverse clinical applications.

Methods
Dataset
We retrospectively collected ultrasound examination requests
from the waitlist system at Keio University Hospital (Figure
1) from January 2020 to March 2023. Each record comprised
the requesting department, the examination slot, and the
examination purpose documented by the requesting physi-
cian. In addition, records included a 6-tier priority level
assigned by a board-certified radiologist during the clini-
cal workflow, which served as the ground truth for the
AI models. The criteria for determining priority levels are
outlined in Textbox 1. Priority level 6 was excluded from the
dataset due to its rarity (only a few records), and physicians
typically communicated directly with radiologists in such
cases.

Textbox 1. Criteria for priority levels
1) Desired before discharge if possible.
2) Required for treatment decisions.
3) Preferred early.
4) Urgently required.
5) Immediately required.
6) Emergency (excluded).

The dataset underwent 3 main preprocessing steps to ensure
data quality and consistency: aggregation, cleaning, and text
normalization.

Aggregation
Initially, records with similar request texts were aggrega-
ted using the Levenshtein distance metric, and the major-
ity priority level was assigned to the representative record
within each cluster. This aggregation was essential because
the dataset contained approximately identical waitlist records
for common ultrasound scenarios, such as postoperative
monitoring or specific clinical pathways. Duplicates could
skew sample weights during model training, and inconsisten-
cies in priority levels could adversely affect accuracy. We
aimed to reduce these risks and create a more uniform and
reliable dataset for model training by aggregating similar
records.

Cleaning
This phase involved eliminating records unsuitable for
analysis. Specifically, we excluded entries with zero or
invalid priority levels because these could not contribute
to meaningful priority estimation. In addition, we removed
records with date-specific requests (eg, “Can we schedule
an ultrasound examination by May 3?”) because tempo-
ral references could bias priority estimations and present
challenges for AI models during prediction. This meticulous
pruning ensured the remaining dataset was relevant and
suitable for accurate modeling.

Text Normalization
The final preprocessing step aimed to enhance textual
consistency. We removed extraneous spaces and corrected
punctuation errors by standardizing the text format across
the dataset. This normalization was crucial for minimiz-
ing variability in model input and ensuring accurate text
interpretation by AI.
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After preprocessing, approximately 10% of the dataset was
reserved for testing, with the remaining portion allocated for
training. The dataset was divided based on referring doctors
to ensure that requests from a single physician appeared
exclusively in the training or test subset.
Models
We used several pretrained models: JMedRoBERTa, Luke,
OpenCalm 7B, and LLaMA2 7B [6,13,14,21], all of
which are accessible via Hugging Face (Table 1) [22].
Both OpenCalm and LLaMA2 offer multiple variants with
different model sizes; however, we selected the 7B model

due to computational resource limitations. These 4 models
were chosen based on their size and the semantic alignment
between their pretraining datasets and our downstream task.
Ideally, the optimal model should possess a large number
of parameters and be trained on a dataset that aligns semanti-
cally and linguistically with the downstream task. However,
there is often a trade-off between model size and dataset
alignment. In this study, we experimented with models
positioned at different points along this trade-off, providing
valuable insights into how this balance can be managed for
medical text classification tasks using LLMs.

Table 1. Model details.
Model Number of Parameters Language of training dataset Category of training dataset
JMedRoBERTa 124 million Japanese Medical paper
Luke 562 million Japanese Wikipedia
OpenCalm 7 billion Japanese Mixeda

LLaMA2 7 billion English (mainly)b Mixeda
aLarge language models are generally pretrained on diverse text data to maximize the use of their extensive parameters.
bLLaMA2 was primarily designed for English, but its training dataset included some Japanese data.

To establish a performance baseline, we also tested conven-
tional NLP methods: support vector machine, random forest,
and XGBoost (eXtreme Gradient Boosting) [23]. The same
input text used for the LLMs was processed into a list of
words with MeCab [24], using the mecab-ipadic-NEologd
dictionary [25]. This list of words was then converted into a
vector using the term frequency-inverse document frequency.

The model input adhered to the template provided in
Textbox 2. We experimented with various prompts, rang-
ing from simpler to more complex ones (such as role
prompting or few-shot). Ultimately, we found that this
simple prompting worked best for our task. We trained the
models to predict the correct priority levels using continuous

numbers (ie, regression). Training was conducted under 2
conditions: fine-tuning only the final layer and fine-tuning
all layers. However, fine-tuning all layers was impractical
due to the large number of parameters in OpenCalm and
LLaMA2. Therefore, we used low-rank adaptation (LoRA)
with parameter-efficient fine-tuning using r=32 [26,27]. The
models were optimized using the AdamW optimizer with
β₁=0.9, β₂=0.999, and a weight decay of 0.0001. The loss
function used was mean squared error. Learning rates were
set to 1e-5 for final-layer fine-tuning and 1e-7 for full-layer
or LoRA-based tuning. Training was performed over 100
epochs, using the NVIDIA RTX A6000 GPU.

Textbox 2. Record was fed into the models using the simple prompt.
[Template]
Input (original): 診療科 : {診療科}; 検査項目 : {検査枠}; 依頼目的 : {依頼目的};
Input (translated): Department: {department}; Examination Item: {slot type}; Purpose: {purpose};
[Example]
Input (original): 診療科: 一般・消化器外科; 検査項目: 末梢血管 (両）下肢静脈; 依頼目的: 肝細胞癌術後Ｄ−ｄｉ
ｍｅｒ上昇あり精査目的です;
Input (translated): Department: General and gastrointestinal surgery; Examination Item: (bilateral) veins of lower
extremities; Purpose: After hepatocellular carcinoma surgery, D-dimer elevated. Needs further inspection.
Priority level: 2

Evaluation
Kendall tau-b, the rank correlation coefficient, was used
as the primary evaluation metric. While root-mean-squared
error is a common metric for regression tasks, measur-
ing the distance between predicted and actual values, our
focus on accurately estimating the priority order for med-
ical examinations made the alignment between predicted
and actual rankings crucial. Therefore, Kendall tau-b was
preferred, emphasizing the significance of ordinal relation-
ships over quantitative discrepancies. In addition, we created

the confusion matrices by rounding the continuous prediction
values to the nearest integers.

In addition, we assessed the ability of the model to
identify low priority (priority level=1) and high priority
(priority level>=4) requests. Performance in this classification
task was quantitatively assessed using the area under the
receiver operating characteristic curve (ROC-AUC) and the
F1-score. The thresholds were optimized individually for each
classification task.
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Finally, we compared the accuracy of the language models
with a retrospective re-evaluation performed by a radiologist.
A board-certified radiologist (MH) assigned priority levels
to all records in the test dataset based solely on the same
text presented to the AI models. This comparison served
as a benchmark for our model’s predictions and provided
valuable insights into the challenges and consistency involved
in priority assignment.
Error Analysis
We analyzed instances where the model’s predictions
deviated from the actual priority levels to identify potential
biases and causes of errors. The error analysis was conducted
on the model that achieved the best performance, as indicated
by the highest Kendall score. We extracted all samples from
the test dataset with an absolute error of >1. These errors
were classified as either overestimations or underestimations.
Each mispredicted sample was reviewed to determine the
underlying patterns or common characteristics contributing
to the discrepancies. Discrepancies between the original and
re-evaluation radiologist ratings were also investigated to
assess the difficulty and consistency of priority estimation. In
addition, we used the Shapley Additive Explanation (SHAP)
[28] method to visualize the importance scores of each token
in the input.
Ethical Considerations
This study received approval from the Research Ethics
Committee of Keio University Hospital (approval number:

20170018) and adhered to the Declaration of Helsinki and
other pertinent ethical guidelines. All patient data were
processed on the machine located inside the hospital’s secure
intranet, isolated from the public internet, thereby ensuring
participant privacy and confidentiality. The requirement for
written informed consent was waived due to the retrospec-
tive observational nature of the study. The output of the AI
models did not influence actual clinical practice.

Results
Dataset
The initial dataset comprised 3654 ultrasound examination
requests. After text similarity aggregation and data cleaning,
the final dataset consisted of 2539 records (Figure 2). These
were further divided into training and test datasets of 2335
and 204 records, respectively, ensuring that requests from
each referring doctor appeared exclusively in either training
or test subset to prevent data leakage and maintain evalua-
tion integrity. The distribution of assigned priority levels is
depicted in Figure 3. Most requests were assigned prior-
ity levels 2 or 3, while requests at priority level 5 were
extremely rare. The distribution of priority levels did not
exhibit significant skewness despite variability in the number
of requests reviewed by each radiologist.

Figure 2. Dataset flowchart.
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Figure 3. The majority of orders are assigned to priority levels 2 or 3 with little skewness between radiologists.

Evaluation
Table 2 and Figure 4 show the performance of each model
across different metrics. As expected, fully fine-tuned models
outperformed the final-layer fine-tuned models. In particu-
lar, the fully fine-tuned JMedRoBERTa achieved the highest
Kendall tau-b of 0.254. All the fully fine-tuned LLMs
surpassed the baseline of conventional models, and notably,
they also outperformed the radiologist re-evaluation in terms
of Kendall tau-b. However, this result should be interpreted
with caution, as it may reflect the inherent ambiguity of the
priority estimation task, a topic that will be further discussed

later. We observed that training all layers or using LoRA not
only improved accuracy across all models but also narrowed
the performance disparity between JMedRoBERTa and the
other models. Regarding the classification tasks, JMedRo-
BERTa and Luke performed well, with ROC-AUC ranging
from approximately 0.75 to 0.8.

For model-specific prediction trends, the JMedRoBERTa
predictions (Figures 5A and B) revealed a trend where the
distribution of AI-predicted values shifted upward as the
actual priority level increased, indicating a positive correla-
tion between AI predictions and the radiologists’ assessments.

Table 2. Performance metrics.

Model and fine-tuned layers
Regression Low priority classification High priority classification
Kendall ROC-AUCa F1-scoreb ROC-AUC F1-scoreb

JMedRoBERTa
  Final 0.225 0.77 0.40 0.71 0.25
  All 0.254 0.81 0.50 0.76 0.29
Luke
  Final 0.170 0.65 0.24 0.77 0.30
  All 0.236 0.82 0.45 0.74 0.36
LLaMA2-7b
  Final 0.197 0.72 0.31 0.61 0.23
  LoRAc 0.231 0.76 0.35 0.75 0.26
OpenCalm
  Final 0.180 0.67 0.20 0.67 0.31
  LoRAc 0.242 0.65 0.23 0.76 0.25
SVMd 0.167 0.61 0.27 0.49 0.08
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Model and fine-tuned layers
Regression Low priority classification High priority classification
Kendall ROC-AUCa F1-scoreb ROC-AUC F1-scoreb

Random forest 0.198 0.63 0.25 0.48 0.14
XGBooste 0.176 0.60 0.10 0.56 0.23
Radiologist re-evaluation 0.221 0.73 0.31 0.62 0.20

aROC-AUC: area under the receiver operating characteristic curve.
bIt should be noted that these were highly imbalanced classification tasks, and therefore, F1-score tends to be lower. (A completely random classifier
would yield an F1-score of around 0.1).
cLow-rank adaptation (r=32).
dSVM: support vector machine.
eXGBoost: extreme gradient boosting.

Figure 4. All layers or low-rank adaptation fine-tuning improves accuracy in all models, narrowing the performance gap between the medical
language model and other general-purpose language models. LoRA: low-rank adaptation; ROC-AUC: area under the receiver operating characteristic
curve.

Figure 5. JMedRoBERTa performance. (A) The distribution of priority levels predicted by the fine-tuned JMedRoBERTa model was mostly
consistent with the radiologist rating except for confusion between priority levels 2 and 3. (B) Confusion matrix also shows that the model was
primarily confused by priority levels 2 and 3. (C) The model detected low (<=1) or high (>=4) priority orders at an ROC-AUC of around 0.8. LoRA:
low-rank adaptation; ROC-AUC: area under the receiver operating characteristic curve.

A total of 39 error cases (absolute error>1.0) were identi-
fied, including 25 overestimated and 14 underestimated cases.
The most common misclassification was confusion between
priority levels 2 and 3, which was also observed in the

radiologist re-evaluation (Figure 6). The tendency of errors
made by radiologists and AI was similar (Figure 7). A more
detailed analysis of these errors follows in the “Discussion”
section.
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Figure 6. Radiologist re-evaluation performance. Even a radiologist struggled in replicating priority level 2 and 3. ROC: receiver operating
characteristic.

Figure 7. The model and radiologist tend to make similar types of errors, as seen in the upper left and lower right cells. Underestimation and
overestimation are defined as a deviation of more than one level from the original radiologist rating.

Discussion
Principal Findings
This study used language models to predict priority levels for
an ultrasound examination waitlist system. JMedRoBERTa,
pretrained on a Japanese medical paper dataset, demonstra-
ted the highest performance. Other models also performed
comparably when fully fine-tuned or adjusted with LoRA.
This section discusses a comparison of the performance of
different models, focusing on domain and language adapta-
tions. After that, the challenges of prioritizing tasks due to
the variability of priority levels are addressed. Subsequently,

the nature of the error samples is discussed, followed by the
ethical and social implications. Finally, the limitations of the
study and its conclusions are presented.
Domain and Language Adaptation
Comparing the performances of the models provides insights
into the influence of model size, pretraining datasets, and
fine-tuning methods on the cross-domain and cross-language
adaptation capabilities of LLMs. The critical factor influ-
encing performance in this experiment was the alignment
between the pretraining dataset and the downstream task.
JMedRoBERTa, pretrained on a Japanese medical paper
dataset, achieved superior performance despite having the
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smallest model size. JMedRoBERTa could focus exclusively
on learning the priority assignment rules, while other models
had to contend with both unfamiliar vocabulary and priority
assignment rules.

However, this observation may change as the number of
model parameters increases. Models pretrained on nonmedi-
cal and non-Japanese data may benefit relatively more from a
larger number of training samples. In particular, as the dataset
size grows, a model’s representational capacity (roughly
reflected by the number of parameters) may become a more
dominant factor than the similarity of its pretraining dataset,
as sufficient data would enable such models to adapt to the
downstream task domain.

Meanwhile, LoRA reduced the performance gap between
domain-specific and general language models. Final-layer
fine-tuning can be viewed as similar to zero-shot learning,
as it only updates the final layer, which primarily serves to
format the output from internal representations rather than
contributing to text comprehension. In contrast, fine-tuning
all layers, rather than just the final one, allowed the mod-
els to better adapt to the specific domain and language of
the downstream task. Although full-parameter fine-tuning
theoretically offers superior performance than LoRA [29],
it often remains impractical due to constraints in computa-
tional resources (primarily memory capacity). Consequently,
parameter-efficient tuning remains crucial for applying LLMs
to medical tasks.

While our study used LoRA for fine-tuning all lay-
ers, there are other parameter-efficient tuning methods.
For example, Sukeda et al [30] highlighted LoRA instruc-
tion tuning as a promising approach for adapting LLMs
to Japanese medical QA tasks [30]. In addition, quanti-
zation is a popular technique that significantly reduces
memory requirements while maintaining performance [31].
Our findings support the effectiveness of parameter-efficient
fine-tuning, demonstrating that general-purpose LLMs can
achieve capabilities comparable to those of fully fine-tuned
domain-specific models.

The influence of tokenization on task performance was
minimal. Only the JMedRoBRETa tokenizer could accurately
recognize medical terms. Conversely, the Luke tokenizer
recognized only nonmedical Japanese words, often splitting
medical terms into multiple tokens. The other 2 tokeniz-
ers failed to process most Japanese characters correctly,
resorting to byte fallback, where single characters were
segmented into multiple tokens based on their Unicode
representation. However, all models delivered comparable
performances when fine-tuned. Since LoRA tuning does not
change the tokenizer, it is suggested that the tokenization
quality minimally affects the performance of this specific
downstream task.
Challenges in Reproducing Priority
Assignments
Although the AI model outperformed the radiologist re-
evaluation, this result does not necessarily indicate the
superiority of LLMs in priority estimation. Instead, it

highlights the inherent ambiguity of the task itself. The
priority levels were originally assigned by board-certified
radiologists with sufficient clinical experience; however, the
relatively low interrater agreement suggests that the process is
inherently subjective.

Priority assignments are influenced by various factors,
some of which are only available in the real-time clinical
setting, leading to discrepancies between the original and
re-evaluation ratings. For instance, the number of pend-
ing orders, the availability of examination equipment, and
seasonal variations such as holidays can impact decision-
making. In addition, in urgent cases, physicians may directly
consult radiologists or the examination department, a factor
that will not be captured in the dataset used for AI training or
the radiologist re-evaluation. Consequently, even experienced
radiologists may find it challenging to precisely reproduce
the original priority levels in a retrospective setting, and AI
models face similar challenges.

To mitigate this, cases influenced by external factors
should be excluded from the training dataset, with radiolog-
ists allowed to flag them. Also, enhancing request records
with supplementary information would improve reproduci-
bility. For instance, radiologists could annotate the reasons
behind priority decisions, enabling AI models to learn their
decision-making processes. Providing AI with comprehensive
clinical notes could enrich the contextual information. While
reviewing all patient charts to determine priority is impracti-
cal for humans, AI language models can process extensive
text rapidly. This capability might enable AI models to
exceed human performance in priority estimation.
Error Analysis
There were 25 overestimated cases and 14 underestimated
cases. The model errors can stem from 2 main sources,
which are the inherent difficulty of replicating the assignment
and the limitations of the model. As described previously,
replicating radiologists’ priority assignments made in the
clinical setting is inherently challenging, and both AI models
and radiologists are affected by this uncertainty. In fact,
as demonstrated in Figure 7, the model and the radiologist
re-evaluation exhibited similar patterns of misclassification,
with no instances where the model greatly overestimated
while the radiologist greatly underestimated, or vice versa.
This observation suggests that certain underlying factors (ie,
inherent difficulty) may be causing both the model and the
radiologist to make similar errors.

To investigate the error cases further, we examined which
parts of the input text contributed most to the model’s
predictions using SHAP. However, interpreting SHAP values
in transformer-based models presents certain challenges.
Since these models capture contextual relationships more
holistically than conventional approaches, SHAP values do
not always highlight clinically meaningful tokens. The same
word can have highly varying SHAP values in different
inputs, and common tokens appearing in all samples may
absorb baseline importance, leading to misleading attribu-
tions. To partly mitigate this, we adjusted SHAP calculations
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to reduce the influence of shared tokens and improve
interpretability. Despite these limitations of SHAP in our
context, some cases yielded meaningful insights. We present
the representative cases in Textbox 3, and we will discuss
each case below.

Despite these limitations of SHAP in our context, some
cases yielded meaningful insights. We present the representa-
tive cases in Textbox 3, and we will discuss each case below.

Textbox 3. High-Shapley Additive Explanation tokens are shown in bold and underlined. Some cases exhibited insightful
Shapley Additive Explanation values, demonstrating the model’s focus on key terms or revealing sources of misprediction.

[Sample 1 (Original: 3, Re-evaluation: 4, AI prediction: 3.784)]
[Input (Japanese)] 診療科 : 整形外科; 検査項目 : 腹部上腹部; 依頼目的 : 胆嚢炎疑い
[Translated] Department: Orthopedics; Examination Item: abdomen, upper abdomen; Purpose: Cholecystitis is suspected.
[Sample 2 (Original: 4, Re-evaluation: 3, AI prediction: 3.634)]
[Input (Japanese)] 診療科 : 産婦人科; 検査項目 : 腹部 上腹部; 依頼目的 : 妊娠 15 週交通事故シートベルト痕あり肝
機能微増しており, 肝損傷疑っております FAST は陰性ですが, 右側胸部の自発痛あります御高診お願いします
[Translated] Department: OBGYN; Examination Item: abdomen, upper abdomen; Purpose: A 15-week pregnant traffic
accident with a seatbelt mark. Liver enzymes are mildly elevated, and liver injury is suspected. FAST is negative, but she
complains of spontaneous pain in the right side of her chest.
[Sample 3 (Original: 3, Re-evaluation: 2, AI prediction: 4.070)]
[Input (Japanese)] 診療科 : 心臓血管外科; 検査項目 : 頸部・甲状腺・陰嚢・その他表在 頚動脈ドップラー; 依頼目
的 : 下行大動脈瘤破裂後, 仮性瘤疑い。術前評価です。
[Translated] Department: Cardiovascular surgery; Examination Item: Thyroid, Scrotum, and Other Superficial Structures /
Carotid Doppler; Purpose: Suspected pseudoaneurysm following a ruptured descending aortic aneurysm. Preoperative
evaluation.

Sample 1: Acute Cholecystitis Suspicion
The AI model correctly assigned a high priority to a
case of suspected acute cholecystitis, focusing on the
keyword “cholecystitis.” Given that ultrasound is the effective
diagnostic tool for this condition and that surgical interven-
tion may be required promptly, this prioritization aligns well
with clinical expectations. This example demonstrates that
when a request contains an explicit keyword suggesting
a critical condition, the model can effectively capture its
importance.
Sample 2: Traumatic Liver Injury in a Pregnant
Person
For a pregnant patient involved in a motor vehicle acci-
dent with concerns of hepatic injury, the model was also
assigned a high priority. SHAP analysis revealed that the
model placed significant weight on the terms “pregnancy”
and “liver injury,” suggesting that it successfully incorporated
both the trauma and the patient’s physiological condition into
its decision-making. The model’s ability to recognize such
contextual factors is encouraging.
Sample 3: Preoperative Evaluation for Aortic
Aneurysm
In this case, a carotid Doppler was requested for the
preoperative evaluation of a pseudoaneurysm following a
ruptured aortic aneurysm. While “aneurysm” and “rupture”
typically indicate urgency, this patient appears to be stable,
and the surgery is scheduled rather than urgent. If this were
an urgent surgical case, it would be unlikely for the doc-
tor to request an ultrasound examination from the radiology
department. In fact, radiologists assigned a midrange priority
of 2 and 3, reflecting the nonemergent nature of the request.
However, the model assigned a priority of 4, overestimating

the urgency. This suggests that the model may sometimes
overprioritize cases based on emergency-associated keywords
without fully considering the clinical context.

Overall, SHAP analysis indicates that the model performs
well in straightforward cases where the primary pathology
is explicitly mentioned but struggles with nuanced clinical
scenarios requiring deeper contextual understanding.
Clinical Implementation—Benefits
The current waitlist system already provides several clinical
and operational advantages. Integrating AI could further
enhance its efficiency by addressing the key limitations of
ensuring rapid, fair, and consistent priority assignment. This
section examines the benefits of the waitlist system and the
role of AI in priority estimation separately.

A priority-based waitlist system offers multiple bene-
fits. First, it improves clinical outcomes by facilitating
faster ultrasound examinations for urgent cases, enabling
timely clinical decisions. In addition, it can shorten hos-
pitalization durations, especially when ultrasound examina-
tions are critical for determining discharge eligibility. By
increasing the transparency of the examination scheduling
process, this system helps physicians estimate examination
dates more accurately, thereby improving planning. Further-
more, effective prioritization supports better bed management
and overall hospital efficiency, allowing for higher patient
turnover and boosting institutional revenue.

Despite these advantages, the existing manual priority
assignment process presents several challenges. Radiologists
face an increased workload due to the need for subjective
prioritization, leading to delays in determining priority levels.
Furthermore, inconsistencies may arise from variations in
clinical judgment, making prioritization less reliable.
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AI offers a promising solution by automating the priority
assignment process. AI models can deliver consistent,
real-time estimations, improving the accuracy and objectivity
of the waitlist system. By streamlining this process, AI can
reduce the burden on radiologists and enhance both efficiency
and standardization.
Clinical Implementation—Challenges
However, implementing AI alone does not address all
challenges. Several critical factors must be considered to
ensure the successful clinical adoption of AI-assisted waitlist
systems.

For AI-driven prioritization to be effectively integrated
into clinical workflows, health care providers must be
well-informed about its benefits and limitations to foster trust
in the technology. While existing research shows a generally
positive attitude toward AI in medicine [32,33], percep-
tions vary depending on the underlying technology, medi-
cal specialty, and cultural background [34,35]. For instance,
the term “AI” encompasses a broad spectrum of technolo-
gies, from simple symptom checkers [36,37] to sophisticated
LLMs [38,39]. Case studies that highlight the potential and
challenges of medical AI applications will facilitate dialogue
among stakeholders and accelerate the acceptance of AI in
clinical practice [40].

The potential for clinically significant misclassifications
remains a concern. If an urgent case is mistakenly assigned
a lower priority, it could result in adverse patient out-
comes. Even in situations where human evaluators might
also struggle with classification, unclear responsibility could
raise legal and ethical concerns regarding liability in medical
decision-making.

AI models are trained on historical data, which may
contain biases related to patient demographics, socioeco-
nomic status, or institutional practices. If these biases are not
addressed, they could lead to disparities in priority assign-
ment. However, AI also offers the potential to mitigate human
biases by providing consistent, data-driven prioritization.
Identifying and minimizing biases through rigorous model
evaluation is crucial to ensuring fairness and equity.

Integrating AI into existing hospital information systems,
such as electronic medical records and order management

platforms, requires substantial technical modifications.
Furthermore, the costs associated with implementing,
maintaining, and updating AI models may pose financial
constraints for health care institutions. Assessing the cost-
effectiveness and feasibility of AI adoption is critical to
ensuring widespread integration.

In summary, incorporating AI into priority-based waitlist
systems can enhance clinical efficiency, reduce physician
workload, and improve patient care. However, addressing
concerns related to user acceptance, legal and ethical
responsibility, potential biases, and system integration is
essential for successful implementation. Future research
should focus on strategies to overcome these challenges while
maximizing AI’s clinical use in resource allocation.
Limitations
The primary limitation of this study is its focus on a single
institution, which limits the external validity of the findings.
Applying our model to other institutions or medical contexts
would likely require retraining, as hospitals vary in specialty
composition, resource allocation, and priority assessment
criteria, all of which could influence model predictions. In
addition, the dataset is restricted to Japanese text. Future
research should aim to incorporate datasets from multiple
institutions and languages. While this may present challenges
due to variations in clinical practices and priority criteria,
addressing these issues is crucial for evaluating the model’s
robustness and generalizability. Pretraining on a sufficiently
large and diverse dataset could facilitate adaptation to new
institutions with minimal effort.
Conclusions
This study demonstrates that language models can estimate
examination request priorities with accuracy comparable
to human radiologists and better than conventional NLP
methods. Nevertheless, improvements in the reproducibility
of priority rankings are required. The research also highlights
the potential for adapting general-purpose models to domain-
specific text through adequate fine-tuning, underscoring the
flexibility and applicability of these models in specialized
contexts. Further research should explore methods to address
the ambiguity in priority assignment and validate the model’s
performance across multiple institutions.
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