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Abstract

Background: Artificial intelligence (Al) is transforming medical imaging, with large language models such as ChatGPT-4
emerging as potential tools for automated image interpretation. While Al-driven radiomics has shown promise in diagnostic
imaging, the efficacy of ChatGPT-4 in liver ultrasound analysis remains largely unexamined.

Objective: This study aimed to evaluate the capability of ChatGPT-4 in liver ultrasound radiomics, specifically its ability to
differentiate fibrosis, steatosis, and normal liver tissue, compared with conventional image analysis software.

Methods: Seventy grayscale ultrasound images from a preclinical liver disease model, including fibrosis (n=31), fatty liver
(n=18), and normal liver (n=21), were analyzed. ChatGPT-4 extracted texture features, which were compared with those obtained
using interactive data language (IDL), atraditional image analysis software. One-way ANOVA was used to identify statistically
significant features differentiating liver conditions, and logistic regression models were used to assess diagnostic performance.

Results: ChatGPT-4 extracted 9 key textural features—echo intensity, heterogeneity, skewness, kurtosis, contrast, homogeneity,
dissimilarity, angular second momentum, and entropy—all of which significantly differed acrossliver conditions (P<.05). Among
individual features, echo intensity achieved the highest F;-score (0.85). When combined, ChatGPT-4 attained 76% accuracy and
83% sensitivity in classifying liver disease. Receiver operating characteristic analysis demonstrated strong discriminatory
performance, with area under the curve values of 0.75 for fibrosis, 0.87 for normal liver, and 0.97 for steatosis. Compared with
IDL image analysis software, ChatGPT-4 exhibited dightly lower sensitivity (0.83 vs 0.89) but showed moderate correlation
(r=0.68, P<.001) with IDL-derived features. However, it significantly outperformed IDL in processing efficiency, reducing
analysis time by 40%, and highlighting its potential for high throughput radiomic analysis.

Conclusions: Despite dlightly lower sensitivity than IDL, ChatGPT-4 demonstrated high feasibility for ultrasound radiomics,
offering faster processing, high-throughput analysis, and automated multi-image eval uation. These findings support its potential
integration into Al-driven imaging workflows, with further refinements needed to enhance feature reproducibility and diagnostic
accuracy.
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Introduction

In recent years, advancementsin artificial intelligence (Al) have
transformed variousfields, and one notable applicationisin the
realm of medical imaging [1-6]. Al holds significant potential
in revolutionizing the field of medical imaging, as it can
automate numerous tasks and even surpass human abilities in
specific areas, whether it be in diagnostic or interventional
applications [7]. Integrating Al with ultrasound imaging is
particularly compelling. Unlike other imaging modalities,
ultrasound relies heavily on human operators [8,9]. This
dependence on human expertise presents unique challenges,
especially with the growing use of portable ultrasound devices.
These devicesareincreasingly used by adiverse range of health
care providers, including nonradiol ogists, who may have varying
levels of training and experience [10]. Al algorithms offer a
powerful solution to mitigate the challenges associated with
operator dependency in ultrasound imaging. These algorithms
can play acrucia role in the automated detection of anomalies
and significant findings, providing not only descriptive analysis
but also valuable diagnostic guidance [11-13]. This capability
is particularly beneficia for less experienced operators or in
situations where expert radiologists are not readily availablein
regions with limited medical resources. The integration of Al
in ultrasound imaging can lead to more accurate and efficient
diagnostic processes, reducing the likelihood of human error
and improving patient outcomes [12-17].

ChatGPT is an advanced and powerful Al natural language
processing model developed by OpenAl and was designed to
comprehend and generate human-like text responses [18].
Having been extensively trained on a diverse corpus of data,
ChatGPT has cultivated the capacity to grasp context, acquire
knowledge from examples, and produce cohesive responses
[19]. Consequently, it hasevolved into aversatiletool applicable
to a wide array of uses, including health care and medical
imaging [20-26]. In health care, its capacity to process and
interpret vast amounts of information can support medical
diagnostics, patient communication, and research. The latest
version, ChatGPT-4, expands its ability to multimodal
interactions, including image processing and potential
capabilities in audio and video formats [27-29]. This
enhancement is especialy beneficial in health care, where it
can analyze medical imagery, assist in creating educational
materials, and offer visually descriptive assistance in patient
care. By integrating advanced image analysis and generation,
ChatGPT-4 stands poised to transform how Al supports health
care professionals, offering tools for more accurate diagnoses,
treatment planning, and patient engagement through rich,
interactive media

In this study, we explore the potential of ChatGPT-4 in
ultrasound imaging, particularly its capabilities in radiomics
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analysis for detailed tissue texture characterization. We focus
on using ChatGPT-4-based radiomics to detect 3 distinct liver
tissue types—normal, fibrotic, and fatty liver—using ultrasound
images. To address challenges related to clinical data security,
patient privacy, and ethical compliance, the liver ultrasound
images in our study were sourced from an animal model. We
then compared the findings generated by ChatGPT-4 with those
obtained from conventional image analysis software. Our
exploration highlights the potential of ChatGPT-4 to enhance
research efforts and future clinical applications by improving
the accuracy of quantitative image analysis.

Beyond radiomics analysis, we evaluated ChatGPT-4 as a tool
for distinguishing normal from abnormal cases based onimaging
findings. We aimed to demonstrate its capability as a supportive
tool in clinical settings. Such atool could significantly reduce
the workload of radiologists by efficiently filtering out normal
cases, allowing them to focus their expertise on more complex
and abnormal cases. This expanded exploration highlights the
promising role of ChatGPT-4 in enhancing diagnostic accuracy
and supporting clinical decision-making in liver disease
detection.

Methods

Image Data Acquisition

Seventy B-mode grayscale ultrasound images acquired from
vaidated rat liver disease models[30-32] were used for analysis.
The images were distributed across 3 categories of liver health:
fibrosis (n=31), steatosis (fatty liver) (n=18), and normal (n=21).
To maintain consistency and reliability in the anaysis, the
imaging parameters were standardized, including transducer
frequency, gain settings, imaging depth, focus, and dynamic
range. These standardizations ensured that the liver tissue's
echogenicity and overall image quality were consistent across
all samples, alowing for accurate comparisons between the
different health states. Additionally, each analysis focused on
asingle image depicting a section of the right lobe of the liver.
The right lobe was chosen due to its larger size and easier
accessibility, which provided a more representative and
consistent area for imaging and subsequent histopathological
validation. The liver pathology in these images was validated
with histopathology, further ensuring the accuracy of the
ultrasound-based categorization.

Ultrasound Image Analysisby ChatGPT-4

Overview

We leveraged the advanced capabilities of ChatGPT-4 for
radiomics analysis of ultrasound images. ChatGPT-4 was used
to select regions of interest (ROISs), extract radiomic features,
and classify liver disease conditions. These critical steps are
depicted in Figure 1.
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Figure 1. ChatGPT-4-assisted liver ultrasound image radiomics analysis workflow. The image illustrates the stepwise process of liver ultrasound
texture analysis using ChatGPT-4. The process begins with uploading the image and preparation for analysis (query 1), where ChatGPT-4 performs
texture analysis based on a selected ROI. In query 2, the user verifies and corrects the ROI selection. The ChatGPT-4 interface allows the user to refine
the ROI to ensure accurate analysis. Once confirmed, the system proceeds to apply the same process to a series of images (query 3). Feature extraction
details the analysis outputs, including texture metrics such as mean, variance, skewness, kurtosis, energy, and entropy, which provide insightsinto pixel
intensity distribution and texture uniformity within the selected ROI. Figure prepared by Brittany Bennett, CMI. ROI: region of interest.
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Feature extraction

The texture analysis for the first centrally located Region of Interest (ROI) in the liver ultrasound image

» Mean: 0.0039, which is the average pixel intensity within the ROL
+ Variance: (.000019, indicating the variability of the pixel intensity values within the ROI.
+ Skewness: (.695Y9, suggesting a slight asymmetry of the pixel intensity distribution within the ROl

» Kurtosis: —1.0995, which is negative, suggesting a flatter distribution of pixel intensity compared to
+ Energy: ().0088, representing the sum of squared elements in the histogram for texture uniformity

+ Entropy: 7.0114, indicating the degree of randomness in the pixel intensity distribution within the

Region of Interest Delineation

The first critical step involved selecting a region of interest
(ROI) within the liver tissue depicted in each ultrasound image
(Figures 1B and 1C). ROIs were automatically defined using
ChatGPT-4's advanced agorithms. Upon receiving the query,
ChatGPT-4 initially proposed an ROI based on its automated
analysis of the image, highlighting aregion that it determined
to be representative of the liver parenchyma. Usersthen refined
these suggestions to ensure alignment with clinical standards,
making adjustments as necessary to ensure that the selected area
was optimal for analysis meticulously excluding artifacts such
as vascular structures, acoustic shadows, and reverberation.
This interactive process alowed for fine-tuning of the ROI,
combining the computational efficiency of ChatGPT-4 with the
expert judgment of the user. Once the ROIs were verified for
accuracy in an analyzed image, they were replicated across 10
subsequent ultrasound images, which were then uploaded for
subsequent radiomics analysisusing abatch processing approach
(Figure 1). Having liver images captured consistently in the
same plane and region facilitated the reproducibility of ROI
placement across the images. This method significantly
enhanced the efficiency of our analysis, allowing for a more
comprehensive assessment of liver tissue samples

Feature Extraction

Feature extraction was conducted in batches of 10 ultrasound
images, the maximum allowed by ChatGPT-4, requiring multiple
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sessionsto analyze all 70 cases. However, conducting analyses
across different sessions introduced variability—some features
were occasionally omitted, while others appeared inconsistently
across sessions. To mitigate this session-dependent variability
and ensure consistency in feature extraction, we implemented
a standardized approach. At the beginning of each session, we
carefully refined the prompts provided to ChatGPT-4 to align
with previously extracted features (Table S1 in Multimedia
Appendix 1). Missing features were explicitly requested, and
any inconsistently appearing features were excluded. If
ChatGPT-4 returned incomplete or inconsistent features,
prompts were reissued or clarified until the correct output was
obtained. Our final analysis included only features that were
consistently and reliably extracted across al sessions. This
approach minimizes session-to-session variation while
maintaining reproducibility across users.

ChatGPT-4 extracted a comprehensive set of radiomic features
to characterize liver tissue texture [33-35]. These included
firgt-order gtatistics and second-order texture festures. First-order
statistics are quantitative measures such as mean intensity,
variance (heterogeneity), skewness, and kurtosis, reflecting
pixel intensity distribution. Second-order texture features are
derived from the gray-level co-occurrence matrix (GLCM), and
these features include contrast, homogeneity, entropy, and
angular second momentum (ASM), providing deep insightsinto
spatial relationships and textural heterogeneity within the ROI.
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Machine Learning for Feature Model Assessment

The extracted radiomic features were used to develop a
diagnostic model based on logistic regression, amethod selected
for its interpretability and clinical relevance. The model was
configured with L2 regularization, and the regularization
strength parameter (C) was optimized through grid search over
a predefined range [36,37]. The liblinear solver was used for
its suitability with small datasets, and the maximum number of
iterations was set to 1000 to ensure model convergence. The
dataset was divided into training (60%), testing (20%), and
validation (20%) subsets using stratified random sampling to
maintain a balanced representation across liver disease
categories (Table S2 in  Multimedia Appendix 1).
Hyperparameter tuning was performed using a grid search to
optimize model performance. Specifically, the regularization
strength parameter (C) in the logistic regression model was
adjusted to balance model fit and prevent overfitting [37]. A
range of C values (eg, 0.001 to 100) was evaluated, and the
optimal configuration was selected based on performance on
the test set. To maintain methodological rigor, the test set was
used exclusively during hyperparameter tuning, while the
validation set was reserved for final model evaluation. The
3-way split ensured an unbiased assessment of model
generalizability. Key metrics, including accuracy, sensitivity,
specificity, and the area under the receiver operating
characteristic (ROC) curve (AUC), were used to quantify
diagnostic precision.

Ultrasound I mage Analysis by I nteractive Data
Language-Based Software

Concurrently, the same ultrasound images were analyzed using
an established interactive data language (IDL)-based tool
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designed for image analysis [33,38]. For this analysis, ROIs
within the liver were manually defined using a specialized tool,
which ensured the precise sel ection of the target areas based on
the same selection criteria mentioned earlier. ROl delineation
was performed manually by expert users, ensuring the precise
inclusion of clinically relevant areas and the exclusion of
artifacts. The ROIs were selected to resemble the same areas
selected using ChatGPT-4. Following that, texture features
describing the first-order and second-order histograms were
extracted from ROIs. The same feature extraction and logistic
regression methodol ogy described above was applied, allowing
for adirect comparison of the 2 approaches.

Evaluating ChatGPT-4 for Imaging Findings-Based
Diagnosis

To explore the potentia of ChatGPT-4 as a tool for
distinguishing normal from abnormal liver cases, we conducted
an experiment involving liver ultrasound images representing
various conditions. We uploaded these images to ChatGPT-4
and tasked it with providing detailed descriptions of thefindings
and possible diagnoses for each image (Figure 2). ChatGPT-4's
output included comprehensive imaging findingsthat described
the characteristics of the liver tissue and suggested potential
diagnoses based on these observations.

Following this, we compared the diagnoses provided by
ChatGPT-4 with the actual diagnoses to assess its diagnostic
performance in identifying liver pathology. This involved
calculating metrics such as sensitivity, specificity, and overall
accuracy to determine how well ChatGPT-4 could identify
normal and abnormal cases.
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Figure2. ChatGPT-4—assisted liver ultrasound image diagnosis and report generation workflow. The figure depicts the workflow of using ChatGPT-4
for generating liver ultrasound image findings, possible diagnoses, and detailed reports. In query 1, images are uploaded for analysis, and ChatGPT-4
provides initial findings and potential diagnoses based on visual characteristics, such as liver parenchyma echotexture and the presence of lesions. In
query 2, ChatGPT-4 generates adetailed report and impression, summarizing the clinical interpretation of the ultrasound images. Each imageis examined
for hepatic abnormalities, including potential cysts, signs of fibrosis, or normal liver architecture, with impressions supporting clinical correlation or
further diagnostic imaging recommendations. This stepwise approach demonstrates ChatGPT-4's ability to assist in diagnostic interpretations and report
generation for liver ultrasound studies, streamlining clinical workflows and enhancing diagnostic accuracy.
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Results

Multiclass Liver Disease Classification by
ChatGPT-4-Based Ultrasound Radiomics

I dentification of Key Features

Sultan et al

The ultrasound radiomics data processed by ChatGPT-4 has
provided significant insights into the textural characteristics
associated with various liver diseases (Figure 3). An ANOVA
analysis identified 9 key textural features (from 10 features
studied)—echo intensity, heterogeneity, skewness, kurtosis,
contrast, homogeneity, dissimilarity, ASM, and entropy—as
significantly varying among different liver conditions.

Figure 3. Thisfigure presents the distribution of normalized texture features extracted from liver ultrasound images using ChatGPT-4, comparing 3
diagnostic groups: fibrosis, normal liver, and steatosis. (A) Plot 1 displaysfirst-order histogram features, including echointensity, heterogeneity, kurtosis,
and skewness. Fibrotic livers exhibit the highest echogenicity, followed by steatotic livers, both exceeding normal liver levels. Additionaly, fibrosisis
characterized by increased heterogeneity, whereas steatosis appears more homogeneous. (B) Plot 2 illustrates higher-order texture features, including
entropy, contrast, dissimilarity, homogeneity, and ASM. Fibrosisis associated with greater contrast and dissimilarity, alongside reduced ASM, reflecting
increased microstructural irregularity. Conversely, normal liver tissue demonstrates higher ASM and homogeneity, indicating a more uniform texture.
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Predictive Performance of Individual Features

Further analysis revealed varying degrees of accuracy,
sensitivity, and specificity for the identified imaging features
acrossdifferent metrics (Table 1). The accuracy of thesefeatures

https://ai.jmir.org/2025/1/e68144

XSL-FO

RenderX

Dx
N Fibrosis
N Normal
Il Steatosis

+

Kurtosis
Skewness

Dx
BN Fibrosis
EEE Normal
BN Steatosis

ASM

Homogeneity

ranged from 0.48 to 0.62, with echointensity and entropy
exhibiting the highest accuracy at 0.62. Specificity and
sensitivity also varied, with echointensity showing a high
specificity of 0.62 and entropy demonstrating alower specificity
at 0.42. Heterogeneity and skewness presented moderate
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accuracy levelsat 0.57, with heterogeneity having dightly higher
sensitivity. Energy stood out for its specificity at 0.66, while
ASM, despite having the lowest sensitivity at 0.33, exhibited
the highest specificity at 0.67. When these features were
combined, the overall accuracy improved to 0.76, with a
sensitivity of 0.83. An analysis of feature-wise F;-scores

Sultan et al

revealed also variability in their predictive contributions (Table
1). Echo intensity also exhibited the strongest performance
(F,-score=0.85), while heterogeneity followed with F;-score
of 0.67. Notably, the combined feature approach achieved
F,-score (0.77), emphasizing the advantage of integrating
multiple features, particularly weak ones.

Table 1. Performance metrics for key radiomic features in multiclass liver disease classification. Results are derived from logistic regression models

configured as described above.

Feature Accuracy Sensitivity Specificity F4-score
Echo-intensity 0.62 0.56 0.62 0.85
Heterogeneity 0.57 0.50 0.55 0.67
Skewness 0.57 0.47 0.62 0.63
Kurtosis 0.48 0.36 0.64 0.63
ASM 0.48 0.33 0.67 0.42
Energy 0.57 0.47 0.66 0.42
Contrast 0.52 041 0.55 0.58
Dissimilarity 0.52 041 0.55 0.58
Entropy 0.62 0.60 0.42 0.56
Homogeneity 0.52 0.41 0.60 0.54

ROC curve analysisfor features combined using adecision tree
classifier showed the following AUC values: 0.75 for fibrosis,
0.87 for norma, and 0.97 for steatosis (Figure 4). ROC
comparison for individual featuresis shown in Table 2 (Figure
Sl in Multimedia Appendix 1). The comparison showed that
echo intensity and heterogeneity were highest in fibrosis (0.91
and 0.86, respectively), suggesting increased structural
disruption compared with steatosis and normal liver. ASM was
highest in steatosis (0.88), reflecting greater textural uniformity,
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while fibrosis had the lowest value, indicative of higher
heterogeneity. Contrast and dissimilarity, measures of local
intensity variation, were most pronounced in fibrosis (0.79 and
0.73, respectively) and lowest in norma liver, reinforcing
fibrosis'sgreater textural complexity. Homogeneity and energy,
which indicate texture smoothness and uniformity, were highest
in norma liver (0.87 and 0.58, respectively), reflecting
well-organized tissue architecture, and lowest in fibrosis, further
supporting its structural disorganization.
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Figure 4. This ROC curve illustrates the diagnostic performance of ChatGPT-4 in classifying liver conditions using a decision tree model based on
combined features. The model’s performance is evaluated across 3 classes: Fibrosis (the ROC curve for fibrosis shows an AUC [area under the ROC
curve] of 0.75, indicating moderate diagnostic accuracy), Normal (the ROC curvefor the normal class showsan AUC of 0.87, suggesting high diagnostic
accuracy), and Steatosis (the ROC curve for steatosis shows an AUC of 0.97, indicating excellent diagnostic accuracy). The black dashed line represents
a random guess with an AUC of 0.50. This figure demonstrates the capability of ChatGPT-4 to distinguish between different liver conditions with
varying degrees of accuracy. ROC: receiver operating characteristic.
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Table 2. Thistable presents the area under the receiver operating characteristic (ROC) curve (AUC) values for radiomic features extracted from liver
ultrasound images using ChatGPT-4, assessing their ability to differentiate fibrosis, steatosis, and normal liver tissue. These findings demonstrate the
feasibility of ChatGPT-4—assisted ultrasound radiomics for noninvasive liver disease characterization.

Fibrosis Steatosis Normal
Echo intensity 0.91 0.39 0.12
Heterogeneity 0.86 0.33 0.23
Kurtosis 0.22 0.51 0.82
Skewness 0.22 0.45 0.87
Angular second momentum 0.11 0.88 0.59
Correlation 0.53 0.33 0.61
Dissimilarity 0.73 0.39 0.33
Contrast 0.79 0.42 0.22
Entropy 0.44 0.90 021
Energy 0.49 0.43 0.58
Homogeneity 0.20 0.49 0.87
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Reproducibility and Reliability

To assessthe reproducibility of ChatGPT-4 outputs across users,
2 independent observers used the same ChatGPT-4—assisted
workflow to select ROIs and extract radiomic features from the
same ultrasound images. Both were trained physicians with
clinical and research expertisein liver ultrasound. The ICC was
calculated across the extracted radiomic features to quantify
consistency. The results demonstrated high reproducibility for

Sultan et al

most features exceeding ICC of 0.8, with energy (1CC=0.96),
correlation (1CC=0.92), and echo intensity (ICC=0.88) showing
excellent agreement between observers (Table 3). Entropy
(1CC=0.81) and homogeneity (ICC=0.81) also indicated strong
reliability, suggesting consistent feature extraction across
different evaluators. Skewness (ICC=0.6) exhibited moderate
agreement, while ASM showed the lowest ICC (ICC=0.25),
indicating poor reproducibility for this metric.

Table 3. This table presents the intraclass correlation coefficients (ICC) assessing interobserver agreement for key radiomic features extracted from
liver ultrasound images using ChatGPT-4. These results indicate strong to excellent reliability for most features, supporting the robustness of

ChatGPT-4—assisted radiomic analysisin liver ultrasound imaging.

Feature ICC
Echo-intensity 0.88
Heterogeneity 0.90
Kurtosis 0.39
Skewness 0.60
Angular second momentum 0.25
Correlation 0.92
Dissimilarity 0.78
Contrast 0.89
Entropy 0.81
Energy 0.96
Homogeneity 0.81

Binary Classification of Healthy Liver Versus Steatosis
and Fibrosis Using ChatGPT-4 Ultrasound Radiomics

Significant distinctions were observed between normal liver
and diseased conditions, particularly in 8 out of 10 analyzed
features. For the binary comparison between normal and liver
diseases (steatosis and fibrosis), 8 features showed significant
differences (<0.05): echo-intensity (27.47 vs 50.47),
heterogeneity (423.96 vs 687.17), skewness (0.95 vs 1.86),
kurtosis (1.34 vs 5.24), energy (0.18 vs 0.22), contrast (30.65

vs 57.37), ASM (0.003 vs 0.001), and homogeneity (0.20 vs
0.38), for normal versus liver disease, respectively.

Comparing normal to fibrosis revealed significant differences
in 8 features (<0.05): echo-intensity, heterogeneity, skewness,
kurtosis, entropy, contrast, homogeneity, and correlation. For
norma versus steatosis, 6 features showed significant
differences. echo-intensity, entropy, skewness, Kkurtosis,
Homogeneity, ASM, and energy. These mean values for the
features are summarized in Table 4.

Table 4. This table illustrates the differences between liver disease groups (normal, steatosis, and fibrosis) by showing the mean values of features
extracted through ChatGPT-4-based radiomics analysis. The features include echo intensity, heterogeneity, skewness, kurtosis, contrast, homogeneity,
dissimilarity, angular second momentum (ASM), and entropy. The mean values for these features provide insightsinto the distinct textural characteristics

associated with each liver disease group.

Echo-intens- Heterogene- Entropy, Skewness, Kurtosis, Energy, Contrast, Dissimilari- Homogene- ASM,
ty, mean ity, mean mean mean (SD) mean (SD) mean mean (SD) ty, mean ity, mean mean
(SD) (SD) (SD) (SD) (SD) (SD) (SD)
Liverdisease 50.47 (2.34) 687.17 891 0.95(0.05) 134020 0.8 57.37 573(0.26) 0.20(0.01) 0.001
(fibrosis and (57.19) (0.28) (0.03) (4.3 (0.00)
steatosis)
Liver fibro- 56.67 (2.56) 857.07 7.99 0.93(0.07) 1.18(0.27) 0.18 64.65 6.21(0.29) 0.19(0.02) 0.001
sis (65.62) (0.349) (0.03) (5.04) (0.00)
Liver steato- 39.10(2.88) 366.24 10.66 0.97 (0.06) 1.64(0.29) 0.19 43.62 4.81(0.43) 0.22(0.02) 0.001
sis (46.85) (0.06) (0.05) (6.71) (0.00)
Normal 27.44(2.32) 423.96 8.15 1.86(0.15) 5.24(0.97) 0.22 30.65 4.88(0.77) 0.38(0.03) 0.003
(57.93) (0.46) (0.03) (5.22) (0.00)
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Distinguishing Liver Disease by ChatGPT-4-Based
Ultrasound I mage Findings

The classification tool for liver ultrasound images exhibited
strong diagnostic performance across 3 categories. normal liver,
fibrosis, and steatosis. Achieving an overall accuracy of 77%,
the tool demonstrated its potentia in aiding radiological
assessments. For normal liver conditions, the tool achieved a
precision, recall, and F;-score of 0.75, indicating reliable
detection accuracy. Inthe case of fibrosis, thetool excelled with
a perfect recall of 1.00, meaning it successfully identified all
fibrosis cases, and an F;-score of 0.86, with aprecision of 0.75.
This highlights its robustness in diagnosing fibrotic conditions
without missing any positive cases. However, for steatosis,
while the tool showed a high precision of 0.80, the recall was
dightly lower at 0.67, leading to an F;-score of 0.73. This
indicates a strong ability to correctly identify steatosis when
predicted, though there is room for improvement in sensitivity.

https://ai.jmir.org/2025/1/e68144
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The macroaveraged metrics (precision=0.77, recall=0.81, and
F,-score=0.78) and weighted averages (precision=0.77,
recall=0.77, and F;-score=0.76) further underscore the tool’s
balanced performance across different liver conditions. These
results suggest that while the tool is aready valuable for
distinguishing normal and abnormal liver conditions, further
refinements could enhance its sensitivity, particularly for
steatosis.

Evaluation of 1DL-Based Ultrasound Radiomics for
Liver Disease Classification

I dentification of Key Textural Features

The radiomics analysis of liver ultrasound images conducted
using IDL has provided significant insights into the textural
characteristics associated with various liver diseases. Through
ANOVA andysis, 9 textural features were identified as
significantly varying among groups with different liver
conditions (Figure 5).
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Figureb. Interactive datalanguage (IDL)—based radiomicsanaysisin liver ultrasound images: Thisfigure presentsthe distribution of texture parameters
extracted using IDL from liver ultrasound images, comparing 3 diagnostic groups: fibrosis (blue), normal liver (orange), and steatosis (green). (A) Plot
displays first-order texture features, including echointensity, heterogeneity, kurtosis, and skewness. Fibrotic livers exhibit increased echogenicity and
heterogeneity compared with both normal and steatotic livers, reflecting structural aterations associated with fibrosis. (B) Plot illustrates higher-order
texturefeatures, including ASM, entropy, GLCM mean, GLCM variance, and correlation. Fibrotic livers demonstrate higher GLCM mean and variance,
indicating greater textural complexity, whereasnormal liver tissue exhibitslower valuesfor these parametersbut higher ASM and correlation, suggesting
a more homogeneous texture. These findings highlight the capability of IDL-based radiomics in quantifying microstructural liver alterations across
different pathological states, reinforcing its potential as an advanced imaging biomarker for disease characterization. ASM: angular second moment;

GLCM: gray-level co-occurrence matrix.
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Predictive Performance of Features

The predictive performance of features of these ultrasound
imaging features varied, with accuracy ranging from 0.47 to
0.76 sensitivity, from 0.33t0 0.73, and specificity from 0.43 to
0.70 (Table 5). The feature “echo-intensity” demonstrated the
highest performance with an accuracy of 0.76, sensitivity of
0.73, and specificity of 0.53, indicating balanced performance.
Similarly, “Heterogeneity” also showed an accuracy of 0.76,
with asensitivity of 0.68 and a specificity of 0.51. On the other
hand, “Kurtosis” had lower accuracy at 0.48 and sensitivity at
0.38, but a higher specificity of 0.64, highlighting its strength

https://ai.jmir.org/2025/1/e68144
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in correctly identifying true negative cases. | ntegrating multiple
textural features enhances diagnostic performance. By
combining the features, the overall accuracy improved to 0.77,
with anotable accuracy of 0.89. Similarly, F;-score performance
varied acrossfeatures, with echo intensity achieving the highest
F,-score (0.84), indicating its superior predictive power.
Heterogeneity also performed well, with an F;-score of 0.56.
In contrast, kurtosis, ASM, entropy, and correlation had the
lowest F;-scores (ranging from 0.26), reflecting weaker
predictive contributions. Notably, the combined feature approach
achieved the highest F;-score (0.81), emphasi zing the advantage
of integrating multiple features to enhance predictive accuracy.
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Table5. Diagnostic accuracy and performance of radiomic features extracted using interactive datalanguage software. Thistable displaysthe diagnostic
accuracy and performance metrics for various textural features extracted from the liver ultrasound images using interactive data language software as
part of liver texture analysis. These metrics provide insights into the effectiveness of each feature in distinguishing between different liver conditions,

contributing to the overall assessment of liver disease.

Feature Accuracy Sensitivity Specificity F-score
Echo-intensity 0.76 0.73 0.53 0.84
Heterogeneity 0.76 0.68 0.51 0.56
Kurtosis 0.47 0.38 0.64 0.38
Skewness 0.67 0.58 0.55 0.48
ASM?@ 0.48 0.33 0.56 0.26
Entropy 0.48 0.33 0.43 0.26
GLCMP_mean 0.67 0.56 051 0.48
GLCM_variance 0.62 0.59 0.53 0.57
Correlation 0.48 0.33 0.7 0.26

8ASM: angular second momentum.
bGLCM: gray-level co-occurrence matrix.

Comparison Between ChatGPT and IDL Features

Correlation and Agreement Analysis Between Feature
Sets

To assess the rel ationship between ChatGPT-4-derived features
and IDL -based features, we performed correl ation and agreement
analyses. Each feature set was consolidated into asingle value
using multiple regression, alowing for a direct, one-to-one
comparison between the 2 methods. The multiple linear
regression model using ordinary least squares was applied to
combine all extracted radiomic featuresinto a single predicted

https://ai.jmir.org/2025/1/e68144

value per image, with the liver disease category asthe dependent
variable. This was done separately for ChatGPT-4 and DL
outputs to generate comparable summary values. The results
showed a moderate positive correlation (r=0.64) across all
extracted features, which was statistically significant (P<.001;
Figure6). In other words, increasesin ChatGPT-4 feature values
tended to coincide with increases in IDL feature values, abeit
with some variability. While this correlation is not perfect, it
demonstrates that ChatGPT-4—derived features are reasonably
well aligned with IDL features, supporting the feasibility of
ChatGPT-4 for ultrasound radiomics analysis.
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Figure 6. Correlation between ChatGPT Features and IDL Features. The scatter plot illustrates the relationship between ChatGPT features and IDL
features, with a Pearson correlation coefficient (r) of 0.64 and asignificant P value (P<.001). Each blue circle represents an individual data point, while
the solid black line shows the fitted linear regression model. The shaded region surrounding the regression line represents the 95% CI. The moderate
positive correlation suggeststhat as ChatGPT featuresincrease, IDL featurestend to increase aswell, indicating aconsistent, albeit not perfect, relationship
between the 2 feature sets. IDL: interactive data language.

® Data Points 0
= R =0.64, P<.001

IDL Features

0.0 0.5 1.0 1.5 2.0 2.5
ChatGPT Features

We further examined the correlation between the 2 software  measures such as echo-intensity (r=0.60) and kurtosis (r=0.52)
packages by focusing on 7 common features extracted by showed stronger correlations, whereas GLCM-based features
ChatGPT-4 and IDL showing a correlation (r) of 0.68 (Figure exhibited weaker alignment. In particular, measures like
7). The degree of correlation varied among the individual correlation and kurtosis derived from GLCM demonstrated
features, with the strongest correlation observed for combined  lower correlations.

features (r=0.68, P<.001). Notably, first-order histogram
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Figure 7. This figure presents scatter plots illustrating the correlation between radiomic features extracted using ChatGPT-4 and the corresponding
common features derived from the reference software, IDL. Each subplot represents a specific feature, with ChatGPT-4 values on the x-axis and IDL
valueson they-axis. Linear regression lineswith shaded 95% Cl s are shown toillustrate the strength and direction of the associations. Pearson correlation
coefficients (r) and P values (P) are reported for each feature. Strong correlations were observed for echo intensity (r=0.66, P<.001) and skewness
(r=0.50, P<.001), while entropy (r=0.18, P=.13), correlation (r=—0.12, P=.33), and ASM (r=-0.10, P=.41) showed weaker or nonsignificant associations.
Thefina plot displays a combined score derived from the 7 shared features, generated using multiple regression. This aggregated output demonstrated
amoderate correlation (r=0.68) between ChatGPT-4 and IDL, supporting overall agreement across platforms. These findings highlight both the variability
infeature-level agreement and the potential value of composite feature modelsin radiomicsanalysis. ASM: angular second momentum; IDL: interactive
data language.
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To further assess agreement between features extracted by the  Processing Time Comparison

2 software, aBland-Altman analysiswas performed (Figure S2 1, agition to feature correlation, we also compared batch
in Multimedia Appendix 1). The results demonstrated thal - qcecqng efficiency between ChatGPT-4 and I DL -based tools.
combined features exhibited the best agreement, with naimow 16 reqits demonstrated that ChatGPT-4 outperformed 1DL
agreement limitsand minimal bias, reinforcing their robustness. ;| processing speed. ChatGPT-4 completed the entire analysis
Skewness showed particularly strong agreement, indicaling  ocess including ROI selection, refinement, and texture
interchangeability between ChatGPT-4 and IDL for thisfeature. analysis—in 4 minutes and 12 seconds for abatch of 10images
Minimal proportiona bias was observed for well-correlated (the maximum batch size). In contrast, IDL required
features, supporting the feasibility of using ChalGPT-4 for ooy mately 50 seconds per case, totaling over 8 minutes for
radiomics analysis in this context. Based on these results, the the same batch. ChatGPT. therefore. showed more than a 40%
agreement between ChatGPT-4 and IDL-derived features can e ofion in processing time, highlighting ChatGPT-4's
be qategonzed into three levels: (1) strong agreement (reliable i ency in automated batch processing. Thesefindings suggest
and interchangeable): skewness and correlation; (2) moderale 4 chaiGPT-4 providesaviablealternative for high-throughput
agreement (requires minor adjustments): ASM, entropy, and 1yrasound  radiomics analysis, offering both speed and

echo-intensity; and (3) week agreement (fundamental differences  eqqnnatie alignment with IDL -based feature extraction.
requiring major corrections): kurtosis and heterogeneity.
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Discussion

Expanding ChatGPT-4's Role in Radiology

Al and natural language processing tools, such as ChatGPT,
have been increasingly explored for their role in enhancing
radiology workflows [39]. Recent studies demonstrated how
ChatGPT can beintegrated into radiology workflowsto improve
efficiency in patient registration, scheduling, image acquisition,
interpretation, and reporting [40,41]. The findings of these
studies highlight ChatGPT’s potential to streamline repetitive
tasks, reduce radiol ogist workload, and enhance communication
in diagnostic imaging. Our study builds upon this foundation
by extending the role of ChatGPT-4 beyond workflow
optimization into advanced radiomics analysis. Specifically,
we evaluate ChatGPT-4's ability to extract quantitative
ultrasound texture features, distinguish between different liver
disease states, and compareits performance against conventional
radiomics software. By bridging workflow optimization with
diagnostic analysis, our findings contribute to the ongoing
evolution of Al-assisted radiology, reinforcing ChatGPT's
potential as a tool for both administrative and anaytical
applications in medical imaging.

ChatGPT-4's Diagnostic Performance and
Reproducibility

Our study results show that ChatGPT-4's radiomic analysis
exhibited robust performance in distinguishing among the 3
liver pathol ogy groups, achieving asensitivity of 0.83and AUC
exceeding 0.75, when all radiomic features were combined.
While the diagnostic utility of individual features varied, the
aggregated analysis compensated for weaker predictors, thereby
enhancing overall classification accuracy. Moreover, the high
| CC values abserved between independent observers (reaching
0.92) suggest excellent reproducibility, reinforcing the
robustness of ChatGPT-4—derived texture parameters in
ultrasound imaging. However, not all features demonstrated
high reliability; for instance, ASM yielded an ICC of 0.25,
indicating poor reproducibility. Such discrepanciesin intraclass
agreement for extracted ultrasound features can arise from small
differencesin ROI placement, evenif they are close. Ultrasound
images are highly sensitive to pixel-level changes, which can
affect texture-based features. Additionally, interpolation effects,
guantization errors, and software implementation variability
can contribute to differences. These findings underscore the
need for further refinement in feature extraction methodol ogies,
particularly for features with lower reproducibility. Future
research should prioritize the standardization of algorithms to
enhance observer consistency, ensuring that Al-generated
radiomic features are both reliable and clinically actionable.

Interpretation of the Radiomic Biomarkersin Liver
Disease

The radiomic biomarkers identified in this study align with
established pathophysiological changes in liver disease.
Increased heterogeneity and entropy, for instance, reflect greater
structural disorder where excessive collagen deposition disrupts
tissue uniformity, consistent with fibrosis[42,43]. GLCM-based
texture features provide additional microstructural insights, for
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example, ASM (or energy) serving as an index of texture
uniformity—higher valuesindicate preserved architecture, while
lower values suggest structural disruption, such asthat seenin
fibrosis [44]. These features may serve as robust, noninvasive
biomarkers for disease detection and monitoring. Our results
showed that distinct textural patterns can be related to different
liver conditions. Fibrosis presents with increased echogenicity,
heterogeneity, and contrast, indicating architectural disruption.
While steatosis also exhibits high echogenicity, it is associated
with asmoother, more homogeneoustexture, suggesting uniform
yet structurally altered tissue. In contrast, normal liver maintains
the most uniform texture, with high homogeneity and low
contrast, reflecting preserved tissue organization.

Comparison of ChatGPT-4 With Traditional Image
Analysis Software

Direct comparison between features extracted by ChatGPT-4
and IDL revealed amoderate correlation (r=0.68), when features
are combined with notabl e variati ons between specific features
on an individual basis. First-order features, which primarily
assess pixel intensity distributions, exhibited strong agreement
between the 2 platforms, whereas GL CM-based features showed
greater discrepancies. This discrepancy is likely attributable to
differencesin pixel adjacency definitions, quantization methods,
and sampling protocols across the 2 analytical frameworks.
These results highlight a persistent challenge in radiomics:
reproducibility across different software implementations.
Variability inimage acquisition parameters, preprocessing steps,
and computational feature extraction methodologies can
significantly impact radiomic feature consistency. Prior studies
have underscored the necessity of harmonized radiomic pipelines
to enhance cross-platform reproducibility [45,46]. Establishing
standardized radiomic workflows will be critical for ensuring
the clinical applicability of Al-driven ultrasound analysis.

A key advantage of ChatGPT-4 in this study was its ability to
process multiple images in parallel, demonstrating significant
efficiency gainsover conventional software. Notably, processing
time was reduced by more than 40% compared with IDL,
suggesting that Al-driven tools can significantly enhance
radiological workflow efficiency. Thiscapability isparticularly
valuable in research settings requiring high-throughput image
analysis, as well as in clinical environments where real-time
assessment is essential for guiding interventional procedures.
Moreover, ChatGPT-4's scalability supports its application in
large-scale imaging studies, enabling rapid dataset processing
while minimizing manual input. Thisefficiency could facilitate
applications in population-based screening programs,
multicenter trials, and Al-assisted educational platforms. While
compute capacity was controlled for in this study, we
acknowledge that hardware variability can influence software
performance. Future work should evaluate Al efficiency across
diverse computing environments to better account for
system-dependent constraints. Despite its dlightly lower
diagnostic performance compared with IDL, the results are
encouraging given that ChatGPT-4 was not originally designed
for medical image analysis. With additional domain-specific
training and fine-tuning using large-scale ultrasound datasets,
its performanceis expected to improve. Future research should
explore ChatGPT-4's integration into routine radiology
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workflows, particularly in triage settings, where automated
interpretation of liver ultrasound images coul d expedite clinical
decision-making and optimize resource allocation.

Limitations and Challenges

Session Variability and Model Robustness

Despite its promising performance, ChatGPT-4 exhibited
session-dependent  variability in feature extraction. This
phenomenon, which possibly arises from differences in how
the model processes context and maintainsinternal statesacross
separate analyses, introduces potential inconsistenciesin feature
reproducibility. While batch anayses remained stable,
independent session resets occasionally yielded variations in
extracted parameters. Session-dependent variability is a
recognized limitation of large language models [47-49] and
warrantsfurther investigation in the context of medical imaging.
To mitigate thischallenge, werefined our prompting strategies,
ensuring that feature extraction parameters were explicitly
aligned across sessions. While steps were taken to standardize
ChatGPT-4 prompts and maintain session continuity, variability
in output due to the model’sinherent stochastic nature remains
alimitation. Although incomplete feature sets were addressed
through repeated prompting and prompt refinement, future
studies may al so benefit from averaging outputs across multiple
runs or sessions to account for variability and enhance
consistency. Additionally, future research should prioritize the
development of standardized initialization protocols and
structured prompt engineering strategies to improve the
reproducibility of Al-driven radiomic analyses.

Automated ROI Sdlection

A key limitation of ChatGPT-4 is its fully automated ROI
selection, which lacks the flexibility and precision needed for
clinical applications. This may affect diagnostic accuracy,
especialy when critical pathological features fall outside the
Al-defined ROI. While ChatGPT-4 does not allow direct manual
ROI adjustments, we used a hybrid approach [50], iteratively
refining prompts to guide the model until the desired ROI was
accurately identified. This method combined Al-driven
automation with user oversight, improving ROI placement and
reducing errors. Future iterations of ChatGPT-4 could enhance
clinical applicability by incorporating interactive manual ROI
modifications[51]. Additionally, integrating advanced machine
learning algorithms could refine automated ROl selection,
allowing Al to prioritize clinically relevant areas [52]. A
promising direction is the development of hybrid models that
preselect an ROI while allowing clinician refinement, balancing
automation with expert oversight [53].

Preclinical Model and Clinical Translatability

Our preclinical liver disease model closely mirrors human
pathol ogy, with histological findingsaligning well with clinical
presentations of fibrosis and steatosis. This trandatability
strengthens the relevance of our results; the model has
undergone extensive validation to ensure robustness and
suitability for studying liver disease [30-32]. Nonetheless, this
study serves as an initial assessment of ChatGPT-4 in a
preclinical setting. Future work will extend to human liver
ultrasound datasets, potentially involving diverse populations
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and multiple medical centers to enhance generalizability.
Importantly, moving to clinical datasets raises privacy and
ethical concerns, requiring strict compliance with HIPAA
(Health Insurance Portability and Accountability Act), GDPR
(General Data Protection Regulation), and other data security
frameworks. Additionally, Al bias—stemming from skewed or
nonrepresentative training data—remains a critical challenge,
necessitating multicenter validation to ensure fairness and
accuracy across varied clinical settings.

Uncertainty in Al-Generated Diagnoses

Reliable Al outputs are critical in medical imaging. Currently,
ChatGPT-4 lacksinherent uncertainty quantification. Integrating
probabilistic methods could improve reliability by assigning
confidence levels based on prior data distributions, similar to
deep learning—based radiomics [54]. Monte Carlo dropout
modeling could provide uncertainty intervals, flagging cases
needing further review [55]. Ensemble modeling could further
enhance reliability through consensus-based confidence scores
[56]. Explainability improvements, such as structured reasoning
frameworks, would support informed decision-making [57].
I mplementing these methods would ensure ChatGPT-4 functions
as adecision-support tool rather than an autonomous diagnostic
system.

Clinical Applications and Future Directions

Thisstudy highlights ChatGPT-4's potential in medical imaging,
particularly inimageinterpretation. While CNNs have achieved
over 90% accuracy in tasks like liver fibrosis staging [44,58],
ChatGPT-4 offers distinct advantages by integrating image
analysiswith narrative generation and enabling interactive ROI
refinement [19]. Unlike traditional deep learning models
requiring extensivetraining, ChatGPT-4's adaptability supports
multimodal integration, making it a promising tool for clinical
applications. Fine-tuning on specialized datasets could enhance
its diagnostic accuracy, bridging the gap between specialized
Al models and broader usability. Enhancing ChatGPT-4's
clinical utility involves several advancements. Transfer learning
can improve domain-specific accuracy by incorporating
structured radiology reports and labeled diagnostic cases [59].
Multimodal training could allow it to analyze medical images
alongside textual and radiomic data, improving correlation with
clinical insights[60]. Real-timeclinical decision support through
interactive learning could refine outputs, while integrating
longitudinal patient data could enhance disease monitoring,
particularly for chronic conditions[61]. Future research should
compare ChatGPT-4 with leading deep learning models to
evaluate itsrolein multimodal medical imaging.

Integrating ChatGPT-4 into clinical workflows hasthe potential
to enhance diagnostic efficiency by streamlining triage, anomaly
detection, and preliminary report generation. Al-driven tools
have demonstrated the ability to expedite time-to-diagnosis by
prioritizing critical imaging findings[1,19]. Inliver ultrasound,
ChatGPT-4 could assist by distinguishing normal scansor minor
abnormalities, allowing radiol ogiststo focus on complex cases.
Its radiomic analysis capabilities may facilitate early disease
detection, akin to Al modelsthat have identified microvascul ar
changesin brain imaging and tumor marginsin mammography
[5,7]. Automated report generation is another promising
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application, as Al-generated reports have been shown to match
human interpretation in accuracy [20,21]. Additionally, real-time
feedback  during ultrasound-guided procedures and
batch-processing for large-scal e imaging analysis could support
multicenter studies and population-based disease screening
[11,26]. Despiteits potential, key challengesinclude validation
across diverse populations, regulatory approval, and clinician
training. Prospective studies are needed to assess ChatGPT-4's
impact on diagnostic accuracy, workflow efficiency, and patient
outcomes. Addressing these challenges could establish
ChatGPT-4 as a transformative tool in radiology, optimizing
early disease detection and clinical workflows.

Conflictsof Interest
None declared.

Sultan et al

Conclusions

In conclusion, our study confirms the feasibility of using
ChatGPT-4 for liver disease diagnosisthrough ultrasound image
analysis, emphasizing its potential to assist radiologists in
making more accurate diagnoses. Despite some limitations,
ChatGPT-4's ahility to efficiently handle large-scale image
datasets and its robust feature extraction capabilities make it a
valuabletool for enhancing diagnostic accuracy and supporting
radiological decision-making. By integrating ChatGPT-4 into
radiol ogical workflows, radiol ogists can leverageits capabilities
toimprovethe precision and efficiency of liver ultrasound image
analysis. This tool's potential to manage vast amounts of data
with high efficiency is particularly appealing in modern medical
research and clinical practice.
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