JMIR Al Parker

Original Paper

Supervised Natural Language Processing Classification of
Violent Death Narratives: Development and Assessment of
a Compact Large Language Model

Susan T Parker, MS, MPP, PhD

Feinberg School of Medicine, Northwestern University, Chicago, IL, United States

Corresponding Author:

Susan T Parker, MS, MPP, PhD
Feinberg School of Medicine
Northwestern University

750 N Lakeshore

Chicago, IL, 60611

United States

Phone: 1 2487613116

Email: susan.parker@northwestern.edu

Abstract

Background: The recent availability of law enforcement and coroner or medical examiner reports for nearly every violent
death in the United States expands the potential for natural language processing (NLP) research into violence.

Objective: The objective of this work is to assess applications of supervised NLP to unstructured data in the National Violent
Death Reporting System to predict circumstances and types of violent death.

Methods: This analysis applied distilBERT, a compact large language model (LLM) with fewer parameters relative to
full-scale LLMs, to unstructured narrative data to simulate the impacts of preprocessing, volume, and composition of training
data on model performance, evaluated by F-scores, precision, recall, and the false negative rate. Model performance was
evaluated for bias by race, ethnicity, and sex by comparing F'-scores across subgroups.

Results: A minimum training set of 1500 cases was necessary to achieve an F-score of 0.6 and a false negative rate of
0.01-0.05 with a compact LLM. Replacement of domain-specific jargon improved model performance, while oversampling
positive class cases to address class imbalance did not substantially improve Fi-scores. Between racial and ethnic groups,
F1-score disparities ranged from 0.2 to 0.25, and between male and female decedents, differences ranged from 0.12 to 0.2.

Conclusions: Compact LLMs with sufficient training data can be applied to supervised NLP tasks with a class imbalance in
the National Violent Death Reporting System. Simulations of supervised text classification across the model-fitting process of
preprocessing and training compact LLM-informed NLP applications to unstructured death narrative data.
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deaths [2]. Researchers have used structured data from
NVDRS extensively to characterize the epidemiology of
violent deaths including homicides [3-6], suicides [7-10], and
those that result from legal intervention (police shootings)
[11].

Introduction

Violent injuries are among the leading causes of death in the
United States for individuals younger than the age of 44 years
and are leading causes for young people aged 10-34 years

[1]. The most comprehensive and detailed source of data on NVDRS has been widely used for its structured data,

violent deaths in the United States is the National Violent
Death Reporting System (NVDRS), aggregating information
from death certificates, coroner or medical examiner reports,
and law enforcement (LE) reports to characterize violent

https://ai.jmir.org/2025/1/e68212

which captures information such as decedent characteristics,
weapons, circumstances, and suspect information [12], and
increasing attention has been given to the vast amounts
of unstructured text data embedded within the narrative
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reports. Narratives provide rich details about the incident not
necessarily captured in structured variables, such as nuanced
descriptions of precipitating events and other contextual
factors that are difficult to quantify.

A range of approaches have been applied to the use of
NVDRS narratives in research on violent deaths. Accord-
ing to a recent review on the research use of textual
NVDRS narratives over the past 2 decades, most studies used
manual review or keyword searches of narratives [10,13,14],
while 5% used machine learning tools designed to analyze
unstructured text, known as natural language processing
(NLP) [15]. Applications of NLP have included supervised
learning tasks, such as classification, as well as unsupervised
tasks, such as topic modeling. For instance, supervised NLP
has been used to classify suicide related to driving cessa-
tion [16] and assisted living facilities [17], examine suicide
intent classification [18] and intimate partner homicide [19],
and predict drug overdose deaths [20]. Latent class analy-
sis has been used to reveal salient topics unrepresented in
abstractor classification [21,22] and themes in youth suicide
[23]. Most recently, researchers have used NLP to classify
social determinants of health in suicide narratives [24] and
inconsistencies, biases, and missing data in the narratives
themselves [25-27].

Continued application of NLP to NVDRS is particularly
important because the volume of NVDRS data will substan-
tially increase over time. NVDRS has gathered data on over
500,000 deaths since 2003 and will grow by approximately
100,000 records annually moving forward as additional
states and counties participate, underlining the importance
of efficiently investigating research questions using NVDRS
narratives and NLP methods.

Although large language models (LLMs) have generally
performed better than other NLP approaches to narrative
data in medical informatics domains, fewer applications
of LLMs to NVDRS exist [24,28]. Applications of NLP
to a related text narrative type, clinical notes from medi-
cal providers, have identified patient self-harm [29-34] and
violence-related [35-38] outcomes often using LLMs or deep
learning approaches. In part, researchers and practitioners
may face particular challenges applying LLMs to NVDRS.
One important challenge is that many outcomes of interest
are likely to be infrequent or rare events that can present
classification challenges due to sparse information about the
outcome [39-41]. Further, NVDRS narratives are composed
of police and coroner reports, which contain domain-specific
language or jargon, such as the use of ICD (International
Classification of Disease) codes. NVDRS data restrictions on
sensitive data do not permit narratives to be stored in the
cloud, thus limiting access to computing resources that are
often used to train or fine-tune LLMs. Fourth, researchers
documented racial disparities in narratives alongside gendered
text differences in NVDRS [22,26,27]. Narratives involving
victims from marginalized populations tend to be signifi-
cantly shorter in length and are more likely to be missing
altogether. These differences in data quality may result in
models that generate predictions with similar patterns of
subgroup bias.
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To address these challenges, this paper conducts simula-
tions of supervised text classification that span the machine
learning pipeline, from data preprocessing and model training
to the evaluation of predictions for potential racial or gender
bias. Existing coded variables that record the type (eg, police
shooting and drive-by shooting) or circumstances (number
of nonfatal shooting victims and location of victim injuries)
of the violent death are used as target outcomes used in
simulations. Target outcomes with class imbalance were
selected, as this setting is likely of most use to NVDRS
applications, and models were fit using a compact LLM
to reflect settings where computing resources are limited.
By conducting simulations, this analysis aims to inform
future applications of supervised classification using LLMs to
NVDRS by establishing concrete benchmarks for understand-
ing training data quantity, preprocessing needs, and to what
extent NLP results in predictions reflecting existing racial or
gender bias in narratives.

Methods
Data

This analysis used violent death records from NVDRS data
from 2015 to 2020. The NVDRS gathers information about
violent deaths including homicides, suicides, and deaths
caused by LE. NVDRS combines data from death certificates,
coroner or medical reports, and LE reports, providing context
about violent deaths including information about mental
health conditions, toxicology results, and other circumstances
in addition to details about victim characteristics. Trained
medical abstractors code information from reports about
violent deaths into the over 600 variables that comprise the
NVDRS surveillance system [12].

To obtain labeled outcomes for use as target outcomes in
simulations, this analysis constructed measures from existing
coded NVDRS variables that abstractors label. Because a
substantial proportion of coded NVDRS fields group together
case outcomes that are negative with those that are not
known, this analysis instead relied on multinomial fields or
combined separate NVDRS coded variables to obtain target
outcomes for simulations. For instance, for case outcomes
such as mental health crisis or drug involvement, outcomes
are coded as “Yes” or as “No, not available, unknown,”
which would not constitute a labeled outcome.

These constructed outcomes include 4 binary outcomes
likely to be recorded accurately when known. The first
outcome is whether or not a homicide is a legal intervention
homicide, meaning the shooter was a LE officer. Literature
suggests that these homicides are well-recorded in NVDRS
and less subject to noisy labeling or measurement error [11].
The second outcome is whether or not a homicide is classified
as a drive-by shooting. The third outcome is whether a
homicide occurred at home or not, and the fourth outcome
is whether or not additional victims were nonfatally shot in
the course of a homicide event. We constrain the sample
to where the weapon type is listed as a firearm, and the
abstractor manner of death is a homicide. Taken together,
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these outcomes represent a range of language complexity
and frequency less subject to label noise by constructing
outcomes.

Ethical Considerations

The Northeastern University institutional review board
deemed that this research did not require review, as it did
not involve human participants.

Statistical Analysis

This analysis compared model performance across 4
configurations of training data and text composition using
a compact LLM. The configurations examined included
preprocessing of text data as well as the amount and
composition of the training data. Specifically, the analysis
first varied the amount of training data that the model was
fitted on to inform how much randomly sampled train-
ing data must be annotated to train an LLM to predict
NVDRS outcomes. Second, because positive class cases were
often infrequent, the analysis simulated the oversampling of
positive class cases in training data. Specifically, oversam-
pling included a larger proportion of additional positive class
cases, holding the negative class cases constant, to inform
what composition of training data was most effective to
include as training data.

This analysis additionally simulated different preprocess-
ing techniques for unstructured text data. NVDRS text may be
domain-specific, as it comprises police and coroner reports,
which use both jargon and abbreviation. To simulate the
impacts of clarifying common abbreviations, this analysis
replaced NVDRS abbreviations with unabbreviated text. For
example, often when NVDRS abstractors referred to victims
and suspects in the report narratives, the abbreviations “v”
for victim and “s” for suspect appeared rather than the full
word. Abbreviations referring to victims, suspects, police,
and gunshot wounds were replaced (Table S1 in Multimedia
Appendix 1).

Finally, the analysis simulated omitting coroner report text
from the training data. Coroner reports may contain extrane-
ous text such as toxicology reports that may be noisy in the
context of prediction focused on criminal justice outcomes.
Further, compact LLMs have limited token lengths, which
constrain the number of words in an input narrative, and
the combination of coroner and homicide reports can exceed
the token length in some LLM applications. Because our
outcomes are LE-focused, the analysis simulated the omission
of potentially extraneous narrative information.

The analysis began by preprocessing the coroner and
police narrative by removing special characters including
numbers, punctuation, and capitalization as is standard.
Police and coroner report narratives were combined into
a single field in order to use the information available in
both narratives (with the exception of the LE narrative—only
simulation).

Next, the analysis turned to creating simulated data. First,
a test set on which the model outputs were to be evaluated
was randomly selected. The test set consisted of a random
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sample of 30% of each outcome’s records, which was then
held out from any selection into the training data.

To vary the amounts of training data, the analysis used
different training data record counts, each with a different
amount of training data. These splits ranged from a minimum
of 100 cases, increasing in increments to 200, 500, 1000,
1500, and up to 2000 cases. Each split was randomly sampled
from the full dataset specified for each outcome so that each
training split maintained a proportion of positive and negative
cases that approximates the true proportion. The prior sample
was included in the next iteration to isolate the impact of
adding additional training data, not adding different training
data. For instance, to obtain 500 cases, first, the prior 200
cases were preserved, and an additional 300 were sampled to
comprise 500 cases.

To simulate the impacts of language replacement and
LE-only text, the analysis followed the procedure process
outlined earlier to randomly select training data in the same
100, 200, 500, 1000, 1500, and 2000 increments.

In the second configuration of training data, the com-
position of positive class cases was altered from the true
proportion in the training data. Instead of randomly sampling
cases, the proportion of positive class cases was increased
in the training data by adding additional positive class cases
to the negative class cases. The positive class cases were
incrementally increased until they comprise 10%, 20%, 30%,
40%, and up to 50% of the training data starting from a
baseline of 1000 cases, as lower amounts of training data
were not performant in this application. For instance, to
obtain training data composed of 10% positive class cases
for legal intervention homicide, the process started with
randomly sampled training data with 1000 records, of which
54 were legal intervention homicides and 940 were not. To
the 940 negative class cases, 59 additional positive class
cases were added so that the total number of positive class
cases was 113 (54+59), and the total was 1059 cases, of
which approximately 10% (113/1059) were legal intervention
homicides.

For each of the configurations described earlier, distil-
BERT, an LLM with fewer parameters but comparable
accuracy to large-scale LLMs, was used [41]. Compact LLMs
better allow for simulations because of fewer computational
needs and because NVDRS data restrictions do not per-
mit cloud storage and computing. The distiiBERT models
were fine-tuned on training data to select model parame-
ters. Parameters were selected in initial fine-turning using 2
outcomes (legal intervention and drive-by). Because model
parameters in each fine-tuned model were identical, these
parameters were applied to each training data configuration
(Table S2 in Multimedia Appendix 1). Because our target
outcomes are imbalanced, we add a weighted trainer to
account for class imbalance. Configurations are summarized
in Table S3 in Multimedia Appendix 1.

Classification performance was measured using learning
curves, which plot performance metrics relative to differing
splits of labeled training data to evaluate classifier model
performance. Binary classification model metrics including
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precision and recall in addition to metrics considered useful
for imbalanced class problems, including an Fi-score, were
used. Finally, to analyze classification performance by
subgroup, learning curves were created for sex, race, and
ethnicity subgroups.

Results

Classification outcomes differed by the proportion of positive
to negative cases in each outcome (Table 1). The most
rare positive class outcome was a police shooting (n=4489,
5.9%) followed by drive-by shootings (n=6575, 9.2%) and
shootings where additional individuals were nonfatally shot
(n=8052, 15.2%) in the course of the homicide. The most
prevalent outcome was whether an individual is shot in
their home (n=16,850, 24.8%) relative to another location
outside the home. Victims of homicide in the sample tended
to be male (n=4319-11,321; 67.2-96.2%), Black or African
American (n=44,546-43,357, 58.5%-60.5%), and young, with
the most frequent age range between 25 and 34 years (Table
1). Intimate partner violence characterizes over a tenth of
homicides overall but within cases where an individual is
injured at home, intimate partner violence (n=17,226, 26.5%)
occurred in over a quarter of cases. Legal intervention
homicides were most likely associated with mental health
problems and alcohol use.

Circumstances were known for almost all cases of legal
intervention and drive-by shootings, but less information was
known about the circumstances of homicide where additional
individuals were shot or when they were injured at home
(Table 2). Circumstances were known in 71% (n=30,774) of
homicides of Black decedents in contrast to 83.7% (n=8698)
among Hispanic and non-Hispanic White decedents. The
median number of words in a narrative for a LE narrative
ranged from 80-83, whereas coroner and medical examiner
narratives ranged from 88 to 91 words in length. Legal
intervention homicides had the most lengthy narratives (115
for LE and 120 for coroner and medical examiner). Nar-
rative length differed by race and sex. Among LE narra-
tives, the median length for Black decedents was 98 words
but 132 for non-Hispanic White decedents. Narrative length
differed among male and female decedents. Female decedents
had longer narratives for each homicide outcome. Female
decedents shot at home had a median narrative length of 124
words in contrast to male decedents shot at home with a
length of 92 words.
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Table 3 displays classification performance by Fi-score for
each model type. Training data of approximately 1500 cases
achieved an F'i-score of at least 0.6 for each outcome, though
at 1000 cases, the majority of outcomes was at or exceeding
0.6. The exception was the number nonfatally shot. Figure 1
plots learning curves by Fj-score in Table 3. Replacement
language models tended to perform best (Table 3 and Figure
1) with the highest F{-score in all save 6 model interactions.
In particular, language replacement models consistently
obtained the highest F'{-score for legal intervention homicides
(Table 3 and Figure 1). Similarly, language replacement

Table 3. F'|-scores by model outcome, training data, and model type.

Parker

models featured higher precision scores for a subset of
outcomes (Figure 2 and Table S4 in Multimedia Appendix 1).
Less substantial difference occurred with recall (Figure 3 and
Table S4 in Multimedia Appendix 1) and the false negative
rate (Figure 4) between models. Omitting coroner or medical
examiner reports performed worse across outcomes (Figures
1-4). Language replacement models trained on 1500-2000
narratives obtained low false negative rates ranging from 1%
to 5% of true cases resulting in a misclassified outcome
(Figure 1 and Table S4 in Multimedia Appendix 1).

DistilBERT+LEP only®, DistilBER T+languaged,
Outcome Train, n DistilBERT?, Fj-score  Fj-score F-score
Drive-by 100 0.219¢ 0.168 0.209
Drive-by 200 0.232 0.148 0.232
Drive-by 500 0.381 0.144 0473
Drive-by 1000 0.626 0.124 0.606
Drive-by 1500 0.619 0.126 0.623
Drive-by 2000 0.593 0.126 0.635
Police shooting 100 0.231 0.105 0.305
Police shooting 200 0.218 0.083 0.364
Police shooting 500 0.490 0.083 0.653
Police shooting 1000 0.739 0.064 0.795
Police shooting 1500 0.771 0.056 0.856
Police shooting 2000 0.770 0.080 0.833
Number nonfatally shot 100 0.319 0.246 0.312
Number nonfatally shot 200 0.281 0.226 0.286
Number nonfatally shot 500 0.341 0.192 0.345
Number nonfatally shot 1000 0.352 0.220 0413
Number nonfatally shot 1500 0.591 0.182 0.642
Number nonfatally shot 2000 0.608 0.195 0.663
Individual injured at home 100 0.547 0.222 0.574
Individual injured at home 200 0.578 0.283 0.629
Individual injured at home 500 0.665 0.277 0.714
Individual injured at home 1000 0.722 0.294 0.697
Individual injured at home 1500 0.737 0.280 0.749
Individual injured at home 2000 0.744 0.286 0.739

2The base distilBERT model.
PLE: law enforcement.
“The distilBERT model trained only on LE narratives.

dThe distilBERT model where text replacement for uncommon language in the narratives is replaced for clarify.
®Values in italics format correspond to the best F-score across the listed models.

https://ai.jmir.org/2025/1/e68212

JMIR AI 2025 | vol. 4 168212 | p. 10
(page number not for citation purposes)


https://ai.jmir.org/2025/1/e68212

JMIR AI

Parker

Figure 1. Learning curve by outcome, model type—F-score. Fi-scores are plotted for distiiIBERT models, distiiBERT models with language
replacement, and models that do not use LE narratives. Training data randomly sampled and corresponding to amounts of 100, 200, 500, 1000, 1500,
and 2000 randomly sampled training datasets are plotted according to each model performance metric. Test sets reporting results are identical across

models for each outcome variable. LE: law enforcement.
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Figure 2. Learning curve by outcome, model type —precision. Precision scores are plotted for distiiBERT models, distilBERT models with language
replacement, and models that do not use LE narratives. Training data randomly sampled and corresponding to amounts of 100, 200, 500, 1000, 1500,
and 2000 randomly sampled training datasets are plotted according to each model performance metric. Test sets reporting results are identical across

models for each outcome variable. LE: law enforcement.
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Figure 3. Learning curve by outcome, model type—recall. Recall scores are plotted for distilBERT models, distiiIBERT models with language
replacement, and models that do not use LE narratives. Training data randomly sampled and corresponding to amounts of 100, 200, 500, 1000, 1500,
and 2000 randomly sampled training datasets are plotted according to each model performance metric. Test sets reporting results are identical across

models for each outcome variable. LE: law enforcement.
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Figure 4. Learning curve by outcome, model type —false negative rate. False negative scores are plotted for distilBERT models, distiiBERT models
with language replacement, and models that do not use LE narratives. Training data randomly sampled and corresponding to amounts of 100, 200,
500, 1000, 1500, and 2000 randomly sampled training datasets are plotted according to each model performance metric. Test sets reporting results are

identical across models for each outcome variable. LE: law enforcement.
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Oversampling positive class cases was negligibly helpful in
improving Fi-scores (Figure 5). For instance, oversampling
for legal intervention homicide to be composed of 20%
positive class cases resulted in the addition of 580 positive

https://ai.jmir.org/2025/1/e68212

class cases added to training data and an Fq-score of 0.795
(Table S5 in Multimedia Appendix 1 and Figure 5). Relative
to adding 500 randomly sampled cases, which would result in
an Fy-score of 0.771 (Table S5 in Multimedia Appendix 1),
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the Fj-score gain from oversampling was 0.024 (0.795-0.771)
and therefore modest.

Figure 6 plots F{-scores of distilBERT language replace-
ment models, as these models tended to perform best overall
and may capture linguistic differences most accurately across
subgroups. Predictions differ by race or ethnicity and sex
across models. Legal intervention homicide victims who were
White or Hispanic were most often correctly classified as
such, and Black decedents were least likely to be correctly
classified (Figure 6 and Table 4). The prediction difference is

Parker

substantial for legal intervention victims with lower amounts
of training data, though the gap persisted with higher volumes
of training data. White decedents shot at home were most
often correctly predicted, while Black and Hispanic decedents
were least likely. Female decedents were less often correctly
predicted than male decedents except if they were shot at
home (Figure 7). Among models with at least 1500 records
of training data, Fj-score disparities ranged from 0.2 to 0.25
by race and ethnicity, and between male and female decedents
with differences ranging from 0.12 to 0.2 (Table 4).

Figure 5. F-learning curve for oversampled positive class cases versus baseline language replacement model. F-scores are plotted for distiiBERT
models fit with language replacement for both randomly sampled training data and oversampled training data. Oversampled training data correspond
to an increment of a 10% increase in the proportion of positive class cases included in training data. The exact training dataset counts are in Table S4
in Multimedia Appendix 1. Random train data is plotted at 1000, 1500, and 2000 randomly sampled training data records for reference.

Legaliniervenion Number nanfsally shat

F1-score

Model

2000 1000
Train data size

https://ai.jmir.org/2025/1/e68212

JMIR AI 2025 | vol. 4 168212 1 p. 13
(page number not for citation purposes)


https://ai.jmir.org/2025/1/e68212

JMIR Al Parker

Figure 6. Fi-learning curves for distiiBERT+language models by race and ethnicity. F-scores are plotted for distilBERT models with language
replacement for each outcome by race or ethnicity. Training data randomly sampled and corresponding to amounts of 100, 200, 500, 1000, 1500, and
2000. Test sets reporting results are identical across models for each outcome variable.

Rags/ethnicity

F1-score

Train data sze

Table 4. Classification performance for language replacement models by outcome by subgroup®.

Female, F-
Category Trainb, n White, F'{-score Black, F-score Hispanic, F'{-score Male, F-score score
Drive-by 100 0.208 0.353 0.322 0.317 0.292
Drive-by 200 0.204 0.321 0.280 0.292 0.266
Drive-by 500 0.237 0.390 0.346 0.356 0.302
Drive-by 1000 0.321 0.447 0.380 0416 0.401
Drive-by 1500 0.536 0.675 0.607 0.651 0.600
Drive-by 2000 0.554 0.704 0.608 0.672 0.622
Legal intervention 100 0.383 0.169 0.324 0.336 0.085
Legal intervention 200 0.475 0.162 0411 0.391 0.138
Legal intervention 500 0.746 0473 0.722 0.678 0.343
Legal intervention 1000 0.812 0.723 0.816 0.817 0.495
Legal intervention 1500 0.852 0.830 0.893 0.870 0.632
Legal intervention 2000 0.833 0.793 0.873 0.842 0.672
Number nonfatally shot 100 0.075 0.248 0.238 0.226 0.127
Number nonfatally shot 200 0.073 0.290 0.268 0.255 0.131
Number nonfatally shot 500 0.239 0478 0.604 0.479 0431
Number nonfatally shot 1000 0.382 0.613 0.693 0.613 0.558
Number nonfatally shot 1500 0412 0.629 0.688 0.626 0.602
Number nonfatally shot 2000 0.425 0.640 0.712 0.639 0.610
Individual injured at home 100 0.679 0.488 0.543 0.505 0.724
Individual injured at home 200 0.733 0.552 0.605 0.566 0.783
Individual injured at home 500 0.785 0.660 0.680 0.665 0.824
Individual injured at home 1000 0.784 0.637 0.649 0.642 0.826
Individual injured at home 1500 0.821 0.709 0.663 0.703 0.851
Individual injured at home 2000 0.805 0.696 0.683 0.699 0.828
https:/ai.jmir.org/2025/1/e68212 JMIR AI 20251 vol. 41e68212 1 p. 14
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Category Train®, n White, F'{-score

Black, F'{-score

Female, F-

Hispanic, F'{-score Male, F{-score score

aF-scores are listed for distilBERT models with language replacement across target outcomes within subgroups including race, ethnicity, and sex.
Test sets reporting results are identical across models for each outcome variable.
bTraining data randomly sampled and corresponding to amounts of 100, 200, 500, 1000, 1500, and 2000.

Figure 7. F|-learning curves for distiiBERT+language models by sex. F-scores are plotted for distiiIBERT models with language replacement for
each outcome by sex. Training data randomly sampled and corresponding to amounts of 100, 200, 500, 1000, 1500, and 2000. Test sets reporting

results are identical across models for each outcome variable.

Sex

Fl-score

Discussion

Principal Findings

This analysis simulated the NLP model-fitting process
to demonstrate how different training and preprocessing
decisions impact model performance in the supervised
classification of violent death narratives. Results show that
the compact LLM approach is useful for predicting rare
NVDRS outcomes relative to naive prediction baselines. The
best model for drive-by shootings achieved an Fj-score of
0.635 (Table 3) for an outcome, where the proportion of
positive class cases was 9.2%. For context, if the model had
correctly classified only the 9.2% of positive class cases,
it would have achieved an Fj-score of 0.162. While var-
iation exists across outcomes in the rate of improvement
over a naive prediction, the improvement in Fj-scores across
infrequent NVDRS events demonstrates that a compact LLM
approach is useful.

Simulations suggest that fine-tuning compact LLMs on
NVDRS text requires approximately 1000-1500 training data
records to achieve an Fj-score of at least 0.6. However,
substantial variation existed between outcomes. For drive-
by shootings and for whether a victim is injured at home,
the learning curves flatten at 1000 cases and do not make

https://ai.jmir.org/2025/1/e68212

Train data size

further F{-score gains with the addition of additional training
data. Legal intervention (police shootings) continues to make
additional F'{-score gains beyond 1000 cases and achieve an
F1-score of 0.75 at 2000 cases. Similarly, for the number of
victims nonfatally shot, the addition of training data beyond
1000 cases substantially improves the Fi-score to 0.66 at
2000 cases.

In addition, preprocessing data to reduce domain-specific
jargon resulted in improved model performance. Oversam-
pling the positive class cases in training data does not increase
prediction accuracy substantially over randomly sampled
training data. Predictions differed by race, ethnicity, and sex.

Results suggested that compact LLMs are useful but
require training data to correctly classify outcomes of interest.
Random sampling and labeling a sufficient number of cases
(approximately 1000) combined with a weighting layer is an
effective classification strategy. Relative to recent few-shot
and zero-shot learning applications using similar data sources
[29], simulation findings differ, in that the volume of training
data required is more substantial. The additional training data
may be a function of a class imbalance in the target outcome,
as other applications use more prevalent outcomes.

Differential prediction by subgroup is not explainable by
outcome frequency or narrative length alone. For instance,

JMIR AI 2025 | vol. 4 168212 1p. 15
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White decedents of police shootings are less prevalent than
Black decedents in the sample but are more often classified
correctly. Similarly, female decedents have longer median
narratives for all outcomes but are less likely to be correctly
classified. This finding expands upon the current literature,
which has found systematic data missingness in NVDRS
[28,38-40]. Further research should characterize sources of
differential prediction, whether input narratives or exacerba-
tion by NLP classifier, and examine fairness-aware models
particularly if the prediction is used for decision-making or
resource allocation in public health settings.

Limitations

This research is subject to several limitations. First,
results from a compact LLM may not fully generalize
to new LLMs with additional sophistication or to differ-
ent language contexts beyond NVDRS. Label noise from
NVDRS annotators may mean that results understate the
performance of compact LLMs, which is consistent with

Parker

police shootings tending to be the outcome type that is most
accurately predicted. The potential for differential prediction
by subgroup raises concerns about fairness and equity in
model performance. Further investigations into the sources
of this differential prediction are needed to ensure that NLP
applications do not exacerbate existing disparities.

Conclusions

Compact LLMs with simple text changes can effectively
predict rare NVDRS outcomes. For researchers using
supervised machine learning to expand knowledge of violent
deaths beyond existing coded fields, applying compact LLMs
to sufficient training data can be a valuable approach. While
future advancements will likely improve access to privacy-
compliant, more sophisticated LLMs for analyzing sensitive
data, this study provides a useful baseline for researchers
pursuing similar efforts in the interim while underlining the
potential for differential prediction by subgroup.
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