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Abstract
Background: Early diagnosis of diabetes is essential for early interventions to slow the progression of dysglycemia and its
comorbidities. However, among individuals with diabetes, about 23% were unaware of their condition.
Objective: This study aims to investigate the potential use of automated machine learning (AutoML) models and self-reported
data in detecting undiagnosed diabetes among US adults.
Methods: Individual-level data, including biochemical tests for diabetes, demographic characteristics, family history of
diabetes, anthropometric measures, dietary intakes, health behaviors, and chronic conditions, were retrieved from the National
Health and Nutrition Examination Survey, 1999‐2020. Undiagnosed diabetes was defined as having no prior self-reported
diagnosis but meeting diagnostic criteria for elevated hemoglobin A1c, fasting plasma glucose, or 2-hour plasma glucose. The
H2O AutoML framework, which allows for automated hyperparameter tuning, model selection, and ensemble learning, was
used to automate the machine learning workflow. For comparative analysis, 4 traditional machine learning models—logistic
regression, support vector machines, random forest, and extreme gradient boosting—were implemented. Model performance
was evaluated using the area under the receiver operating characteristic curve.
Results: The study included 11,815 participants aged 20 years and older, comprising 2256 patients with undiagnosed diabetes
and 9559 without diabetes. The average age was 59.76 (SD 15.0) years for participants with undiagnosed diabetes and 46.78
(SD 17.2) years for those without diabetes. The AutoML model demonstrated superior performance compared with the 4
traditional machine learning models. The trained AutoML model achieved an area under the receiver operating characteristic
curve of 0.909 (95% CI 0.897-0.921) in the test set. The model demonstrated a sensitivity of 70.26%, specificity of 90.46%,
positive predictive value of 64.10%, and negative predictive value of 92.61% for identifying undiagnosed diabetes from
nondiabetes.
Conclusions: To our knowledge, this study is the first to utilize the AutoML model for detecting undiagnosed diabetes in US
adults. The model’s strong performance and applicability to the broader US population make it a promising tool for large-scale
diabetes screening efforts.
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Introduction
Diabetes mellitus is the eighth leading cause of death in the
United States and contributes to substantial health care costs
[1]. In 2021, an estimated 38.4 million Americans of all ages
had diabetes, representing 11.6% of the US population [2,3].
Of those with diabetes, 22.8% were unaware of or did not
report having diabetes [2,3]. When diabetes is undiagnosed,
and consequently hyperglycemia remains unmanaged, severe
and irreversible microvascular and macrovascular complica-
tions can develop, including diabetic neuropathy, nephrop-
athy, retinopathy, and cardiovascular disease [4-7].

Screening asymptomatic individuals for undiagnosed
diabetes enables earlier diagnosis and treatment, ultimately
reducing the risk of complications and premature death [8-
10]. The latest American Diabetes Association (ADA) and
US Preventive Services Task Force guidelines recommend
beginning diabetes screenings at the age of 35 years [11,12].
However, diabetes screening guidelines that rely on blood
testing are not widely followed. Only 50%‐60% of US adults
who met the criteria for screening reported receiving glucose
testing within the past 3 years [13,14]. The testing rate was
alarmingly low among high-risk groups, including those with
low education, low household income, and limited health care
access [13,14].

Risk assessment tools for diabetes detection using easily
accessible and self-reported data have been proposed, but
they have shown low overall accuracy and validity in the
general population [15-21]. In recent years, various machine
learning algorithms have been used to predict diabetes and
have yielded better performance than traditional statistics-
based models [22-28]. Few studies have developed machine
learning models to detect undiagnosed diabetes in the US
population [29,30]. Although 2 studies reported a good
overall accuracy of 80%, the quality of a positive prediction
by models (ie, precision) was notably low, which could lead
to a high number of false positives and unnecessary follow-up
testing [29,30].

More recently, there has been growing interest within
the health care community in automated machine learn-
ing (AutoML), which automates machine learning models’
selection, composition, and parameterization to optimize
performance [31-33]. AutoML uses voting and stacking
ensemble techniques to combine multiple learning models,
often improving classification accuracy more effectively than
a single machine learning algorithm. Its automation also
reduces human error and bias by impartially exploring a wide

range of machine learning models [33]. However, despite its
potential, no prior studies have investigated the feasibility
and performance of AutoML in screening for undiagnosed
diabetes.

This study aimed to investigate the potential use of
AutoML and self-reported data in detecting undiagnosed
diabetes among US adults in a nationally representative
survey. The trained model could aid in detecting undiag-
nosed diabetes in the general US population, particularly in
underserved populations with limited access to blood glucose
tests. This study could also promote the adoption of AutoML
in diabetes research.

Methods
Data Source
Individual-level data were retrieved from the National Health
and Nutrition Examination Survey (NHANES), 1999‐2020.
NHANES is a nationally representative, repeated cross-sec-
tional study conducted by the National Center for Health
Statistics. NHANES adopts a complex, multistage probabil-
ity sampling design to ensure that the collected data are
representative of the noninstitutionalized civilian population
in the United States. NHANES includes clinical examina-
tions, selected medical and laboratory tests, and self-repor-
ted data. NHANES interviews people in their homes and
conducts health examinations in a mobile examination center,
including laboratory analysis of blood, urine, and other tissue
samples. The detailed study design and methodology of
NHANES have been described elsewhere [34,35]. This study
followed the CREMLS (Consolidated Reporting Guidelines
for Prognostic and Diagnostic Machine Learning Models)
[36,37].
Biochemical Tests for Undiagnosed
Diabetes
Following the ADA guidelines [38], diabetes was diagnosed
based on elevated levels of hemoglobin A1c (≥6.5%), fasting
plasma glucose (≥126 mg/dL), or 2-hour plasma glucose
(≥200 mg/dL) during a 75-g oral glucose tolerance test. In
this analysis, undiagnosed diabetes was defined as having no
prior self-reported diagnosis but meeting any of the diagnosis
criteria for elevated hemoglobin A1c, fasting plasma glucose
level, or oral glucose tolerance test level. The details of the
diagnostic method used to define diabetes in this study are
provided in Table 1.

Table 1. Diagnostic method used to define diabetes in this study.
Diagnostic method

Diabetic
  Diagnosed diabetes Answer “Yes” to “Other than during pregnancy, have you ever been told by a doctor or health professional that you

have diabetes or sugar diabetes?”
  Undiagnosed diabetes Answer “No” to “Other than during pregnancy, have you ever been told by a doctor or health professional that you

have diabetes or sugar diabetes?”
AND
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Diagnostic method
Any of the following tests meet criteria:

•  HbA1ca≥6.5% (≥48 mmol/mol).
•  FPGb≥126 mg/dL (≥7.0 mmol/L).
•  2-h PGc≥200 mg/dL (≥11.1 mmol/L) during OGTTd.

Nondiabetic
  Prediabetes Does not meet criteria for diabetes diagnosis

AND
Any of the following tests meet criteria:

•  HbA1c 5.7%‐6.4% (39‐47 mmol/mol)
•  FPG 100‐125 mg/dL (5.6‐6.9 mmol/L)
•  2-h PG 140‐199 mg/dL (7.8‐11.0 mmol/L)

  Normoglycemia All the following tests meet criteria:
•  HbA1c<5.7% (<39 mmol)
•  FPG<100 mg/dL (<5.6 mmol/)
•  2-h PG<140 mg/dL (<7.8 mmol/L)

aHbA1c: hemoglobin A1c.
bFPG: fasting plasma glucose.
cPG: plasma glucose.
dOGTT: oral glucose tolerance test.

Participant Selection
The study utilized data from NHANES 1999‐2020, compris-
ing an initial cohort of 112,502 participants. Participants
with self-reported diabetes (n=8657) and those with missing
data on self-reported diabetes status (n=9672) were excluded.
Individuals aged <20 years (n=43,879) and pregnant females
(n=1540) were removed from the cohort. Participants with
missing laboratory results for diabetes were further excluded
(n=36,939). For inclusion in the nondiabetic group, partici-
pants had to meet all 3 test criteria to confirm the absence of
diabetes. For the diabetes group, participants were included
if at least one test met the diagnostic criteria, even if the
other two test results were missing. In total, the study cohort
included 11,815 participants and was categorized into 2
groups: 9559 without diabetes and 2256 with undiagnosed
diabetes.
Features

Demographic Characteristics
Demographic features included age at the survey, gender
(male/female), race/ethnicity (non-Hispanic White, non-His-
panic Black, Mexican American, and other races), educa-
tional attainment (lower than 9th-grade education, 9th- to
11th-grade education, high school, some college or associate
degree, college or higher), marital status (married, widowed,
divorced, separated, never married, living with a partner), and
income-to-poverty ratio (ratio of monthly family income to
the poverty guidelines).

Family history of diabetes was ascertained from the
Medical Conditions Questionnaire: “Including living and
deceased, were any of your biological, that is, blood relatives
including grandparents, parents, brothers, sisters ever told by
a health professional that they had diabetes?”

Anthropometric Measures
Participants were weighed in mobile examination centers,
wearing only underclothing and an examination gown.
Weight was recorded on a digital scale in kilograms. Standing
height was measured using a stadiometer with a fixed vertical
backboard and an adjustable headpiece. BMI was calculated
as measured weight in kilograms divided by height in meters
squared. Waist circumference was measured just above the
iliac crest using a steel measuring tape.

Diet Intake and Behaviors
In NHANES, 24-hour dietary recalls were administered to
obtain detailed nutritional intake information from partici-
pants. Daily dietary intake (the average of 2 d) of energy
(kcal), total fat (g), cholesterol (mg), and total sugars (g)
was calculated. The frequency of eating out per week was
obtained from the question: “On average, how many times per
week do you eat meals prepared in a restaurant?”

Health Behaviors
The NHANES physical activity questionnaire included
questions about daily and leisure-time activities. The average
hours spent in each activity were multiplied by the suggested
metabolic equivalent (MET) scores to estimate MET hours
per week [39]. Indicators (yes/no) for smoking and drinking
were obtained from answers to questions: “In any one year,
have you had at least 12 drinks of any type of alcoholic
beverage?” and “Have you smoked at least 100 cigarettes in
your entire life?”

Chronic Conditions
Comorbid conditions were obtained from self-reports to the
Medical Conditions Questionnaire, “Have you ever been told
by a doctor that you had (medical problem)?” which includes
hypertension, rheumatoid arthritis, myocardial infarction,
congestive heart failure, coronary heart disease, stroke, liver
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disease, weak/failing kidneys, and cancer/malignancy of any
kind.
AutoML and Custom Machine Learning
Models
The H2O AutoML framework was used in this study
to automate the machine learning workflow. The H2O
AutoML trains several models, cross-validated by default,
by using the following available algorithms: extreme
gradient boosting (XGBoost), gradient boosting machine,
generalized linear model, distributed random forest,
extremely randomized trees, and fully connected deep
neural network. H2O AutoML introduces two essential
advancements to optimize model performance. First, it
fine-tunes base models using a fast random search
approach, where hyperparameters are selected from a
range of values identified as most impactful. Second,
H2O AutoML leverages a sophisticated stacking technique
to create two powerful ensemble models: “All models
ensemble,” which combines all the base models trained,
and “Best of the Family ensemble,” which contains the
best-performing models. The stacked ensemble models
are designed to leverage the diverse strengths of various
algorithms, resulting in a final model that is accurate
and generalizable across different datasets. H2O AutoML
has built-in functionality for class balancing and han-
dling of missing values. Detailed documentation, as well
as directions for algorithms and the implementation of
H2O.ai, are available online [40].

We randomly split the dataset into training (70%) and
test (30%) sets. AutoML trained diverse base models on
the training set, ranking them by cross-validated area under
the receiver operating characteristic curve (AUC). Cross-vali-
dation was performed using a 5-fold approach, with mod-
els iteratively trained on 4 subsets of the training set and
validated on the remaining subset. A stacked ensemble
(“leader”) was constructed by blending the top-performing
base models via a meta learner. This stacked ensemble model
was exported and applied to our independent holdout test set
to generate class-probability predictions. The 95% CIs for
each AUC were derived from 1000 bootstrap resamples of
the test set. Confusion matrices were constructed to calcu-
late sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) using the classification
threshold that maximized the F1-score that yields the highest
harmonic mean of precision and recall on the test set. We
extracted feature importance from each base learner and
computed a weighted aggregate in the H2O leader model. For
tree-based models, feature importance was determined by the
frequency of each feature used for splitting and the over-
all reduction in squared error. For non–tree-based models,
importance was based on coefficient magnitudes.

In addition to the AutoML model, we conducted a
comparative analysis using 4 traditional machine learn-
ing models—logistic regression, support vector machines,
random forest, and XGBoost, with Synthetic Minority
Over-sampling Technique applied to address data imbalance
during training [41,42].

The clinical guidelines generally recommend confirming
an elevated test with a secondary measurement for the
diagnosis of diabetes [38,43]. In the main analyses, diabe-
tes was diagnosed based on a single elevated test result. In
additional analyses, the diagnosis of diabetes was confirmed
by at least 2 elevated tests recommended by the ADA
guidelines. We also evaluated the performance of a 3-class
prediction model for diabetes within the AutoML frame-
work, using classification schemes that distinguished between
normoglycemia, prediabetes, and undiagnosed diabetes.

Summary statistics for participant characteristics, stratified
by diabetes status, were calculated. Categorical variables
were compared using χ2 tests, and continuous variables were
evaluated using independent samples t tests. Missing data
were imputed using mean values for continuous variables
and mode for categorical variables. We used STATA 18
(StataCorp LLC) for data preparation and Python version
3.10.12 (Python Software Foundation) to implement the H2O
AutoML (H2O.ai, Inc) and custom machine learning models
(version 3.46.0.6).

Ethical Considerations
This study used publicly available, deidentified NHANES
data. In accordance with the US Department of Health and
Human Services (Title 45 of the Code of Federal Regulations;
§46.104 (d), section 4) [44], analyses of publicly available,
deidentified data are not considered human subjects research
and therefore do not require review by the Washington
University Institutional Review Board.

Results
In total, the study cohort included 11,815 participants, with
9559 participants without diabetes and 2256 with undiag-
nosed diabetes. The characteristics of the study cohort are
summarized in Table 2. The average ages were 59.76 (SD
15.0) years for those with undiagnosed diabetes and 46.78
(SD 17.2) years for those without. The diabetes group had
a higher proportion of males, lower levels of education,
and a greater likelihood of having a relative with diabetes.
Additionally, patients with undiagnosed diabetes had higher
BMI, larger waist circumference, and a higher prevalence of
chronic conditions. The flow diagram of participant selection
is presented in Figure 1.

Table 2. Cohort characteristics by diabetes status.
No diabetes (n=9559) Undiagnosed diabetes (n=2256) P value

Laboratory tests, mean (SD)
  Glycohemoglobin (%) 5.41 (0.38) 6.88 (1.60) <.001
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No diabetes (n=9559) Undiagnosed diabetes (n=2256) P value

  Fasting glucose plasma (mg/dL) 98.18 (9.46) 141.38 (46.79) <.001
  Oral glucose tolerance test (mg/dL) 109.53 (31.95) 229.24 (75.68) <.001
Demographic characteristics
  Age (years), mean (SD) 46.78 (17.19) 59.76 (14.98) <.001
  Gender, n (%) .005
   Male 4711 (49.28) 1186 (52.57)
   Female 4848 (50.72) 1070 (47.43)
  Race/ethnicity, n (%) <.001
   Non-Hispanic White 4381 (45.83) 835 (37.01)
   Non-Hispanic Black 1750 (18.31) 504 (22.34)
   Hispanic 2459 (25.72) 698 (30.94)
   Other 969 (10.14) 219 (9.71)
  Education, n (%) <.001
   ≤9 grade 881 (9.22) 434 (19.28)
   9th-11th grade 1301 (13.62) 391 (17.37)
   High school 2127 (22.27) 554 (24.61)
   Some college 2801 (29.32) 543 (24.12)
   College or above 2443 (25.57) 329 (14.62)
  Marital status, n (%) <.001
   Married 5016 (52.47) 1248 (55.54)
   Widowed 568 (5.94) 390 (17.36)
   Divorced 950 (9.94) 251 (11.17)
   Separated 330 (3.45) 72 (3.20)
   Never married 1843 (19.28) 192 (8.54)
   Living with partner 852 (8.91) 94 (4.18)
  Income-to-poverty ratio, mean (SD) 2.60 (1.64) 2.29 (1.53) <.001
  Family history of diabetes, n (%) 3394 (36.16) 1072 (48.79) <.001
Anthropometric measures, mean (SD)
  Height (cm) 167.89 (10.00) 165.84 (10.24) <.001
  Weight (kg) 80.12 (20.69) 88.19 (23.32) <.001
  BMI (kg/m2) 28.33 (6.53) 31.94 (7.43) <.001
  Waist circumference (cm) 96.92 (15.32) 107.5 (15.69) <.001
Diet intake and eating behavior, mean (SD)
  Daily total energy (kcal) 2090.13 (837.69) 1912.17 (851.19) <.001
  Daily total fat (g) 78.27 (38.36) 72.29 (39.76) <.001
  Daily total sugars (g) 113.59 (65.37) 104.57 (68.14) <.001
  Daily total cholesterol (mg) 287.05 (193.07) 285.82 (201.17) .80
  Times of dining out per week 3.43 (3.84) 2.60 (3.43) <.001
Health behaviors
  Physical activity (METa-h/wk), mean (SD) 2.36 (3.69) 1.62 (2.81) <.001
  Smoking, n (%) 4200 (43.97) 1031 (48.91) <.001
  Drinking, n (%) 6758 (74.26) 1262 (67.52) <.001
Self-reported chronic conditions, n (%)
  Hypertension 2778 (29.10) 1188 (52.85) <.001
  Rheumatoid arthritis 2206 (23.12) 778 (34.55) <.001
  Myocardial infarction 283 (2.96) 152 (6.76) <.001
  Congestive heart failure 182 (1.91) 112 (4.99) <.001

 

JMIR AI Liu et al

https://ai.jmir.org/2025/1/e68260 JMIR AI 2025 | vol. 4 | e68260 | p. 5
(page number not for citation purposes)

https://ai.jmir.org/2025/1/e68260


 
No diabetes (n=9559) Undiagnosed diabetes (n=2256) P value

  Coronary heart disease 261 (2.74) 145 (6.47) <.001
  Stroke 231 (2.42) 127 (5.64) <.001
  Liver disease 295 (3.09) 117 (5.19) <.001
  Weak/failing kidneys 199 (2.08) 64 (2.84) .03
  Cancer 760 (7.95) 257 (11.40) <.001

aMET: metabolic equivalent.

Figure 1. Flow diagram of participant selection. 2-h PG: 2-hour plasma glucose; A1c: hemoglobin A1c; FPG: fasting plasma glucose; NHANES:
National Health and Nutrition Examination Survey.

The performance of the AutoML model and traditional
machine learning models is summarized in Figure 2. The
AutoML model demonstrated superior performance com-
pared to the 4 traditional machine learning models—logistic
regression, support vector machines, random forest, and
XGBoost. The trained AutoML model achieved an AUC

of 0.909 (95% CI 0.897-0.921) and an accuracy of 86.5%
in the test set. The model demonstrated a sensitivity of
70.26%, specificity of 90.46%, PPV of 64.10%, and NPV of
92.61% for identifying undiagnosed diabetes from nondiabe-
tes (Table 3). The model summary and details were provided
in Multimedia Appendix 1.
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Figure 2. Performance of AutoML model and custom machine learning models in detecting undiagnosed diabetes on the test set. AutoML: automated
machine learning; XGBoost: extreme gradient boosting.

Table 3. Confusion matrix for the classification of undiagnosed diabetes using the AutoML model.a
Predicted label, n (%)
No diabetes Undiagnosed diabetes

True label
  No diabetes 2558 (73) 270 (8)
  Undiagnosed diabetes 204 (6) 482 (14)

aNote: The cutoff threshold was 0.248718, optimized for F1-score that maximized the harmonic mean of precision and recall. The matrix shows
the distribution of true labels against predicted labels. The cell values indicate the number of instances (absolute counts) and their corresponding
percentages of the total in the test data. Sensitivity (482/686, 70.26%), specificity (2558/2828, 90.45%), positive predictive value (482/752, 64.10%),
and negative predictive value (2558/2762, 92.61%) are derived from the matrix to assess model performance.

The top 5 features are age, waist circumference, daily total
sugar intake, income, and BMI, together accounting for 50%
of total model importance. Comorbidities, except hyperten-
sion, contributed minimally relative to demographic and
behavioral factors. Excluding comorbidities (except hyperten-
sion) resulted in comparable model performance, with an
AUC of 0.830 and an accuracy of 85.1%.

Additional analysis results are summarized in Table 4. The
model using diabetes diagnosis criteria with a confirmatory
test achieved a testing accuracy of 98.0% and 89.7% with

an AUC of 0.823. However, precision (ie, PPV) and recall
(ie, sensitivity) were suboptimal due to the small number
of patients meeting the diabetes criteria with ≥2 tests. The
model demonstrated a sensitivity of 44.10%, specificity of
92.22%, PPV of 24.23%, and NPV of 96.69% for identifying
undiagnosed diabetes from nondiabetes. The performance of
the multiclass prediction model was poor, with an overall
accuracy of 58.9% for using diagnosis criteria with ≥1 test
and 67.1% for using diagnosis criteria with ≥2 tests.
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Table 4. Additional models for alternative diabetes diagnosis criteria with the second confirmative test and multiclass prediction including
prediabetes.

Undiagnosed diabetes (≥2 test)
versus no diabetesa

Undiagnosed diabetes (≥1 test) versus
prediabetes versus normoglycemia

Undiagnosed diabetes (≥2 test) versus
prediabetes versus normoglycemia

Train Test Train Test Train Test
Accuracy (%) 98.0 89.7 66.8 59.0 68.6 67.1
Overall AUCb 0.993 0.823 0.627 0.557 0.588 0.557
AUC (normal versus
rest)

—c — 0.502 0.445 0.316 0.307

AUC (prediabetes
versus rest)

— — 0.814 0.652 0.792 0.715

AUC (diabetes versus
rest)

— — 0.415 0.545 0.555 0.673

a“No diabetes” group includes normoglycemia and prediabetes.
bAUC: area under the receiver operating characteristic curve.
cNot applicable.

Discussion
To our knowledge, this study is the first to utilize the
AutoML model for detecting undiagnosed diabetes in US
adults. The best-performing model achieved an AUC of
0.91 and an accuracy of 86.5% in the test set. National
surveillance shows that nearly half of those with undiagnosed
diabetes have hypertension, lipid abnormalities, or cardiovas-
cular and chronic kidney diseases [45-48]. Delayed diagnosis
of diabetes hinders the opportunities for early intervention to
slow the progression of dysglycemia and its comorbidities.
Our model was trained and tested using a substantial and
diverse dataset comprising nationally representative survey
data. The model’s high accuracy and applicability to the
broader US population make it a promising tool for large-
scale diabetes screening efforts.

The feature importance ranking of the best-performing
model highlights waist circumference, BMI, and dietary
variables as key predictors, underscoring their strong links to
metabolic health, insulin resistance, and dietary habits that
influence diabetes risk. Lifestyle factors such as drinking
frequency and physical activity also emerged as significant
contributors, whereas self-reported comorbidities played a
smaller role once anthropometric and behavioral measures
were included. These findings align with epidemiological
studies and improve the model’s interpretability, providing
actionable insights to prioritize targeted interventions for
modifiable risk factors [49].

Machine learning has advanced clinical research but faces
adoption barriers like data access, imbalances, and reliance
on data science expertise for deployment [50,51]. AutoML
reduces the need for machine learning expertise, enabling
clinicians to use advanced technologies without programming
skills and integrating them into research and clinical practice
[52-55]. Despite being promising, few studies have explored
the application of AutoML for diabetes diagnosis [56].

Previous studies have compared traditional machine
learning models with conventional statistical models for
identifying undiagnosed diabetes, demonstrating that machine

learning models outperform statistical models [29,30]. These
studies reported AUC values between 0.73 and 0.81,
consistent with the performance of traditional models in
this study. However, the reported low PPVs highlighted
the limited ability of these models to accurately identify
undiagnosed diabetes cases [30]. This study showed that
AutoML models are superior and outperformed traditional
machine learning models in detecting undiagnosed diabe-
tes. Similarly, one study has reported that the AutoML
model outperformed both individual and ensemble models
in identifying patients with diabetes using electronic medical
records data [57]. These findings suggest that AutoML
provides a more accessible and efficient approach, elimi-
nating the need for manual optimization while delivering
superior performance.

Nonetheless, several issues with the AutoML model in
diabetes screening should be noted. When applying more
stringent diabetes diagnostic criteria, the accuracy reached
90%; however, precision and recall were low, likely due to
the limited number of samples that met the ≥2 test crite-
ria. H2O AutoML provides significant advantages, including
its built-in class balancing functionality, which automates
the handling of moderate class imbalance without requir-
ing external implementations. Using random sampling to
upsample minority classes or downsample majority classes,
it effectively manages datasets with moderate imbalance,
such as the 4:1 ratio under the 1+ test criterion for diabetes
diagnosis in this study. However, with the stricter 2+ test
criterion, the imbalance ratio rose to 24:1, likely exceed-
ing H2O AutoML’s ability to mitigate the imbalance. This
severe imbalance impacted the model’s ability to accurately
distinguish undiagnosed diabetes from nondiabetes in unseen
data, reducing precision and recall. For such highly imbal-
anced datasets, combining AutoML with other data resam-
pling methods, such as Synthetic Minority Over-sampling
Technique, could better improve model performance [58].

In addition, the model’s performance in multiclass
classification of no diabetes, prediabetes, and undiagnosed
diabetes was notably poor. Prediabetes is an intermediate
stage between normal glycemia and diabetes and is highly
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prevalent [59]. Clinically, prediabetes and diabetes, as the
continuum of dysglycemia, share many overlapping risk
factors, such as insulin resistance and elevated glucose levels
[60], making their differentiation challenging. The subtle
metabolic differences between these conditions may not
have been adequately captured by the included self-reported
data. Future efforts should focus on incorporating additional
features and refining the model architecture to enhance
accuracy and improve its ability to identify prediabetes.

A major strength of this model is its use of NHANES
data, which is nationally representative of the US population,
enhancing the generalizability of the findings. The model
incorporates comprehensive self-reported data, including
nutritional information, for predicting undiagnosed diabetes.
The application of AutoML in this study represents the
first use of this approach in diabetes research, providing a
foundation for further development and validation of similar
models. However, the widespread adoption of our AutoML
in health care requires further development and validation.
False positives can lead to unnecessary tests, higher costs,
and patient anxiety, while false negatives may delay treatment
and worsen outcomes. Using AutoML models in real-world
clinical settings requires meticulous threshold optimization
and validation to achieve an appropriate balance between
precision and recall. These models should be rigorously
evaluated for fairness and equity, ensuring that performance
does not vary significantly across demographic groups [61,
62]. Practical barriers to implementing AutoML in clinical
practice also include integration with electronic health record

systems and the lack of trust in “black-box” models due to
their opacity [31,61-63].

Several limitations should be noted. First, the definition
of undiagnosed diabetes in the base model was based
on a single elevated measurement, which may not fully
capture the condition. However, the model still showed
utility as a screening tool. Second, the model demonstra-
ted poor performance in multiclass prediction, including
prediabetes, indicating that additional feature refinement and
model adjustments may be necessary to improve accuracy in
3-class predictions. Third, known diabetes diagnoses rely on
self-reports, which may introduce potential recall bias and
misclassification. This could lead to mislabeling cases and
diminishing model performance. Although most published
public health studies still rely on self-reports—hence making
our study not an unusual one in using self-reports—future
studies should aim to validate self-reported data against
medical records where feasible to minimize errors and
increase reliability of the observations. Finally, the generaliz-
ability of this model may be limited to US populations and
may not extend to non-US populations.

This study demonstrates the potential of AutoML in
detecting undiagnosed diabetes using self-reported and easily
accessible data. Although challenges remain in accurately
classifying multiple categories, including prediabetes, the
model shows promise as a tool for large-scale diabetes
screening. Further refinement and validation are required to
improve its applicability across diverse populations.
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