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Abstract

Background: The digital transformation of health care has introduced both opportunities and challenges, particularly in managing
and analyzing the vast amounts of unstructured medical data generated daily. There is a need to explore the feasibility of generative
solutions in extracting data from medical reports, categorized by specific criteria.

Objective: This study aimed to investigate the application of large language models (LLMs) for the automated extraction of
structured information from unstructured medical reports, using the LangChain framework in Python.

Methods: Through a systematic evaluation of leading LLMs—GPT-4o, Llama 3, Llama 3.1, Gemma 2, Qwen 2, and Qwen
2.5—using zero-shot prompting techniques and embedding results into a vector database, this study assessed the performance of
LLMs in extracting patient demographics, diagnostic details, and pharmacological data.

Results: Evaluation metrics, including accuracy, precision, recall, and F1-score, revealed high efficacy across most categories,
with GPT-4o achieving the highest overall performance (91.4% accuracy).

Conclusions: The findings highlight notable differences in precision and recall between models, particularly in extracting names
and age-related information. There were challenges in processing unstructured medical text, including variability in model
performance across data types. Our findings demonstrate the feasibility of integrating LLMs into health care workflows; LLMs
offer substantial improvements in data accessibility and support clinical decision-making processes. In addition, the paper describes
the role of retrieval-augmented generation techniques in enhancing information retrieval accuracy, addressing issues such as
hallucinations and outdated data in LLM outputs. Future work should explore the need for optimization through larger and more
diverse training datasets, advanced prompting strategies, and the integration of domain-specific knowledge to improve model
generalizability and precision.
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Introduction

Overview
In recent years, the health care sector has witnessed a significant
shift toward digital systems for managing medical information,
including electronic health records (EHRs), diagnostic imaging
tests, and bureaucratic records. This transition has been further
accelerated by the COVID-19 pandemic, which popularized
telemedicine as a means to reduce contagion risks, minimize
travel, and improve access to health care in remote areas [1-3].
However, the increasing reliance on digital systems has led to
the generation of vast amounts of unstructured medical data,
posing challenges for efficient information extraction and use.

The complexity of managing unstructured medical data
necessitates innovative approaches to support clinical and
sociological studies, optimize research, and enhance diagnostic
precision. In this context, the potential of generative artificial
intelligence (AI) solutions, particularly large language models
(LLMs), has emerged as a promising avenue for automating the
extraction of structured clinical information from unstructured
medical reports.

This study investigated the feasibility of leveraging LLMs,
specifically through the LangChain framework, to address key
challenges in health care data digitalization, such as accuracy,
scalability, and integration into existing workflows. It evaluated
the performance of leading LLMs in extracting critical data
categories, including patient demographics, diagnostic details,
and pharmacological information. By exploring the capabilities
of generative AI in this domain, this study aimed to enhance
clinical decision-making, optimize resource allocation, and
improve overall efficiency in health care systems.

Background
LLMs are advanced AI systems grounded in deep learning
architectures, predominantly using transformer networks, that
are trained on extensive textual corpora. These models are
designed to capture complex linguistic patterns and semantic
relationships, enabling them to process, generate, and predict
human language with a high degree of accuracy. In health care,
LLMs have the potential to contribute to transformative changes
in health care by improving diagnostic precision, assisting in
clinical decision-making processes, and facilitating
communication between patients and health care providers [4,5].
LLMs are capable of delivering foundational knowledge,
contextual analysis, and accessible information, making them
valuable tools for patient education and clinical consultations
[6]. They can also be integrated into medical practice
responsibly and effectively, providing tools that address the
needs of various medical disciplines and diverse patient
populations [7].

LLMs are pretrained models, meaning that they possess the
capacity to comprehend and generate text without the need for
extensive additional training. This capability introduces
significant challenges in managing the vast quantities of
unstructured medical data generated, as extracting relevant
information from these sources is inherently complex. LLMs,
using a transformer architecture, excel in a multitude of domains,

demonstrating remarkable capabilities in natural language
processing (NLP) tasks and text comprehension. The essence
of pretraining lies in enabling these models to predict the next
word in a given text, a computational process that underpins
their performance across various tasks, demonstrating their
advanced design [8]. Transformers are based on multilayer
neural networks that are trained with large datasets.

Traditionally, text processing has been conducted using recurrent
neural networks (RNNs), a type of neural network architecture
specifically designed to handle sequential data, such as text.
RNNs eliminate the need for explicit word history modeling by
naturally incorporating temporal dimensions, allowing the
network to retain relevant information from previous time steps.
RNNs operate by encoding feature vectors for each word,
constructing input vectors from word embeddings, and
incorporating outputs from prior hidden states, either through
copying or time-step delays. Typically, the softmax function
serves as the activation function. An important aspect of RNNs
is backpropagation through time, which adjusts weights based
on the sequence’s context. Ultimately, the output layer produces
a probability distribution for each word based on prior words
and contextual features.

To enhance word prediction accuracy, this study explored the
use of sociolinguistic features, such as sequences of
discourse-related tags that provide syntactic information, to
enhance word prediction accuracy. In addition, we used
clustering techniques to delineate conversation topics,
acknowledging that linguistic choices are influenced by the
thematic context, while incorporating log-scaled frequency
considerations. Furthermore, we factored in the sociosituational
context, which encompasses variables such as the conversational
context (eg, interview, spontaneous discussion, phone call, or
academic seminar), the relationships between participants, and
their quantity. These considerations collectively contributed to
a more precise word prediction model [9].

To equip LLMs for tackling complex challenges and
transcending the constraints of generalized composition inherent
in thought chain prompts, which are often based on limited
examples, a novel “from more to less” prompting approach has
been introduced. This innovative methodology aims to combine
structured NLP techniques with self-consistent decoding
mechanisms. The proposed approach unfolds in sequential
phases, commencing with the decomposition and resolution of
subproblems. This involves furnishing consistent examples
showcasing the resolution of subproblems and compiling lists
of previously answered subquestions along with their solutions.
It is noteworthy to emphasize that consistent decoding, in this
context, refers to the coherent and logical interpretation of
information during the model’s generation process. This “from
more to less” approach lays the foundation for leveraging
bidirectional interactions, thereby enhancing the performance
of LLMs in complex tasks [10].

Given the distinct characteristics of LLMs and specific
operational considerations, the primary focus of this study lies
in addressing the challenges associated with health care
digitalization. This research places a significant emphasis on
information extraction, with a notable shift toward document
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analysis as opposed to the conventional extract, transform, load
or extract, load, transform processes commonly applied to
structured datasets. This approach, broadly categorized, aims
to unveil structured information from unstructured or
semistructured texts, representing a more expressive method
that enhances communication.

It is essential to note that the extract, transform, load typically
refers to the process of extracting, transforming, and loading
data into a structured format, while the extract, load, transform
process reverses the sequence by loading data first and then
transforming it. Our work underscores the significance of
document analysis as a specialized area within the broader field
of empirical NLP, involving the extraction and encoding of
information in the context of health care digitalization [11].

To be more precise, in our experiment, we will collect various
medical reports in PDF. Using prompts, we will attempt to
extract diverse clinical information, such as age, weight, family
medical history, date of birth, or potential allergies. This
information will be used to enhance our local data model, thus
optimizing diagnostic monitoring by reducing the need for
manual inquiries and the time spent on nonautomated searches.
The experiment will be conducted through the implementation
of the LangChain framework in Python, with concurrent use of
models from OpenAI (GPT 4o), Meta (Llama 3 and 3.1), Google
(Gemma and Gemma 2), and Alibaba (Qwen 2 and Qwen 2.5).

The advancements in LLMs have significantly expanded their
applications across various domains, particularly in health care,
where they have demonstrated substantial utility. As we explore
the intricacies of LLMs, the transition from foundational
understanding to practical implementation becomes evident. In
the preceding section, an exploration of the fundamental
architecture of LLMs underscores their training methods and
transformative capacities across diverse disciplines.

This study focuses on the integration of these models into
medical practice by drawing the attention to the practical
implications of LLMs in health care digitalization. The ensuing
discussion delves into the strategic application of LLMs to
address intricate health care challenges, emphasizing their
pivotal role in information extraction and meticulous document
analysis. This discussion lays the groundwork for our empirical
endeavors, where LLMs are used to extract critical clinical
information from medical reports, enabling the optimization of
diagnostic monitoring and reducing reliance on manual efforts.

Related Works
Multiple experiments have been conducted using LLMs to
analyze documents, using metrics that evaluate fluency (whether
the generated text is coherent), correctness (if the prompt
response is appropriate), and the quality of citations (if the cited
passages are suitable). These experiments involve combining
automated metrics with human evaluation, which uses
qualitative metrics to assess aspects such as utility and the
coherence of citations, assigning scores on a scale from 1 to 5.
Evaluation metrics were adapted for each dataset, incorporating
custom accuracy measures tailored to the specifics of each
dataset [12].

Network syntactic analysis, a method used for modeling
knowledge about document components by delineating their
geometric properties, lexical entities, and relationships, has
emerged as a prominent technique. An example of its application
is seen in the use of the FRESCO (Frame Spatial-Temporal
Correspondence) semantic network language. In this experiment,
FRESCO was used to analyze business letters, facilitating the
extraction of structural elements such as the sender, recipient,
date, and main body. This approach facilitates a comprehensive
specification of knowledge concerning these structural
components, contributing to accuracy and completeness in the
modeling process.

The accuracy of structural entity recognition is high when the
visual organization of document elements (position, size,
images, and text formatting, etc) can be used to identify the
sender. However, this accuracy may decrease when the
information is not concentrated in a specific location and is
instead scattered across different sections of the letter. This
situation can lead to document rejection, but the use of network
analysis, combined with layer-specific knowledge, can optimize
information extraction and automatic response generation [13].

Given that current transformer-based neural networks use
probabilistic techniques, it is interesting to note that decades
ago, probabilistic experiments were conducted based on research
into the use of logistic regression for obtaining ad hoc data,
where a regression equation is fitted to learn data. The variables
used in the equation are often statistical averages. Linear
regression is used to identify simple yet effective probabilistic
paths by combining search cues. The effectiveness of
information retrieval has been enhanced through manual
reformulations of topics [14].

This approach mirrors earlier probabilistic retrieval methods,
such as staged logistic regression, which combined multiple
retrieval clues to improve relevance estimates. These
foundational techniques, though simpler, share conceptual
similarities with modern transformer-based models, where
embeddings and attention mechanisms probabilistically weigh
token importance. The evolution from manual reformulations
and regression-based methods to automated neural networks
underscores the enduring role of probabilistic thinking in
enhancing retrieval effectiveness [15].

The integration of knowledge graph (KG) structures has
emerged as a pivotal resource in the realm of text document
analysis. Through the application of advanced NLP techniques,
this approach facilitates the extraction of critical entities, such
as geographical locations, temporal references, and personal
names, followed by the use of specialized tools to address
ambiguities and spelling variations. This approach, known as
“occurrence data,” emphasizes the preservation of terms,
phrases, and entities throughout the analytical process.

The integration of NLP with KG structures enhances textual
comprehension by focusing on contextual relationships, which
facilitates precise information retrieval and analysis. The use
of KG structures in text document analysis enables deeper
insights and a refined understanding of data, overcoming the
limitations of traditional keyword-based search approaches and
expanding the scope of scientific exploration and data analysis.
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Once the various entities have been extracted, the KG
construction process commences. Each extracted entity
represents a labeled node, and for each source of the various
entities, a corresponding node is added. In the graph, a weight-1
edge is introduced between entities that co-occur within a
document, signifying their simultaneous presence. However,
when adding new nodes to the graph, care must be taken to
ensure that no preexisting node with the label of the entity
already exists, as in such cases, the existing node is repurposed.

To account for the diverse nature of entities, each node is
equipped with a set of nature properties, allowing us to record
the type of entities (eg, distinguishing between individuals and
geolocations). If a vertex to be inserted already exists, as is the
case with locations and dates, the vertex’s weight is increased
incrementally. The resulting graph is both weighted and
undirected, offering a wide range of query capabilities that can
be tailored as needed. The structure of the links between nodes
also allows for flexibility in the types of data that can be
retrieved [16].

Recent advancements in KG augmentation have demonstrated
the benefits of integrating textual information to enhance entity
representations. For instance, recent work by Abaho and Alfaifi
[17] proposes a multitask framework that leverages dense
retrieval to select highly relevant text descriptions for KG
entities, subsequently augmenting the KG embeddings with
these descriptions. This approach addresses the limitations of
using single text descriptions by introducing a retriever model
that automatically identifies richer and more contextually
relevant text sources. Building on these advancements, this
study explores the application of graph neural networks (GNNs)
in NLP, focusing on KG rewiring and document classification.

Leveraging GNNs’ capabilities, we advance text analysis by
uncovering hidden semantic connections and improving
recommendation systems. By using GNN-driven techniques to
analyze semantic graphs and detect complex patterns in text
data, our comparative analysis of GNN models, applied to KGs
derived from modern art biographies, demonstrates their
potential to enhance classification accuracy, manage noise, and
provide deeper insights into text construction. These methods,
combined with transformer-based models such as SBERT
(sentence-bidirectional encoder representations from
transformers) for encoding text descriptions, achieve significant
performance gains, highlighting the importance of integrating
multiple text descriptions to capture diverse contexts. This
research paves the way for broader applications of GNNs and
dense retrieval techniques in fields requiring detailed text
analysis and sophisticated KG interpretation [18].

In the medical field, a substantial portion of data remains
unstructured today, encompassing concepts such as emails, data
streams, voice and video recordings, as well as digital
documents. Structured data’s growth tends to be more gradual.
Automated text mining includes a range of methods that
facilitate access to relevant information. Recent attention has
been focused on NLP, as techniques from other domains, such
as information retrieval and extraction (automated extraction
of structured data from unstructured sources), are adapted and
integrated into this context [19].

Data extraction often leads to the discovery of tabular data,
which are frequently embedded within text, particularly in
medical diagnoses. Traditional machine learning models struggle
to efficiently process information in this format, while LLMs
also face limitations in this regard. In response, methodologies
such as TEMED-LLM have been developed, which include 3
key components: reasoning-extraction, result validation and
correction, and training (preferably of an interpretable model
based on the extracted tabular data) [20].

With the aforementioned goal in mind, efforts have been
directed toward tasks such as SCHEMA-TO-JSON, a task
focused on the extraction of structured records from tables and
other semistructured data sources, such as a web page. This task
takes as input a table that can optionally be supplemented with
context from the same document, along with an extraction
schema that specifies the attributes to be extracted for different
records that may contain varying numbers of attributes. As a
result, it generates a sequence of JSON objects represented by
an array of key-value pairs, each paired with a record type,
condensing the information into a more accessible format.

An approach for table extraction called InstructTE is applied,
which demonstrates competitive performance in both accuracy
and precision, with an emphasis on balancing the two. It only
requires a human-constructed extraction schema, incorporating
an error recovery strategy. The schema approach helps the
extraction process adhere to a predefined structure, improving
the accuracy and consistency of the extracted information.
Primarily, human-driven prompting is used to direct LLMs
during the extraction of data from complex tables [21].

In addition, other data extraction experiments have been
conducted, focusing on radiological results that may not
necessarily be textual reports. In the case of textual data, a
state-of-the-art question-answering system was used, contrasting
with radiologist annotations [22]. On the other hand, for
nontextual data, a manual extraction of various tomographies
was performed, where the reports were randomly partitioned
into training and validation sets based on a natural language
rule to extract report attributes (resulting in high precision in
identifying occlusion, distal, or basilar, of several large blood
vessels) [23].

Methods

Models
In this study, we carefully selected specific versions and
configurations of LLMs to ensure clarity and replicability in
our experimental setup. For GPT-4o, the model used
corresponds to the GPT-4o-2024-08-06 version, released in
May 2024. This version, also known as GPT-4 Omni, is
optimized for high-complexity, multistep tasks, with training
data extending until December 2023. GPT-4o includes a context
window of up to 128,000 tokens and shows superior
performance compared to GPT-4 Turbo, achieving twice the
processing speed while reducing computational costs by 50%.

The Llama 3 model, developed and publicly released by Meta
in April 2024, was evaluated in its 8 billion parameter (8B)
configuration. This version incorporates a tokenizer vocabulary

JMIR AI 2025 | vol. 4 | e68776 | p. 4https://ai.jmir.org/2025/1/e68776
(page number not for citation purposes)

Garcia-Carmona et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of 128,000 tokens and uses grouped query attention mechanisms
to enhance performance on complex text tasks. Pretraining for
Llama 3 was conducted on a dataset comprising 15 trillion
tokens, with approximately 5% of the dataset consisting of
languages other than English. Posttraining included strategies
such as supervised fine-tuning, preference optimization,
rejection sampling, and proximal policy optimization. In addition
to Llama 3, the updated Llama 3.1 version, released in July
2024, was also included in our study. Llama 3.1 incorporates
architectural refinements, including enhanced attention
mechanisms, and supports up to 405 billion parameters in its
largest configuration. For this study, we used the 8B version of
both models for consistency. Quantization from 16-bit to 8-bit
numerics was applied to optimize computational performance,
and both versions support a context window of up to 128,000
tokens.

The Qwen 2 and Qwen 2.5 models, developed by Alibaba Cloud,
were evaluated in their 7 billion parameter (7B) configurations.
Qwen 2, updated 3 months before this study, incorporates
specialized bias terms for queries, keys, and values, significantly
improving its attention mechanisms. This model was trained
on a multilingual dataset spanning 27 languages, making it
particularly robust for cross-linguistic applications. Qwen 2.5,
released 2 months before our experiments, includes additional
advancements in reasoning capabilities, such as chain-of-thought
and program-of-thought techniques, which improve performance
on tasks requiring structured and logical reasoning. Qwen 2.5
was pretrained on an expanded dataset of 18 trillion tokens,
further refining its multilingual and contextual generation
capabilities.

Finally, the Gemma models, derived from Google’s Gemini
generative chatbot, were also evaluated. Gemma 1, featuring 7
billion parameters, uses a decoder-only architecture designed
for sequential text generation. It was trained with a context
length of 8192 tokens, optimizing it for tasks requiring strict
sequence fidelity. Gemma 2, with 9 billion parameters,
incorporates advanced techniques such as grouped-query
attention and root mean square normalization (RMSNorm) to
enhance its multihead attention efficiency and model stability.
Gemma 2 is particularly effective at selectively processing
broader contexts while maintaining focus on smaller windows
of words.

These configurations reflect a balance between computational
feasibility and robust benchmarking across diverse model
architectures. All models were evaluated under identical
experimental conditions to ensure consistency and comparability
of results.

Data
The documents under examination consist of clinical histories
from diverse origins, lacking a standardized format. Sourced
from various hospitals and medical conventions with
heterogeneous organizational structures, these documents pose
a unique challenge due to their nonconformity to a single
medical specialty (eg, cardiology, gynecology, and psychiatry,
etc). This diversity results in a broad clinical and
pharmacological spectrum, encompassing a wide range of
clinical conditions and medication types.

The dataset used in this study comprises 100 Spanish medical
reports in PDF format, carefully selected to represent a broad
spectrum of clinical scenarios. These documents are unstructured
medical records, primarily consisting of free-text narratives
without a standardized format. They include sections related to
patient demographics (eg, age), clinical diagnoses, prescribed
medications, diagnostic tests, and reasons for consultation. The
length of the documents varies, with some being concise
summaries and others containing more detailed descriptions of
patient histories and treatments.

The heterogeneity of these cases, spanning various medical
specialties (eg, cardiology, internal medicine, and family
medicine) and levels of complexity, reflects the real-world
variability encountered in clinical practice. This diversity is
intentional, as the study aims to evaluate how effectively health
care professionals can retrieve critical information from medical
histories in time-sensitive clinical settings.

The dataset is fully anonymized, with no personally identifiable
information included. The anonymization process was conducted
by the source institutions (the Spanish Society of Internal
Medicine, the Asturian Society of Family and Community
Medicine, the Spanish Society of Cardiology, and the Faculty
of Medicine at Francisco Marroquín University) before their
provision for this study. These institutions followed their internal
guidelines and ethical standards to ensure that all personal
identifiers, such as patient names, addresses, and contact
information, were removed or replaced with generic
placeholders (eg, “Patient X”). This preexisting anonymization
ensures that the dataset is ethically compliant and suitable for
research purposes.

While the lack of a standardized format poses challenges for
information extraction, it also provides a realistic representation
of the variability found in real-world medical records. This
makes the dataset particularly valuable for evaluating the
adaptability and robustness of LLMs in processing unstructured
clinical data.

Spanish was chosen as the language for this study because,
despite being the second most spoken language in the world,
there is a noticeable gap in the number of studies conducted in
Spanish compared to those in English. Addressing this gap is
crucial to ensure that advancements in medical data-processing
technologies are accessible and applicable to Spanish-speaking
health care professionals and systems. This focus enhances the
study’s relevance to a global audience while supporting the
development of tools tailored to underrepresented linguistic
contexts.

To extract data from these documents, we used a zero-shot
prompting data extraction technique [24], designed to enhance
performance in tasks involving reasoning with linguistically
untrained or previously unexposed information within a specific
task or domain, using Pydantic. Building on this approach, we
created a predefined prompt based on a template querying
specific categories: “nombre” (name and surname), “edad”
(age), “diagnostico” (diagnosis), “medicamentos” (drugs), and
“pruebas” (medical tests). The prompt is structured as shown
in Figure 1.
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Figure 1. Prompt structure.

This code defines the prompt template and the
retrieval-augmented generation (RAG) chain, which guides the
model in extracting structured information from unstructured
PDF documents. The prompt is designed to ensure consistency
and alignment with the predefined JSON schema. Using the
information extracted from the documents, the code formats
and prepares the corresponding prompt, proposing a structure
that chains the categories according to predefined fields. This
process ensures that the extracted data are organized and ready
for further analysis or integration into downstream applications.
It is important to note that our dataset comprises approximately
100 PDF documents written in the Spanish language.

Computational Resources and Implementation Details
This study was conducted using a PC equipped with an Intel
Core i7 processor, an Nvidia GeForce RTX graphics card, and
16 GB of RAM. This setup provided sufficient computational
power to process the dataset and run the models efficiently
within a local environment. While not using extensive GPU
clusters, this configuration demonstrates the feasibility of
applying these methods using accessible hardware.

Preprocessing steps included extracting text from PDF files and
segmenting the content into manageable chunks using a semantic
chunker. The semantic chunker was specifically used to ensure
that the chunks maintained semantic coherence, a critical
requirement to minimize hallucinations during information
extraction, particularly in the sensitive context of health care.
This approach allowed the model to process contextually
relevant pieces of information, thereby improving the reliability
of the results. The processed chunks were stored in a Facebook
Artificial Intelligence Similarity Search (FAISS) vector database
for retrieval purposes, although this specific choice of database
did not influence model performance directly and was used
primarily for organizational convenience.

The JSON schema was defined using Python’s Pydantic library
to ensure consistency in the extracted information. Prompt
templates were carefully designed to query specific attributes,
including name, age, diagnosis, medications, and tests, enabling
structured data extraction.

Although the dataset itself cannot be shared due to
confidentiality constraints, future work will explore the creation
of synthetic datasets that mimic the structure and complexity
of the original data to facilitate reproducibility. The
implementation scripts used for processing, running models,
and generating results are available upon reasonable request to
the corresponding author. Detailed configurations, including
prompt templates and hyperparameter settings, can also be
shared to support replication efforts.

Retrieval-Augmented Generation
RAG is an approach that enhances LLMs by integrating
information retrieval during the generation process, aiming to
address issues such as factual inaccuracies and hallucinations
observed in the output of LLMs [25]. The use of a semantic
chunker ensured that only meaningful and contextually relevant
information was fed into the retrieval and generation process,
directly impacting the accuracy and reliability of the outputs.
This methodological choice reflects the critical need for
precision in health care applications, where even minor
inaccuracies could lead to significant risks.

Traditional models, such as naive RAG, follow a conventional
methodology involving indexing, retrieval, and generation. In
this paradigm, original data undergo cleansing, conversion, and
segmentation into manageable chunks represented as vectors
through an embedding model. While naive RAG provides a
structured approach, it often faces challenges in retrieval
precision, recall, and handling outdated information, which can
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affect the quality of generation. In this study, semantic chunking
was used to address these challenges by ensuring that retrieved
information retained contextual relevance, thus improving the
reliability of the generation process in a critical domain like
health care [9].

The advanced RAG paradigm introduces optimization strategies
in the preretrieval process, focusing on enhancing data indexing,
fine-tuning embedding models, and postretrieval processes such

as reranking and prompt compression. Furthermore, the modular
RAG paradigm provides versatility and flexibility by integrating
various methods to enhance functional modules, making it
increasingly prevalent in the domain. Advanced RAG is
considered a specialized form of modular RAG, showcasing a
relationship of inheritance and development among the 3
paradigms [26]. A sort of schematic graphic abstraction is shown
in Figure 2.

Figure 2. General schematic representation of retrieval-augmented generation for data extraction from documents. AI: artificial intelligence; LLM:
large language model.

While our exploration focused on the basic yet impactful facets
of RAG, we specifically used a zero-shot prompting strategy
combined with semantic chunking. The semantic chunker,
implemented using LangChain, divides the extracted text into
semantically coherent segments by analyzing the differences in
embeddings between sentences. In our implementation, we used
the SemanticChunker class with only the embeddings parameter
configured, leveraging OpenAI embeddings to generate vector
representations of the text. This approach ensures that the text
is split into meaningful and contextually relevant chunks, which
are then used in the retrieval and generation process.

The semantic chunker works by determining when to “break”
apart sentences based on differences in their embeddings. When
the difference between two sentences exceeds a predefined
threshold (automatically calculated by the chunker), they are
split into separate chunks. By relying solely on the embeddings
parameter, we allowed the chunker to use its default settings
for threshold calculation and chunk size, ensuring a balance
between semantic coherence and practical usability. This
simplicity in configuration was chosen to maintain efficiency
while still achieving high-quality chunking results.

The retrieved chunks are integrated into the prompt as contextual
information for the LLM during response generation. To ensure
the model prioritizes the retrieved information over its pretrained
knowledge, we structured the prompt to explicitly instruct the
model to base its responses on the provided context. The prompt
template included the context (the top 3 most relevant chunks,
selected based on their embedding similarity to the query using
FAISS), the user query or task to be performed, and format
instructions to ensure the output adhered to the required
structure.

The integration was implemented using LangChain, where the
retriever (FAISS) fetched the most relevant chunks, and the
prompt template combined these chunks with the query and
format instructions. This approach ensured that the model’s
outputs were grounded in the retrieved information, aligning
with the structured schema of the task. For a detailed
implementation of the prompt structure and retrieval process,
refer to the Data section.

The semantic chunker, implemented using LangChain and the
corresponding LLM embeddings, ensured that the retrieved
chunks were semantically coherent and contextually relevant.
By relying on embedding similarity (cosine similarity) and
selecting the top 3 chunks, we minimized the risk of irrelevant
or fragmented information being included in the prompt. The
retrieval process was implemented using FAISS, a highly
efficient library for similarity search in high-dimensional spaces.
FAISS indexed the document chunks as vector embeddings,
enabling fast and accurate retrieval of the most relevant chunks
based on their semantic similarity to the query.

When a query is received, its embedding is generated using the
same embedding model used for the document chunks. This
ensures that both the query and the chunks are represented in
the same vector space, allowing for a direct comparison of their
semantic similarity. The similarity between the query embedding
and each chunk embedding is calculated using cosine similarity,
a metric that measures the cosine of the angle between two
vectors in the embedding space. The top 3 chunks with the
highest cosine similarity scores were selected for inclusion in
the prompt.
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This method inherently validated the relevance of the chunks,
as only those with the highest similarity to the query were used.
The decision to use semantic chunking was informed by prior
studies, which highlight its ability to enhance precision in
information extraction and semantic analysis, particularly in
complex domains such as health care [27]. The combination of
FAISS for efficient retrieval and cosine similarity for semantic
comparison ensured that the retrieved information was both
accurate and contextually appropriate, aligning with the
structured schema of the task.

Furthermore, the simplicity of this approach—using similarity
search and a straightforward prompt structure—allowed us to
maintain efficiency while achieving high accuracy. Unlike more
complex reasoning techniques such as chain-of-thought, our
implementation focused on minimizing computational overhead
without sacrificing precision. This was particularly important
in the health care domain, where even minor inaccuracies could
lead to significant risks. By combining semantic chunking with
RAG, we ensured that the generated outputs were both accurate
and contextually appropriate, aligning with the structured
schema of the task.

Upon mounting the file system that serves as the source for our
data, five steps are undertaken to structure and process the
information systematically. The first step is source file (PDF)
specification. Leveraging the PyPDFLoader class from the pypdf
package within the Python programming language, specifically
executed in a Jupyter Notebook environment, we systematically
manage the content of PDF files. This includes the extraction
of pertinent information from a predefined directory housing a
curated selection of clinical documents across various categories.
The subsequent use of PyPDFLoader facilitates the streamlined
processing of content from each document with the
corresponding LLM. The semantic chunker was used to divide
the extracted text into semantically coherent segments. This
approach was critical in reducing irrelevant or fragmented
information, ensuring only contextually relevant chunks were
used in the retrieval and generation process. The second step is
query schema creation. The formulation of a structured query
is conducted to generate a JSON-style schema, systematically
aligned with key patient attributes such as name, age, diagnostic
tests, diagnosis, and medication. Ensuring adherence to this
specified schema is imperative. The object-oriented
programming paradigm by Python, implemented within a
Jupyter Notebook, is instrumental in defining the class that
underpins this schema, thereby ensuring seamless data extraction
and subsequent processing. The third step is prompt formatting.
Before submitting the prompt for processing by the LLM, we
rigorously format it to align precisely with the schema defined
by Pydantic. This formatting process, executed in Python and
complemented by the Pydantic library for data validation within
the Jupyter Notebook framework, ensures that the response
from the LLM strictly adheres to the predefined schema. The
fourth step is model interaction. The transmission of the
formatted prompt to the LLM is facilitated through serialization.
This serialization process is executed using Python, either
through the OpenAI application programming interface or the
Ollama library, contingent upon the specific case. The LLM,
embedded within a Jupyter Notebook, retrieves embeddings

and pertinent data, applying predefined processing rules from
various data models. The culmination of this interaction is
directed toward a .bin file, serving as a repository for valuable
embeddings. The retrieved chunks were directly appended to
the input prompt as contextual information for the LLM. This
facilitated structured and accurate response generation aligned
with the predefined JSON schema. The fifth step is result
formatting. The outcomes of the prompt, critically, are not
processed as plain text but undergo transformation into JSON
format. This strategic conversion enhances clarity and eases
interpretation, ensuring a structured representation of the results.
The Python-based implementation, within the Jupyter Notebook
environment, facilitates subsequent processing and detailed
analysis.

The execution of this methodology was conducted on
high-performance hardware equipped with advanced processors,
sufficient memory, extensive storage, and specialized hardware
optimized for accelerating LLM computations. The
computational environment, seamlessly integrated with the
efficiency of a Jupyter Notebook, constitutes a critical
component of our execution framework.

Our comprehensive workflow unfolds within the structured
formalism of Python programming, harnessing the versatile
capabilities of a Jupyter Notebook. This robust combination not
only facilitates the extraction and structuring of data from
medical reports but also ensures dynamic and efficient handling
throughout the entirety of the process. The integration of
advanced hardware, including an Intel Core i7 processor, an
Nvidia GeForce RTX graphics card, and 16 GB RAM, provided
a solid computational foundation for executing the complex
tasks involved.

A critical component of this workflow was the use of a semantic
chunker, which ensured that the data segments processed and
retrieved maintained semantic coherence. This step significantly
improved the reliability of the retrieval and generation processes,
particularly in a health care context where accuracy and
contextual relevance are paramount. By prioritizing semantically
meaningful chunks, the methodology reduced the risk of
hallucinations and irrelevant outputs, thus aligning the generated
results more closely with the intended objectives.

The decision to use semantic chunking was informed by its
demonstrated advantages in prior studies, which highlight its
ability to enhance precision in information extraction and
semantic analysis, reduce time and memory costs, and improve
the handling of complex structures [27]. These benefits align
closely with the requirements of our task, where maintaining
semantic coherence and contextual relevance is essential for
ensuring the accuracy and reliability of the generated outputs.

For a comprehensive evaluation of the model’s performance,
including detailed metrics such as accuracy, precision, recall,
and F1-score, see the Evaluation and Results sections. These
sections provide an in-depth analysis of how RAG improves
the accuracy and reliability of the generated outputs, particularly
in the context of health care applications where precision is
paramount.
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The evaluation of our RAG-based approach focused primarily
on the generation component, as detailed in the Evaluation and
Results sections. Metrics such as accuracy, precision, recall,
and F1-score were used to assess the quality of the final outputs,
ensuring that the generated responses were both accurate and
contextually appropriate.

For the retrieval component, we used a pragmatic approach to
select the top 3 chunks (k=3) based on cosine similarity to the
query. This decision was guided by the structure and size of the
clinical documents, which typically consisted of approximately
2 pages with a consistent format. Given this limited scope,
retrieving 3 chunks provided a sufficiently strict yet manageable
amount of context for the generation process. This approach
minimized the risk of including irrelevant or fragmented
information in the prompt while ensuring that the most relevant
content was prioritized.

While a separate evaluation of the retrieval process (eg, using
metrics such as Recall@K [28] or mean reciprocal rank [29])
was not conducted, the observed performance in the generation
phase—coupled with the structured nature of the source
documents—supports the effectiveness of our retrieval strategy.
Future work could explore more granular evaluations of the
retrieval component to further optimize the balance between
chunk relevance and computational efficiency.

Given the specific nature of our task—extracting structured
information from medical documents stored in external
repositories—a comparison with a pure LLM prompting
approach (without retrieval) is not applicable. Our methodology
is designed to leverage the retrieval of relevant chunks from the
documents themselves, ensuring that the generated outputs are
grounded in the specific content of the source material. This
approach is fundamentally different from traditional LLM
prompting, which relies solely on the model’s pretrained
knowledge and does not incorporate external document retrieval.

Moreover, fine-tuning the model with proprietary data was not
considered necessary or viable for this study. Fine-tuning
typically requires a large amount of annotated data, which can
be costly and time-consuming to produce, particularly in
specialized domains such as health care. Instead, our zero-shot
prompting strategy, combined with semantic chunking and
RAG, provides a scalable and flexible solution for extracting
structured information from medical documents without the
need for extensive training data. This approach allows us to
maintain high accuracy and reliability while minimizing
computational overhead and resource requirements.

Code and Implementation Details
To ensure transparency and reproducibility, the implementation
of this study, including preprocessing, semantic chunking, model
prompting, and result generation, was conducted in Jupyter
Notebook using Python. The notebooks contain detailed steps
for extracting structured information from unstructured medical
reports and demonstrate the application of advanced LLMs in
a clinical context. The complete codebase, including
configuration parameters, prompt templates, and examples for
executing RAG workflows, is publicly available on GitHub

[30]. This repository ensures that the methodology can be
replicated or adapted to other datasets and scenarios.

Evaluation

To quantify the model’s performance, we evaluated its outputs
across the 5 categories of the JSON schematic framework (name,
age, diagnosis, tests, and medications) using standard metrics
derived from the confusion matrix. These metrics include
accuracy, precision, recall, and F1-score, which collectively
provide a comprehensive assessment of the model’s
effectiveness in extracting structured information from medical
reports.

The ground truth for evaluation was established by manually
annotating a subset of the dataset, ensuring that each patient
attribute (name, age, diagnosis, tests, and medications) was
accurately labeled. This annotated dataset served as the reference
for comparing the model’s predictions. The distribution of
entities in the ground truth varied across categories, with some
categories (eg, diagnoses and tests) having a higher frequency
of positive instances compared to others (eg, names and ages).
This imbalance highlights the importance of using metrics such
as precision, recall, and F1-score, which are more informative
than accuracy in scenarios with uneven class distributions.

Our evaluation approach aligns with the methodology used by
Fornasiere et al [31], who used Mistral 7B for medical
information extraction tasks, including medication and timeline
extraction. Similar to our study, they used standard metrics such
as precision, recall, and F1-score to evaluate model performance.
However, while our study focused on a zero-shot prompting
approach, it explored multiple prompting strategies, including
zero-shot, few-shot, and sequential prompting. Their results
demonstrated that few-shot and sequential prompting
significantly improved model performance, particularly in tasks
requiring detailed information extraction, such as identifying
medication dosage and frequency.

In terms of performance, they reported an F1-score of 0.683 for
medication extraction using a few-shot approach with JSON
output, which is comparable to our model’s performance in
similar categories. However, their study also highlighted
challenges in extracting full medication details, achieving lower
F1-scores for tasks involving dosage and frequency extraction.
This aligns with our findings, where the model struggled to
achieve high recall in categories such as names and ages, likely
due to the variability and complexity of the data [31].

While our study primarily used a zero-shot approach, fine-tuning
represents a powerful alternative for enhancing model
performance in domain-specific tasks such as medical
information extraction. Fine-tuning involves adapting a
pretrained LLM to a specific domain by continuing its training
on a smaller, task-specific dataset. This process allows the model
to better capture domain-specific terminology, context, and
nuances, which are critical in health care applications.

For example, models such as BioBERT and ClinicalBERT have
demonstrated the effectiveness of fine-tuning in medical NLP
tasks. BioBERT, a domain-specific adaptation of bidirectional
encoder representations from transformers (BERT), was
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fine-tuned on biomedical text corpora and achieved
state-of-the-art performance in tasks such as named entity
recognition and relation extraction in the biomedical domain.
Similarly, ClinicalBERT, fine-tuned on clinical notes from
EHRs, has shown superior performance in extracting clinical
concepts and predicting patient outcomes. These models
highlight the strengths of fine-tuning, particularly its ability to
improve precision and recall in complex, domain-specific tasks.

However, fine-tuning also has its limitations. It requires a
substantial amount of annotated data, which can be costly and
time-consuming to produce, particularly in specialized domains
such as health care. In addition, fine-tuned models can overfit
if the training dataset is too small or not representative of the
broader domain. This can limit their generalizability to new or
unseen data. Despite these challenges, fine-tuning remains a
valuable approach for improving model performance in tasks
where domain-specific knowledge is critical [32].

In a recent study by Ntinopoulos et al [33], the performance of
multiple LLMs was evaluated for data extraction from
unstructured and semistructured EHRs. Their findings revealed
that models such as Claude 3.0 Opus, GPT-4, and Llama 3-70b
achieved outstanding accuracy (>0.98) in both entity extraction
and binary classification tasks. These results are consistent with
our observations, where the model demonstrated high precision
and recall in extracting structured information from unstructured
PDFs. However, Ntinopoulos et al [33] also highlighted
challenges in handling long, unstructured texts, particularly
when relevant information is scattered throughout the document.
This aligns with our findings, where the model struggled with
categories such as ages and medications, likely due to the
variability and complexity of the data.

Specifically, the variability in how ages and medications are
expressed (eg, “45 años” vs “45 y/o” or “Paracetamol” vs
“Acetaminofén”), combined with the lack of explicit contextual
cues, makes these categories particularly challenging to extract
accurately. In addition, the dispersion of relevant information
across the document further complicates the extraction process.
In unstructured PDFs, critical details such as ages or medications
may appear in different sections, often without clear labels or
consistent formatting. This contrasts with more structured data,
where information is typically organized in predictable ways
(eg, tables or labeled fields). The need for the model to navigate
and interpret such dispersed information adds another layer of
complexity.

In addition, Ntinopoulos et al [33] emphasized the importance
of response consistency across multiple iterations of the same
prompt, a factor that we consider critical for ensuring the
reliability of our model in real-world applications. In their study,
models such as Claude 3.0 Opus and GPT-4 demonstrated high
consistency, with minimal variation in responses across multiple
runs. This is particularly important in clinical settings, where
inconsistent outputs could lead to errors in patient care or data
analysis. While our current evaluation focuses on accuracy and
recall, future work will include consistency assessments to

further validate the model’s robustness. This aligns with the
broader trend in the field, where consistency is increasingly
recognized as a key metric for evaluating the reliability of LLMs
in health care applications [33].

To complement these consistency considerations, we used
standard evaluation metrics to quantify the model’s performance.
Accuracy measures the overall correctness of predictions,
precision evaluates the relevance of the extracted data, recall
assesses the system’s ability to capture all pertinent information,
and the F1-score provides a balanced measure that accounts for
both precision and recall. These metrics are particularly useful
for evaluating performance in scenarios with imbalanced data
distributions, ensuring a robust assessment of the model’s
capabilities.

The JSON schema served as the foundation for structuring the
extracted data, ensuring consistency and alignment with key
patient attributes. By adhering to this schema, the model’s
outputs were systematically organized, facilitating both
evaluation and integration into downstream applications. This
structured approach not only streamlined the extraction process
but also enabled a clear and standardized framework for
assessing performance across diverse categories.

By using these metrics and leveraging the JSON schema, our
evaluation offers a detailed understanding of the model’s
performance, highlighting its strengths and areas for
improvement in extracting and structuring data from medical
reports. While fine-tuning presents a promising avenue for
further performance gains, our zero-shot approach provides a
scalable and flexible solution for medical information extraction,
particularly in scenarios where annotated training data are
limited.

Ethical Considerations
This study was approved for development by the Research
Committee of the School of Doctoral Studies and Research at
Universidad Europea (approval number 2025-637). The study
used anonymized clinical cases, ensuring that no personally
identifiable information was included. As the dataset comprised
fully deidentified cases prepared in accordance with institutional
guidelines, no additional ethics review board approval was
required. The anonymization process strictly followed
established protocols to guarantee privacy and confidentiality,
upholding the highest ethical standards for research involving
secondary analysis of medical data.

Results

Performance Metrics
The evaluation of the models is presented in Table 1, which
summarizes their performance across specific medical data
categories: names, ages, diagnoses, tests, and medication. Key
metrics such as accuracy, precision, recall, and F1-score are
provided, alongside an overall average (Avg) calculated across
all categories.
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Table 1. Correct scores per categories of different large language models. Italicized values show best metric results.

F1-scoreRecallPrecisionAccuracyModel and category

GPT-4o

0.2220.1430.5000.860Names

0.9850.9701.0000.970Ages

0.9420.9890.8990.890Diagnoses

0.9741.0000.9490.950Tests

0.9430.9320.9530.900Medication

0.8130.8070.8600.914Average

Llama 3

0.1370.3130.0880.370Names

0.7080.5600.9620.580Ages

0.8500.8160.8880.750Diagnoses

0.8450.7980.8990.740Tests

0.7950.6670.9830.700Medication

0.6670.6310.7640.628Average

Llama 3.1

0.1020.3750.0590.470Names

0.6570.5050.9400.510Ages

0.8440.7370.9860.730Diagnoses

0.8300.7400.9470.710Tests

0.7680.6241.0000.680Medication

0.6400.5960.7860.620Average

Gemma

0.0930.5000.0510.606Names

0.6330.4730.9570.485Ages

0.8600.7630.9870.758Diagnoses

0.8200.7020.9850.707Tests

0.8190.7020.9830.735Medication

0.6450.6280.7930.658Average

Gemma 2

0.2861.0000.1670.800Names

0.8260.7340.9450.710Ages

0.9951.0000.9900.990Diagnoses

0.9900.9801.0000.980Tests

0.9080.8510.9740.850Medication

0.2861.0000.1670.800Average

Qwen 2

0.0360.0910.0230.470Names

0.5520.3940.9250.400Ages

0.8890.8001.0000.800Diagnoses

0.8880.8060.9880.800Tests

0.8000.6671.0000.740Medication

0.6330.5510.7870.642Average
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F1-scoreRecallPrecisionAccuracyModel and category

Qwen 2.5

0.1250.4290.0730.580Names

0.6940.5880.8470.560Ages

0.9901.0000.9800.980Diagnoses

0.9640.9490.9790.930Tests

0.8780.8020.9700.820Medication

0.7300.7540.7700.774Average

As noted in the Evaluation section, the ground truth was
established through manual annotation, and the distribution of
entities varied significantly across categories. For instance,
diagnoses and tests had a higher frequency of positive instances,
while names and ages were less frequent. This imbalance
underscores the importance of relying on metrics such as
precision, recall, and F1-score, which provide a more nuanced
understanding of model performance than accuracy alone.

Observational Assessment
An analysis of the results revealed significant variations in
performance both between models and within individual
categories. For instance, GPT-4o demonstrated outstanding
overall performance, with an average accuracy of 0.914 and an
F1-score of 0.813. However, it performed notably poorly in the
names category, achieving an F1-score of 0.222, suggesting that
the model struggles to process textual entities that are complex
or inconsistent.

In contrast, Gemma 2 excelled in categories such as diagnoses,
achieving an F1-score of 0.995, and tests, with an F1-score of
0.990, showing high consistency in these critical areas.
Nevertheless, its low performance in names, with a precision
of 0.167, indicates a lack of balance across categories, which
may limit its application in scenarios requiring the extraction
of diverse types of sensitive data.

Models such as Llama 3 and Llama 3.1 exhibited similar
patterns: relatively stable performance in diagnoses and tests
but marked deficiencies in names and ages. For instance, Llama
3 achieved an F1-score of just 0.137 in names, while reaching
an F1-score of 0.850 in diagnoses. This imbalance suggests that
these architectures are less effective across all categories,
potentially due to biases in training data or inherent limitations
in their model design.

An interesting case is Qwen 2.5, which achieved a competitive
average F1-score of 0.730 and strong performance in diagnoses,
with an F1-score of 0.990, and tests, with an F1-score of 0.964.
However, its performance in names (F1-score: 0.125) highlights
a common trend across the evaluated models: significant
challenges in this category, potentially due to the complexity
and variability of names in medical contexts.

These results reflect the challenges posed by a zero-shot
prompting approach, in which the models were tasked with
extracting structured information without prior task-specific
fine-tuning. While this method demonstrates the flexibility and

adaptability of the models, it may also exacerbate limitations
in categories requiring more nuanced understanding or
specialized training, such as names and ages.

Overall, while the average metrics provide a general view of
performance, the discrepancies across specific categories
underscore the need for more specialized approaches to ensure
consistent performance in medical applications. This analysis
emphasizes the importance of optimizing both the models and
prompting strategies to address the identified weaknesses and
ensure reliability in real-world scenarios.

For the category of names, the datasets used in this study did
not include actual personal identifiers due to anonymization.
Instead, references to the absence of names (eg, “not available”)
or generic mentions of a person were included. The consistently
poor performance of the models in this category indicates a
limitation in recognizing or interpreting such generic references
within the text. This suggests that the models struggled with
the ambiguity and variability introduced by the anonymized
data.

Discussion

Principal Findings
Among the evaluated models, GPT-4o demonstrated the highest
overall performance, achieving an average score of 91.4% across
all assessed categories. Each individual category score exceeded
80 points (out of 100), highlighting the model’s consistency
and robustness. In particular, GPT-4o excelled in accuracy,
precision, and F1-score, particularly in extracting age, diagnosis,
and tests information. However, its recall, while satisfactory
overall, was not as high as its other metrics, with Gemma 2
demonstrating superior recall rates in some categories.

A deeper analysis revealed that tasks such as name extraction
posed challenges for all models, particularly due to the
anonymization of the dataset, which used placeholder or fictional
names. This led to true negatives rather than errors, reflecting
a limitation inherent to the dataset design rather than a failure
of the models. Tasks such as medication and diagnosis
extraction, on the other hand, benefited from consistent
terminologies and clearer patterns in the data, enabling models
such as GPT-4o and Gemma 2 to achieve near-perfect precision
and recall in these areas.

The anonymization of patient narratives in this study presented
a unique challenge for the models in the names category. Rather
than extracting explicit names, the models were tasked with
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identifying placeholders or generic references. This experimental
setup, while necessary for data privacy, may not fully represent
real-world scenarios where explicit personal identifiers are often
present. Consequently, the results in this category should be
interpreted with this limitation in mind.

From an ethical and legal perspective, privacy is a fundamental
concern when handling medical data. Privacy can be interpreted
as intrinsic to the right to property, which extends beyond
tangible assets to include personal data, such as health,
economic, social, and nutritional information. Individuals often
seek to control the extent to which external entities can access
their personal data, particularly in sensitive domains such as
health care.

However, scientific and technological research faces a
significant dilemma. While the right to privacy must be
rigorously defended, the trial-and-error phases inherent in
advancements in fields such as computer science, medicine,
and pharmacology often require experiments with real-world
data. This tension underscores the importance of strategies such
as anonymization and pseudonymization, which allow
researchers to work with sensitive data while protecting
individual identities.

Despite the benefits of open data for research and innovation,
there is a lack of understanding about these strategies and the
potential of open data to enhance scientific progress. Not all
hospitals or institutions have open records suitable for
experimentation, and ethical considerations often limit the
availability of medical data for research purposes. In this study,
the dataset of 100 Spanish medical reports was carefully
anonymized to ensure compliance with ethical standards while
enabling meaningful analysis. The decision to use anonymized
data, rather than making the dataset publicly available, reflects
the need to balance the advancement of medical research with
the protection of patient privacy.

Gemma 2 followed closely behind GPT-4o, with an average
score of approximately 80%. Its performance was particularly
notable in the diagnosis and tests categories, where it achieved
recall rates of 1.000 and near-perfect accuracy. This suggests
that Gemma 2 is well-suited for tasks requiring exhaustive
retrieval of relevant information. However, its precision in the
name category remained low, reflecting ongoing challenges in
handling anonymized or placeholder data.

Llama 3 and Llama 3.1 showed intermediate performance, with
average scores of 62.8% and 62%, respectively. Both models
showed relative strengths in extracting diagnostic and
test-related information, achieving moderate recall and F1-scores
in these categories. However, their performance in extracting
names and age data was weaker, likely due to variability in the
data and limitations in their contextual understanding. The slight
improvements in Llama 3.1 indicate potential benefits from
iterative refinement in model architecture.

Qwen 2 and Qwen 2.5 demonstrated similar trends, with average
scores of 64% and 77%, respectively. Qwen 2 excelled in tasks
such as diagnosis and tests, achieving perfect precision, but
struggled significantly in name extraction due to placeholder
data. Qwen 2.5 improved on these results, particularly in recall

for diagnosis and tests, highlighting its potential for more
complex retrieval tasks. Nevertheless, both models require
further development to address challenges in handling diverse
data categories effectively.

Meta models exhibited acceptable accuracy for categories such
as diagnosis, tests, and medications but faced difficulties in
extracting names and age data. The significant class imbalance
and variability in these categories adversely impacted their
F1-scores. These results underscore the need for additional
fine-tuning or hybrid approaches to enhance their performance
in scenarios involving diverse and unstructured medical data.

The variability in performance across categories reflects the
inherent challenges of applying LLMs to a domain as diverse
as clinical medicine. The dataset used in this study spans
multiple medical specialties and includes a wide range of clinical
conditions, medications, and terminologies. While this diversity
enhances the generalizability of the findings, it also introduces
complexities that may not exist in more homogeneous datasets.
For example, categories such as medication and diagnosis
benefit from the relative uniformity of medical terminology,
while names and ages are inherently more variable due to
anonymization and differences in reporting formats. Future
efforts should explore the impact of dataset composition on
model performance, particularly when applied to real-world
clinical data.

From a broader perspective, these findings emphasize the
adaptability of LLMs for extracting structured information from
unstructured medical reports. Compared to traditional rule-based
systems, LLMs provide greater flexibility and scalability,
enabling them to handle a wide range of tasks and data formats.
However, hybrid approaches that combine rule-based methods
with generative capabilities could address some of the current
limitations, particularly in high-stakes tasks such as name
extraction.

The use of semantic chunking and RAG in this study
demonstrates the effectiveness of context-preserving techniques
in minimizing hallucinations and improving result relevance.
By integrating retrieved data directly into the prompt, the models
were able to generate structured outputs aligned with the
predefined schema. This approach highlights the importance of
carefully designed preprocessing steps to ensure consistent and
reliable outputs.

The implications for clinical workflows are significant. By
automating the extraction of critical patient information, LLMs
reduce the cognitive load on health care professionals, streamline
clinical workflows, and enable faster decision-making. These
advantages are particularly evident in time-sensitive scenarios,
where efficient information retrieval can make a substantial
difference. However, the practical scalability of these solutions
in resource-constrained environments remains an open question.
Future work should investigate how these models can be adapted
for deployment in settings with limited computational resources,
ensuring their broader applicability and impact.

Despite these strengths, several challenges persist. Future
research should focus on addressing edge cases, such as
ambiguous or inconsistent data, and on optimizing models for
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tasks requiring entity-specific recognition. In addition,
expanding error analysis to cover more granular categories and
integrating domain-specific fine-tuning can further enhance the
applicability of LLMs in health care settings.

This approach highlights the challenges of working with
sensitive data in health care research and underscores the
importance of developing robust frameworks for data
anonymization and access control. Future work should focus
on creating standardized protocols for data sharing that prioritize
both innovation and ethical responsibility.

Conclusions
This study explored various SCHEMA-TO-JSON strategies,
leveraging the capabilities of LLMs to organize and extract
information from medical reports based on a JSON schema
framework implemented using PyDantic. This approach aimed
to systematically structure clinical data, transforming
unstructured narratives into a standardized format. The
methodology proved effective in organizing domain-specific
health care information, laying a robust foundation for the
development of tailored data models.

The experimental results demonstrate that the LLMs used can
effectively extract relevant information from medical histories.
The high scores achieved in categories such as diagnoses and
pharmacological data underscore the potential of these models
to handle complex medical information. This aligns with
findings in related studies, such as syntactic network analysis
and KG frameworks, confirming the utility of advanced NLP
techniques in the medical domain.

However, the study also highlights the following key areas for
improvement:

• Challenges with personal details. OpenAI’s models, despite
their high overall performance, show inconsistencies in
extracting specific details such as names and ages. These
limitations are amplified in anonymized or pseudonymized
contexts, where implicit or indirect references add
complexity.

• Model variability. Models such as Gemma 2 and Qwen 2.5
exhibit strong performance in diagnostic and
pharmacological categories but share similar challenges in
handling personal details. Meta’s models require substantial
improvement across multiple categories, suggesting a
broader scope for refinement.

These findings emphasize the need for further optimization of
LLMs in domain-specific applications, particularly when
addressing sensitive or nuanced categories of data. Incorporating
additional training focused on these challenges or integrating
external knowledge sources, such as KGs, may enhance the
precision and adaptability of these models.

This work underscores the importance of deploying advanced
NLP strategies to improve information retrieval and analysis in
the medical domain. By addressing the inherent challenges of
structured and unstructured data, this study contributes to the
ongoing development of models capable of navigating and
interpreting complex clinical information more effectively.
Future work will focus on refining the extraction of sensitive
details and exploring the integration of complementary
techniques to enhance the overall robustness and reliability of
these systems.
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