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Abstract
Background: Asthma-related symptoms are significant predictors of asthma exacerbation. Most of these symptoms are
documented in clinical notes in a free-text format, and effective methods for capturing asthma-related symptoms from
unstructured data are lacking.
Objective: The study aims to develop a natural language processing (NLP) algorithm for identifying symptoms associated
with asthma from clinical notes within a large integrated health care system.
Methods: We analyzed unstructured clinical notes within 2 years before a visit with asthma diagnosis in 2013‐2018 and
2021‐2022 to identify 4 common asthma-related symptoms. Related terms and phrases were initially compiled from publicly
available resources and then refined through clinician input and chart review. A rule-based NLP algorithm was iteratively
developed and refined via multiple rounds of chart review followed by adjudication. Subsequently, transformer-based deep
learning algorithms were trained using the same manually annotated datasets. A hybrid NLP algorithm was then generated by
combining rule-based and transformer-based algorithms. The hybrid NLP algorithm was finally applied to the implementation
notes.
Results: A total of 11,374,552 eligible clinical notes with 128,211,793 sentences were analyzed. After applying the hybrid
algorithm to implementation notes, at least 1 asthma-related symptom was identified in 1,663,450 out of 127,763,086 (1.3%)
sentences and 858,350 out of 11,364,952 (7.55%) notes, respectively. Cough was the most frequently identified at both the
sentence (1,363,713/127,763,086, 1.07%) and note (660,685/11,364,952, 5.81%) levels, while chest tightness was the least
frequent at both the sentence (141,733/127,763,086, 0.11%) and note (64,251/11,364,952, 0.57%) levels. The frequency of
multiple symptoms ranged from 0.03% (36,057/127,763,086) to 0.38% (484,050/127,763,086) at the sentence level and 0.10%
(10,954/11,364,952) to 1.85% (209,805/11,364,952) at the note level. Validation against 1600 manually annotated clinical
notes yielded a positive predictive value ranging from 96.53% (wheezing) to 97.42% (chest tightness) at the sentence level and
96.76% (wheezing) to 97.42% (chest tightness) at the note level. Sensitivity ranged from 93.9% (dyspnea) to 95.95% (cough)
at the sentence level and 96% (chest tightness) to 99.07% (cough) at the note level. All 4 symptoms had F1-scores greater than
0.95 at both the sentence and note levels, regardless of NLP algorithms.
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Conclusions: The developed NLP algorithms could effectively capture asthma-related symptoms from unstructured clinical
notes. These algorithms could be used to facilitate early asthma detection and predict exacerbation risk.
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Introduction
Asthma is a chronic respiratory condition characterized
by airway inflammation and obstruction [1], affecting an
estimated 262 million people in 2019 worldwide [2]. In the
United States, asthma prevalence has increased since the early
1980s, reaching 7.8% in 2020 [3]. Uncontrolled asthma poses
a significant health risk to patients and an economic burden
to society [4]. Achieving and maintaining asthma control is
critical for preventing asthma exacerbation [5].

Asthma diagnosis, control classification, and severity
assessment rely on symptom documentation in electronic
health records (EHRs), including cough, dyspnea, wheez-
ing, and chest tightness [6]. However, identifying symptoms
from EHR is challenging because they are often recorded
in free-text clinical notes rather than standardized coding
formats.

Natural language processing (NLP) is a computational
technique that processes unstructured text data for informa-
tion extraction, classification, and prediction [7]. NLP has
been successfully applied to extract symptoms from clinical
narratives using rule-based methods [8-14], and machine
learning models [15,16]. Early NLP applications relied on
rule-based approaches, whereas recent methods leverage
advanced transformer-based deep learning models, such as
Bidirectional Encoder Representations from Transformers
(BERT) [17], which enhance performance through word
embeddings and attention mechanisms [18]. Previous studies
have successfully applied NLP to identify asthma diag-
nosis [19-22], asthma prognosis [23], asthma predictive
index [24], asthma control factor [25], and clinician adher-
ence to asthma treatment guidelines [26] among pediatric
asthma populations. However, to the best of our knowledge,

no previous studies have systematically analyzed asthma
symptoms in adult asthma populations using a hybrid NLP
approach.

This study aims to develop and validate a hybrid NLP
algorithm that combines rule- and transformer-based deep
learning approaches to capture 4 common asthma-related
symptoms within the EHR of a large integrated health system.

Methods
Study Setting
This retrospective study was conducted within the Kaiser
Permanente Southern California (KPSC), an integrated health
care system that provides comprehensive medical services
for more than 4.8 million enrollees across 15 large medical
centers and over 250 medical offices throughout the Southern
California region. The KPSC patient population is demo-
graphically representative of Southern California residents
[27]. Enrollees obtain their health insurance through group
plans, individual plans, Medicare, and Medicaid programs
and represent >260 ethnicities and >150 spoken languages.
KPSC’s extensive EHR contains structured data (including
encounter diagnosis codes and procedure codes, medica-
tion dispensing records, immunization records, laboratory
results, and pulmonary function test results) and unstructured
data (including free-text clinical notes, hospital discharge
notes, patient and provider messages, radiology reports, and
pathology reports). KPSC’s EHR covers all medical visits
across all health care settings (eg, outpatient, inpatient,
emergency department, and virtual). The flow of the entire
study process is shown in Figure 1, and each step is described
in detail below.

JMIR AI Xie et al

https://ai.jmir.org/2025/1/e69132 JMIR AI 2025 | vol. 4 | e69132 | p. 2
(page number not for citation purposes)

https://doi.org/10.2196/69132
https://ai.jmir.org/2025/1/e69132


Figure 1. Schematic diagram describing the process for identifying asthma-related symptoms from electronic health records. BERT: Bidirectional
Encoder Representations from Transformers; EHR: electronic health record; NLP: natural language processing; PPV: positive predictive value.

Study Population
The analyses were conducted on a cohort of adult patients
who met the study-defined criteria for mild asthma. Eli-
gible patients had a qualifying health care visit with an
asthma diagnosis in 2013‐2018 and 2021‐2022. Data from

2019‐2020 were excluded due to health care disruptions
during the COVID-19 pandemic [28]. The definition of
mild asthma was previously described [29]. Specifically, the
participants included patients who (1) were 18-85 years of
age with an asthma diagnosis visit (International Classifica-
tion of Diseases [ICD]-9: 493; ICD-10: J45) [index date],
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(2) had no more than one asthma controller or 2 canisters of
short-acting beta2-agonist dispensed in one year prior to or
on the index date (aka the baseline window), (3) had no more
than 1 acute asthma exacerbation in the baseline window,
(4) had no asthma hospitalization or encounter diagnosis
of chronic obstructive pulmonary disease, reactive airways
dysfunction syndrome, cystic fibrosis, HIV infection, immune
deficiency, active immunosuppressive treatment, transplanta-
tion of major organs, or respiratory, intrathoracic, laryngeal,
or breast cancer in the baseline window, and (5) maintained
health plan enrollment within 1 year prior to and after the
index date.
Symptom Keyword Selection
A list of phrases or terms relevant to cough, dyspnea,
wheezing, and chest tightness was compiled based on the
phrases or terms published in previous literature [8-12,14]
and ontologies found in the Unified Medical Language
System [30] relevant to the 4 symptoms. The list was then
reviewed and enriched by the study clinicians and further
enhanced by the manual data annotation processing (refer to
the “Data annotation process” subsection below). In addition,
for each of the study terms and phrases, synonym terms,
or misspelled word corrections were performed by manually
examining the top 100 similar words derived from a trained
deep learning word2vec model [31] based on the study
corpus. The compiled phrases and terms of the 4 symptoms
are summarized in Table S1 in Multimedia Appendix 1.
Extraction and Preprocessing of Study
Notes
Clinical notes and documented patient and provider tele-
phone or email communications within 2 years before the
index date (referred to as “notes” hereafter) for each study
participant were extracted from the KPSC EHR system.
Only the notes associated with certain medical encounters
(eg, office visits), note types (eg, progress notes), and
department specialties (eg, allergy) (Table S2 in Multimedia
Appendix 1) were extracted. The rest (eg, physical therapy
encounters) were excluded because they are unlikely to
contain information relevant to the symptoms of interest.
The selected notes were then preprocessed based on the
following steps: (1) lowercase conversion, sentence splitting,
section detection, and word tokenization [32]; (2) removal
of nondigital or nonletter characters except for space, period,
comma, question mark, and semicolon; (3) standardization of
the abbreviated symptom phrases or terms and correction of
misspelled words (Table S3 in Multimedia Appendix 1) based
on the word2vec models [31], supplemented by an internal
spelling correction algorithm developed in previous studies
[11-13].
Training Dataset, Validation Dataset, and
Implementation Dataset
A set of 9600 notes, each containing at least one relevant
phrase or term described in Table S1 in Multimedia Appen-
dix 1, was randomly selected from the retained study notes
described in the above section. These notes were randomly
divided into 12 batches, each containing 800 notes (200 notes

for each symptom of interest). The first 10 batches (with 8000
notes) were used for training the study algorithm (training
datasets), and the last 2 batches (with 1600 notes) were
used for validation of the algorithm’s performance (validation
dataset). Notes not used for training or validation formed the
study implementation dataset.

Data Annotation Process
The notes of both training and validation datasets were
manually reviewed by trained research annotators to indicate
the presence or absence of the 4 symptoms based on
the inclusion and exclusion criteria listed in Table S4 in
Multimedia Appendix 1. The annotation process was based
on a computer-assisted approach. First, each training and
validation dataset was exported into an MS Excel spread-
sheet with the highlighted prespecified phrase terms listed in
Table S1 of Multimedia Appendix 1. Second, the annotators
reviewed the processed notes and documented the presence
or absence of each of the 4 symptoms for each sentence.
Third, any undeterminable notes were adjudicated by the
study clinicians and fully discussed during weekly study team
meetings until a consensus was reached.

The validation dataset was double-reviewed (ie, 2
annotators independently reviewed the same set of notes).
The results from the 2 annotators were compared, and
inconsistencies were discussed until a consensus was reached.
If the annotators did not reach a consensus, the note
was reviewed and adjudicated by the study clinicians. The
adjudicated results were considered the gold standard for
training and validating the NLP algorithms.

The agreement, defined by the percentage of notes with
identical results, and the κ coefficient [33] estimated against
the double-annotated validation dataset were calculated to
assess the interrater reliability among the 2 annotators.

Rule-Based NLP Algorithm Development
We used the 10 annotated training datasets to develop
the rule-based NLP algorithms via an iterative process to
determine the presence or absence of the 4 symptoms of
interest at the sentence level. First, the notes were searched
for the phrases or terms and patterns that indicated the
presence or absence of each symptom (Table S1 in Mul-
timedia Appendix 1). In addition, any notes meeting the
conditions listed in Table S4 in Multimedia Appendix 1
were identified and excluded from further processing. The
algorithm was then developed to identify the patterns of the
presence or absence of each symptom for each sentence. A
list of negated terms (eg, denied, negative for), uncertain or
probable terms (eg, likely), definite terms (eg, positive for),
history terms (eg, a couple of months before), nonpatient
person terms (eg, referring to a family member or friend)
and general descriptions (eg, please return if you experience
any following symptoms) were compiled from the training
datasets. The compiled terms were refined via the repeated
test-revise strategy against the manually annotated results
within each training dataset until the algorithm perform-
ance reached a reasonable threshold (ie, precision >90%).
The discordant cases between the algorithm and manually

JMIR AI Xie et al

https://ai.jmir.org/2025/1/e69132 JMIR AI 2025 | vol. 4 | e69132 | p. 4
(page number not for citation purposes)

https://ai.jmir.org/2025/1/e69132


annotated results for each subset were further reviewed and
adjudicated among the annotators and the rest of the study
team until a consensus was reached.

The rules to determine the presence or absence of each
symptom at the sentence level were summarized in Table S5
in Multimedia Appendix 1. Subsequently, the sentence-level
results were combined to form the note-level results for each
symptom of interest. The classification at the note level was
determined as “Yes” if at least one sentence in the note was
deemed as “Yes.” Otherwise, it was classified as “No.”

Transformer-Based Deep Learning NLP
Algorithm Development and Validation
To enhance the performance of the rule-based NLP algorithm,
we used the BERT architecture [17] to develop and validate
transformer-based NLP algorithms for each of the symptoms
of interest. The process is described below.

We used the core learning objective masked language
modeling (MLM) and followed the BERT procedure [17]
for feature engineering and pretraining. A set of vocabulary
words was constructed and trained from the 9600 annota-
ted clinical notes. The clinical notes were then encoded
and embedded into numerical vectors for feature pretrain-
ing. About 20% of the tokens in the notes were randomly
selected for the pretraining MLM task. The parameters used
for optimizing the MLM are summarized in Table S6 in
Multimedia Appendix 1.

The optimized pretrain model was then used to train
further and classify the 4 study symptoms separately.
For each symptom, we developed and trained the BERT
classification model by using the annotated training dataset
via 5-fold cross-training-validation and the Adam optimizer
approach [34]. The training dataset was randomly split into 5
equal subsets. Four out of 5 subsets were used as the training,
and the other was used for internal validation, until every
subset was used once for internal validation. The parame-
ters used for tuning the model were summarized in Table
S6 in Multimedia Appendix 1. The model used the default
probability threshold of .5 to determine the classification for
each sentence and each symptom (Yes when P≥.5; No when
P<.5).

The final model’s discriminative power for each symp-
tom was evaluated by the area under the receiver operating
characteristic curve (AUC). The results were averaged across
the internal validation and external testing datasets.
Hybrid Algorithms
Finally, the rule- and transformer-based NLP algorithms were
consolidated to generate hybrid algorithms. The results of
the rule-based NLP algorithm were modified by the estima-
ted probabilities derived from the transformer-based NLP
algorithm. The cutoff threshold values for each symptom
group were summarized in Table S7 in Multimedia Appen-
dix 1. For each symptom, we determined 2 cutoff thresh-
olds of probability generated by the transformer-based NLP
algorithm to modify the results classified by the rule-based
algorithm, one was used for the group classified as No

by the rule-based algorithm, and the other was used for
the group classified as Yes by the rule-based algorithm.
These optimizing thresholds were obtained by maximizing
the F1-score against the validation dataset via increasing the
threshold value of the Yes group from 0 to 0.5 and decreasing
the threshold value of the No group from 1 to 0.5.

Evaluation of NLP Algorithms
The NLP algorithms were validated against manually
annotated notes at both sentence and note levels. For each
symptom, the numbers of true positive (TP), false positive
(FP), true negative, and false negative (FN) cases were used
to estimate the sensitivity (or recall), positive predictive value
(PPV) (or precision), and the overall F1-score, a harmonic
balance measurement of PPV and sensitivity. Sensitivity was
defined as the number of TP divided by the total number of
symptoms ascertained by the annotators (TP+FN). PPV was
defined as the number of TP divided by the total num-
ber of symptoms identified by the computerized algorithm
(TP+FP). The F1-score was calculated as: (2×PPV×sensitiv-
ity)/(PPV+sensitivity).
Discrepancy Analysis
For each symptom, the discordant results at both sentence
and note levels between the rule-based algorithm, trans-
former-based algorithm, and adjudicated chart review against
the validation dataset were analyzed. The number of false
positive and false negative cases for each comparison was
summarized in detail.
Computational Environment and
Implementation of the Consolidated NLP
Algorithm
The study was conducted via Python 3.10 (Python Software
Foundation) programming on a dedicated machine learning
Lambda workstation with 1 TB memory, an AMD Threadrip-
per Pro 3975WX with 32 cores @ 3.50 GHz processors,
and 4 RTX A6000 GPUs (graphics processing units; each
with 49 GB memory). We followed the transformer-based
BERT model requirements described on GitHub [35] to
install all necessary packages for the model development
and implementation. The BERT model feature pretraining,
asthma symptom classification training, and implementation
were executed simultaneously across 4 GPUs. The process-
ing time for BERT pretraining and symptom classification
training varied from 10 to 20 hours, depending on model
hyperparameters and the number of GPUs used. The final
NLP algorithm required approximately 140 hours to process
the implementation dataset and generate results.

Ethical Considerations
The KPSC Institutional Review Board reviewed and
approved the study protocol with a waiver of the requirement
for informed consent (approval number 13,414). The study
complied with the Health Insurance Portability and Accounta-
bility Act, with data access restricted to authorized personnel.
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Results
Summary of the Study Notes
A total of 11,374,552 eligible study notes and corresponding
128,211,793 sentences were retrieved during the study period.
The number of sentences and words per note in the training,

validation, and implementation datasets is summarized in
Table 1. The 3 datasets had a similar number of words per
sentence (mean values ranging from 12.6, SD 21.9, to 16.3,
SD 25.2); however, the number of sentences per note in the
implementation dataset (mean 11.2, SD 18.4) was smaller
than those in the training dataset (mean 48.4, SD 51.8) and
the validation dataset (mean 42.8, SD 37).

Table 1. Description of the study datasets.

Datasets Total notes, n Total sentences, n
Sentences per note,
mean (SD)

Words per note, mean
(SD)

Words per sentence,
mean (SD)

Training 8000 380,363 48.4 (51.8) 612.1 (560.8) 12.6 (21.9)
Validation 1600 68,344 42.8 (37) 684.9 (601.4) 16 (27.5)
Implementation 11,364,952 127,763,086 11.2 (18.4) 183.6 (303.8) 16.3 (25.2)

Interrater Reliability of the Two
Annotators Against the Validation
Dataset
The agreement and κ coefficient between the two annotators
against the validation dataset at both sentence and note levels
are summarized in Table S8 in Multimedia Appendix 1.
The agreement ranged from 99.82% (dyspnea) to 99.97%
(chest tightness) at the sentence level and 96.69% (cough) to
98.19% (chest tightness) at the note level. The κ coefficient
ranged from 0.94 to 0.97 at the sentence level and 0.91 to
0.93 at the note level.

Performance of the Transformer-Based
Models
The performance of the BERT models was optimized at word
sequence length=512, learning rate=1e-5, and batch size=32.
Table 2 summarizes the AUC for each dataset and symptom.
The performance was similar across these datasets for each
symptom; all AUCs were >0.99.

Table 2. The mean and SD of area under the receiver operating characteristic curve of the 5-fold cross-training-validation Bidirectional Encoder
Representations from Transformers models and the corresponding area under the receiver operating characteristic curve (AUC) on validation dataset
for the 4 asthma-related symptoms.
Symptom AUC

Training, mean (SD) Internal validation, mean (SD) Validation, mean (SD)
Cough 0.9989 (0.0002) 0.9975 (0.0008) 0.9986
Dyspnea 0.9963 (0.0013) 0.9935 (0.0021) 0.9973
Wheezing 0.9974 (0.0025) 0.9957 (0.0025) 0.997
Chest tightness 0.9988 (0.0007) 0.9969 (0.0026) 0.9971

Performance of the NLP Algorithms
Table 3 summarizes the performance of the rule-based,
transformer-based, and hybrid algorithms based on the
1600 notes in the validation dataset. Both rule- and

transformer-based algorithms yielded a precision (PPV) and
recall (sensitivity) of over 90% for all 4 symptoms at sentence
and note levels.

Table 3. The computerized model’s performance against the adjudicated chart review results in the validation data set at the sentence level
(n=68,344) and the note level (n=1600).
Symptom PPVa, % Sensitivity, % F1-score
Sentence level
  Rule-based
   Cough 96.95 93.74 0.953
   Dyspnea 96.55 93.75 0.951
   Wheezing 96.52 94.69 0.956
   Chest tightness 97.41 93.89 0.956
  BERTb

   Cough 95.9 94.7 0.953
 

JMIR AI Xie et al

https://ai.jmir.org/2025/1/e69132 JMIR AI 2025 | vol. 4 | e69132 | p. 6
(page number not for citation purposes)

https://ai.jmir.org/2025/1/e69132


 
Symptom PPVa, % Sensitivity, % F1-score
   Dyspnea 91.65 90.4 0.910
   Wheezing 93.06 94.12 0.935
   Chest tightness 93.73 95.56 0.946
  Hybrid
   Cough 97.17 95.95 0.966
   Dyspnea 96.86 93.9 0.954
   Wheezing 96.53 94.88 0.957
   Chest tightness 97.42 94.72 0.961
Note level
  Rule-based
   Cough 96.9 97.2 0.970
   Dyspnea 97.15 97.15 0.972
   Wheezing 96.44 96.44 0.964
   Chest tightness 97.77 95.64 0.966
  BERTb

   Cough 96.32 97.67 0.970
   Dyspnea 91.64 93.73 0.927
   Wheezing 92.5 95.79 0.941
   Chest tightness 93.66 96.73 0.952
  Hybrid
   Cough 97.7 99.07 0.984
   Dyspnea 97.71 97.15 0.974
   Wheezing 96.76 96.76 0.968
   Chest tightness 97.42 96 0.967

aPPV: positive predicted value.
bBERT: Bidirectional Encoder Representations from Transformers.

For the rule-based algorithm, the PPV ranged from 96.52%
(wheezing) to 97.41% (chest tightness) at the sentence level
and 96.44% (wheezing) to 97.77% (chest tightness) at the
note level; sensitivity ranged from 93.74% (cough) to 94.69%
(wheezing) at the sentence level and 96.44% (wheezing)
to 97.2% (cough) at the note level. The F1-score of the 4
symptoms was >0.95 at both sentence and note levels.

For the transformer-based algorithm, the PPV ranged from
91.65% (dyspnea) to 95.% (cough) at the sentence level
and 91.64% (dyspnea) to 96.32% (cough) at the note level;
sensitivity ranged from 90.4% (dyspnea) to 95.56% (chest
tightness) at the sentence level and 93.73% (dyspnea) to
97.67% (cough) at the note level. The F1-score ranged from
0.91 (dyspnea) to 0.953 (cough) at the sentence level and
0.927 (dyspnea) to 0.97 (cough) at the note level.

For the hybrid algorithm, the PPV ranged from 96.53%
(wheezing) to 97.42% (chest tightness) at the sentence level
and 96.76% (wheezing) to 97.42% (chest tightness) at the
note level; sensitivity ranged from 95.95% (cough) to 93.9%
(dyspnea) at the sentence level and 96% (chest tightness) to
99.07% (cough) at the note level. The corresponding F1-score
of all 4 symptoms was >0.95 at both the sentence and note
levels.

The consolidated hybrid algorithm resulted in superior
PPV and sensitivity for all symptoms at both sentence and

note levels, except that chest tightness had a slightly lower
PPV (vs the rule-based algorithm) and a bit lower sensitivity
(vs the transformer-based algorithm) at the note level.
Discrepancy Analysis
The discrepancy between the rule-based algorithm, trans-
former-based algorithm, and the adjudicated annotated results
is summarized in Table S9 in Multimedia Appendix 1.
Although the majority of sentences and notes were correctly
classified by both the rule- and transformer-based algorithms,
a small number of notes were incorrectly classified by both
algorithms (either FP or FN) for each symptom, and also
a small number of notes were correctly classified by the
rule-based algorithm but not the transformer-based algorithm
or vice versa. Examples of each symptom misclassification
by either rule-based or transformer-based algorithm were
provided in Table S10 in Multimedia Appendix 1.
Implementation of the Consolidated
Algorithm
The results of the implementation dataset by the consolida-
ted algorithm are summarized in Table 4. Of these notes, at
least one symptom was identified in 1,663,450/127,763,086
(1.3%) sentences and 858,350/11,364,952 (7.55%) notes,
respectively. Cough had the highest percentage at
both sentence (1,363,713/127,763,086, 1.07%) and note
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(660,685/11,364,952, 5.81%) levels while chest tightness
had the lowest one at both sentence (141,733/127,763,086,
0.11%) and note (64,251/11,364,952, 0.57%) levels.
The percentage of 2, 3, and 4 symptoms was 0.38%

(484,050/127,763,086), 0.19% (241,616/127,763,086), and
0.03% (36,057/127,763,086) at the sentence level and
1.85% (209,805/11,364,952), 0.71% (901,727/11,364,952),
and 0.1% (10,954/11,364,952) at the note level, respectively.

Table 4. Presence of symptoms identified by the computerized algorithms based on the study implementation data set at both sentence and note
levels.

Sentence level (n=127,763,086), n (%) Note level (n=11,364,952), n (%)
Symptom
  Cough 1,363,713 (1.07) 660,685 (5.81)
  Dyspnea 678,778 (0.53) 312,703 (2.75)
  Wheezing 554,679 (0.43) 224,918 (1.98)
  Chest tightness 141,733 (0.11) 64,251 (0.57)
  Any of above symptoms 1,663,450 (1.3) 858,350 (7.55)
Number of symptomsa

  1 901,727 (0.71) 556,821 (5)
  2 484,050 (0.38) 209,805 (1.85)
  3 241,616 (0.19) 80,770 (0.71)
  4 36,057 (0.03) 10,954 (0.1)

aThe number of mutual symptoms present.

Discussion
In this study, we successfully developed a hybrid NLP
framework combining the results of rule- and transformer-
based NLP algorithms to capture 4 asthma-related symptoms
from clinical notes and patient and provider communica-
tions. The validated models demonstrated high accuracy, with
precision (PPV) and recall (sensitivity) exceeding 90% at
both the sentence and note levels.

Both the rule- and transformer-based algorithms performed
well, with some notable differences. The transformer-based
algorithm generally yielded higher recall (sensitivity) at both
sentence and note levels, except for dyspnea and wheezing,
while the rule-based algorithm exhibited superior precision
(PPV). Previous research has similarly shown that rule-based
models can outperform machine learning or deep learning
approaches in domain-specific tasks [36,37]. For example, a
systematic meta-analysis study of NLP models for classi-
fying EHR documentation in mental health care found
that rule-based models achieved higher precision (average:
88.1% vs 79.1%), recall (average: 83.3% vs 73.3%) and
F1-score (average: 0.845 vs 0.718) compared to machine
learning models [36]. Likewise, another study demonstrated
that rule-based models were more effective than transformer-
based models in performing domain-specific communication
tasks [37]. These findings suggest that approach selection
should be guided by the specific needs of a study, available
resources, and performance metrics. For clinical applications
where minimizing false positives is crucial, such as decision
support systems and clinical trials, rule-based NLP may be
preferable [38].

Hybrid approaches that combine rule-based and machine
learning algorithms can leverage the strengths of both
algorithms to create a more robust, flexible, and accurate

solution. It has been shown to yield higher performance in
various applications, such as identifying asthma control factor
[25], identifying suicide ideation and suicidal attempts [39],
extracting negative schizophrenia symptoms [40], mining
occupational data [41], and deidentifying radiology reports
[42]. In this study, we demonstrated that the hybrid approach
leveraging both approaches can further enhance performance,
optimizing both precision and recall in asthma symptom
extraction. Given the increasing availability of computa-
tional resources, hybrid models may provide a balanced and
effective solution for NLP tasks in health care settings.

Despite the growing adoption of transformer-based models
in clinical NLP, their lack of interpretability remains a
significant challenge. The complex “black box” architecture
of deep learning models makes it difficult to understand how
specific predictions are generated [43,44]. For example, the
trained transformer-based model generated a 0.825 predicted
value of dyspnea for the sentence “overnight events/subjec-
tive: patient feeling much better since admission, forgot to put
on her oxygen this morning and not complaining of shortness
of breath” and a 0.033 predicted value of chest tightness
for the sentence “no wheezing or dyspnea but chest feels
tight.” In addition, transformer-based models require a large
amount of labeled data for training and substantial computa-
tional resources for implementation. In contrast, rule-based
approaches offer greater transparency, allowing researchers to
analyze misclassification cases and refine decision rules more
effectively. Future research should explore post hoc explain-
ability techniques, such as feature importance analysis [45],
integrated gradients [46], surrogate models [47], and Shapley
Additive Explanations [48], to improve the interpretability of
deep learning models in clinical applications.

Extracting symptoms from free-text clinical notes presents
multiple challenges. First, symptoms may be documented
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in various sections of a note, including past medical his-
tory, review of systems, problem lists, instruction, sign and
symptom warning, questionnaire, symptom checklist, allergy
and side effects, current or past medication, procedure,
diagnosis, or chief complaint. Each research study needs to
determine which sections are appropriate for extraction. For
example, if problem lists are outdated, including symptoms
from this section may introduce error. In addition, negation
detection remains a critical factor. In some cases, negations
apply to a single symptom (eg, “no wheezing, mild SOB”),
while in others, they apply to multiple symptoms (eg, “denied
fever, chills, wheezes, GERD, or any new medication”).
Accurately handling such cases is essential for improving
NLP performance.

In this study, 16.7% (1600/9600) of annotated notes were
double-reviewed by 2 independent annotators, yielding higher
agreement (>95%) and stronger κ coefficients (>0.91) than
those in previous studies [13]. Double annotation minimizes
inconsistencies and ensures a robust gold standard for training
and validation. In addition, we recommend that future NLP
studies include a training period for annotators, during which
study investigators with medical expertise review a subset
of notes together with the annotators. This process helps
establish consistent annotation criteria before formal chart
review begins. In addition, creating a detailed annotation
guide can improve accuracy and reproducibility.

Our study has several limitations. First, the accuracy
of symptom extraction depends on how symptoms were
documented in the EHR. Incomplete or inaccurate documen-
tation of symptoms in the EHR may lead to misclassification.
Second, we excluded symptoms documented in notes that
also mentioned anxiety, as symptoms could be attributed to
anxiety rather than asthma. This approach may have led to
the omission of some true asthma-related symptoms. Third,
the rule-based algorithm relied on a predefined lexicon, which

may not fully capture all variations in symptom descriptions.
Expanding the lexicon with additional samples from diverse
datasets could improve performance. Similarly, the rule-based
approach used a fixed word distance threshold for certain
symptoms (eg, allowing a maximum of 3 words between
“tightness” and “chest”), which may have resulted in missed
cases when symptoms were described in less conventional
ways. Fourth, it is challenging for the transformer-based
algorithm to rule out the positive symptom description due
to the study-specific exclusion criteria and rules. More
extensive sample training could improve the predictions [49].
In addition, the current feature pretraining BERT model
was trained based on the annotated dataset rather than the
entire study notes due to limited GPU memory. Finally, our
training dataset consisted only of notes containing prede-
fined symptom keywords, this selection process may have
introduced bias by excluding alternative descriptive patterns.

Although this study focused on symptom extraction in
adults with mild asthma, asthma symptom descriptions are
unlikely to differ significantly across severity levels or
between pediatric and adult populations. In addition, our NLP
models were developed using clinical notes from a single
integrated health care system. When applied to other health
care settings, modifications may be required to account for
differences in note structure and terminology.

In conclusion, the study successfully developed and
validated a hybrid NLP algorithm to extract asthma-rela-
ted symptoms from unstructured clinical notes with high
accuracy. The algorithm can be used to facilitate early asthma
detection and predict exacerbation risk. Future research
should explore external validation across different health care
systems, improve model interpretability, and refine hybrid
NLP approaches to optimize both precision and recall in
clinical text mining applications.
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