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Abstract

Background: There is considerable need to improve and increase the detection and measurement of depression. The use of
speech as a digital biomarker of depression represents a considerable opportunity for transforming and accelerating depression
identification and treatment; however, research to date has primarily consisted of small-sample feasibility or pilot studies
incorporating highly controlled applications and settings. There has been limited examination of the technology in real-world
use contexts.

Objective: This study evaluated the performance of a machine learning (ML) model examining both semantic and acoustic
properties of speech in predicting depression across more than 2000 real-world interactions between health plan members and
case managers.

Methods: A total of 2086 recordings of case management calls with verbally administered Patient Health Questionnaire—9
questions (PHQ-9) surveys were analyzed using the ML model after the portions of the recordings with the PHQ-9 survey
were manually redacted. The recordings were divided into a Development Set (Dev Set) (n=1336) and a Blind Set (n=671),
and Patient Health Questionnaire—8 questions (PHQ-8) scores were provided for the Dev Set for ML model refinement while
PHQ-8 scores from the Blind Set were withheld until after ML model depression severity output was reported.

Results: The Dev Set and the Blind Set were well matched for age (Dev Set: mean 53.7, SD 16.3 years; Blind Set: mean 51.7,
SD 16.9 years), gender (Dev Set: 910/1336, 68.1% of female participants; Blind Set: 462/671, 68.9% of female participants),
and depression severity (Dev Set: mean 10.5, SD 6.1 of PHQ-8 scores; Blind Set: mean 10.9, SD 6.0 of PHQ-8 scores).
The concordance correlation coefficient was 0.=0.57 for the test of the ML model on the Dev Set and 9.=0.54 on the
Blind Set, while the mean absolute error was 3.91 for the Dev Set and 4.06 for the Blind Set, demonstrating strong model
performance. This performance was maintained when dividing each set into subgroups of age brackets (<39, 40-64, and
=65 years), biological sex, and the 4 categories of Social Vulnerability Index (an index based on 16 social factors), with
concordance correlation coefficients ranging as 0.=0.44-0.61. Performance at PHQ-8 threshold score cutoffs of 5, 10, 15, and
20, representing the depression severity categories of none, mild, moderate, moderately severe, and severe (=20), respectively,
expressed as area under the receiver operating characteristic curve values, varied between 0.79 and 0.83 in both the Dev and
Blind Sets.

Conclusions: Overall, the findings suggest that speech may have significant potential for detection and measurement of
depression severity over a variety of ages, gender, and socioeconomic categories that may enhance treatment, improve clinical
decision-making, and enable truly personalized treatment recommendations.
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Introduction

Background

The prevalence and impact of behavioral health (BH)
problems are at an all-time high. As many as 1 in 3 individ-
uals throughout the United States have a BH condition [1].
Rates of subclinical needs are even higher, fueled in part by
the psychological and social effects of the pandemic; as many
as 1 in 2 individuals reports 1 or more symptoms of depres-
sion or anxiety [2]. In fact, the prevalence of depression
symptoms increased more than 3-fold during COVID-19 [3].
At the same time, only 40% of those with BH conditions, and
even fewer with subclinical needs, receive care of any kind,
due to challenges with and delays in detection, perceived
need, stigma, a paucity of providers, and other factors, and
less than 15% of individuals with serious BH conditions
receive minimally adequate treatment [4]. For those who do
receive care, there is an average lag time of 11 years from the
time of symptom onset to first treatment, during which time
symptoms often worsen and other comorbidities may develop

[4].

The current state of BH care and high levels of unmet need
reflect a reactive and downstream approach to the identifica-
tion and treatment of BH problems that has characterized the
industry for decades. Effectively and efficiently meeting BH
needs requires a more proactive, upstream, and personalized
approach that meets individual needs earlier in their clini-
cal trajectories with right-sized and person-fit interventions
[5]. Emerging innovations in data science and technology,
particularly developments in advanced data analytics and the
availability of high-quality, patient-driven digital interven-
tions, present unprecedented opportunities to transform and
innovate the field of BH care and reduce enduring, high rates
of unmet need.

One particularly promising innovation for advancing
detection and delivery of proactive, personalized, and
data-informed treatment is digital phenotyping. Digital
phenotyping involves the detection of phenotypes, or
behavioral signals, that may indicate or predict the presence
of a BH problem. Translated by machine learning (ML)
models and collected through passive data collection via
smartphones, wearables, or other communication devices,
these data signals may serve as clinically, and potentially
preclinically, useful markers of BH problems. The potential
relevance and use of digital phenotyping, which has been
identified as the “next frontier” for personalized and proactive
care within the field of oncology [6], have attracted particular
interest and attention in the field of BH care and personalized
psychiatry, with recent calls for accelerated applications to
clinical practice [7-9]. In their review of research in this
area, Huckvale et al [7] declared, “Many...studies appear
to anticipate that digital phenotyping should play a role in
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routine clinical practice, for example by enhancing aspects of
clinical diagnosis and treatment through earlier detection of
condition onset, relapse or treatment response.”

Most of the research examining digital phenotyping for
the detection of BH problems has focused on detection
of depression [10]. The opportunity to engage passive and
objective ML technology for better detecting depression
presents particular opportunities in light of the fact that
depression is undetected in approximately 50% of indi-
viduals with the condition in high-income countries, and
in 80%-90% of individuals with depression in low- and
middle-income countries [11]. In addition to opportunities
that automated detection of depression provides for increas-
ing low screening rates in most clinical and community
settings, ML presents significant promise for overcoming
underreporting and underdetection due to stigma, lack of
evaluative service access, misattribution of symptoms to
physical illness or age-related factors, or underrecognition
of symptoms. In addition, the use of ML for detecting
depression offers significant potential for increasing earlier
identification and intervention, enhancing clinical efficiency
through more accurate triage and treatment performance
monitoring, improving fidelity through the use of objective
measures, providing decision support, and personalizing BH
care. As Galatzer-Levy and Onnela [12] recently declared,
“Ultimately, the development of clinically meaningful
digital measurements and their implementation in real-world
contexts will permit optimized and personalized treatments
targeted to the individual’s emergent presentation and needs.”

Prior Work

Among the most promising applications of digital phenotyp-
ing is the use of speech as a vocal biomarker of depression
and other BH conditions [13]. The application of speech
analysis in this context includes models for moment-by-
moment analysis of the semantic patterns (“what” is said)
or the acoustic properties (eg, tone, pitch, loudness, dura-
tion, articulation, transitions, and prosody) of speech, or the
application of both. Increasing research has demonstrated
the promise of speech analysis, including generally increas-
ing accuracy in overall detection of depression and other
conditions [7]. Despite this promise, research to date has
been primarily conducted in controlled contexts and uses,
and there has been very limited examination or application of
this technology in real-world settings [7,14]. As Koutsouleris
et al [14] recently noted, “While these innovations promise
to revolutionize health care, little progress has been made
toward real precision mental health applications. Implementa-
tion of these applications is often an afterthought.”

Research on the use of speech analysis for measuring BH
symptoms has consisted primarily of small-sample feasibility
or pilot studies with nonrepresentative samples [7,14-16].
For example, in a scoping review of speech analysis for
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measuring mood disorders conducted by Flanagan et al
[15], approximately 80% of studies were pilot or feasibility
studies with sample sizes ranging from 1 to 73 participants.
Similarly, in their review, Chia and Zhang [10] reported
a mean sample size of 60. Moreover, many studies have
consisted of analysis of “toy” datasets or controlled proof-
of-concept studies involving highly controlled designs that,
while promising for establishing the potential of a technologi-
cal innovation, have yielded findings that are not necessarily
generalizable or have use or effectiveness for real-world use
[10,17]. These designs include use of analog speech tasks
(eg, responding to a singular question, reading formulated
passages, and answering questions about everyday life, often
referred to as “closed-form” tests) that are often not compara-
ble with real-world clinical settings or real-life contexts.

In addition, many studies examining speech analysis in
the BH context have had important methodological limita-
tions, including frequent reporting of selected metrics, such
as reporting of sensitivity without specificity, leading to the
recent call for research in this area to report multiple metrics,
including robust metrics, such as the concordance correla-
tion coefficient (CCC), that are not as biased to specific
context, use case, and data label distributions [13]. Many
studies have also relied on binary classifications (above
or below cutoff score for clinical significance) for screen-
ing tools, which limit opportunities for promoting precision
and personalization in BH care. Furthermore, research on
speech analysis in detecting and measuring BH symptoms
has almost exclusively relied on the use of single methods of
analysis (predominantly acoustic analysis). Opportunities for
leveraging and combining analysis of acoustic and semantic
properties of speech may yield greater accuracy and precision
in detecting and predicting BH conditions.

Goal of This Study

As mentioned previously, the application of digital phenotyp-
ing within BH care has approached a defining moment and
key turning point for the field. In their review of the current
state of digital phenotyping within the field of BH, Huckvale
et al [7] have urged for “practical and coordinated action...to
help accelerate both research and the ultimate development
of real-world health applications for digital phenotyping.” In
an effort to help advance real-world application of digital
phenotyping for promoting earlier and automated detection
and measurement of depression, this study evaluated the
performance of an ML model of the semantic and acoustic
properties of spoken language in predicting depression in a
naturalistic context by analyzing more than 2000 interactions
between health plan members and case managers. Addition-
ally, the study sought to test model performance beyond
“presence or absence” dichotomous predictions, examining
classificatory accuracy at multiple levels of depression from
none or minimal to severe. Furthermore, model performance
was tested across age, sex, and sociodemographic factors and
in BH and non-BH case management contexts. This project,
which is unique in its breadth and scope, aims to assess
the accuracy of speech analysis for detecting and measuring
depression severity in routine clinical settings. We hypothe-
size that the ML models used in this study will demonstrate
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robust predictive accuracy across variations in age, gender,
care management context, and Social Vulnerability Index
(SVD).

Methods

Experimental Design

The current quality improvement project evaluated the
performance of the combined semantic-acoustic ML speech
analysis model in predicting depression severity from existing
recordings of case management calls, with BH case manag-
ers who are licensed independent mental health providers.
Specifically, the performance of the ML model in care
management conversations between insured members and BH
case managers was evaluated by retrospectively comparing
the actual scores from the Patient Health Questionnaire—
9 questions (PHQ-9) administered by the case managers.
The predicted Patient Health Questionnaire—8 questions
(PHQ-8) scores were derived from the qualities (acoustic
biomarkers and semantic content) of vocal productions of the
same members conversing with care managers while engaged
in discussion other than the PHQ-8 administration. It was
secondarily sought to examine model performance in non-BH
contexts where the PHQ-9 is not routinely administered using
a subsample of calls with non-BH case managers. For both
BH and non-BH calls, model predictions were compared with
PHQ-8 scores from an associated metadata file.

Ethical Considerations

On each of the calls analyzed, the PHQ-9 was verbally
administered. Members consented to the recording of the call
for quality and training purposes. This study was designa-
ted as a quality improvement project by the institutional
review board of the Allegheny Health Network and therefore
exempt from ongoing institutional review board oversight.
The project was also reviewed and approved by the Highmark
Health Enterprise Data Governance Committee to ensure
that it comported with internal data protection standards
and applicable privacy, legal, and regulatory requirements,
including deidentification of data. There was no compensa-
tion provided as recordings were made in the normal course
of business.

Measures

Depression Severity

The PHQ-9 is a widely used self-report measure of depres-
sion symptom severity. Frequency of depression symptoms
are endorsed by patients using a 4-point scale, ranging from
0 (“Not at all”) to 3 (“Nearly every day”). PHQ-9 scores
range from O to 27. Higher scores reflect greater depression
severity. Scores of 0-4 are classified as “none to minimal,”
5-9 are classified as “mild,” 10-14 are classified as “moder-
ate,” 15-19 are classified as “moderately severe,” and 20-27
are classified as “severe.” The PHQ-9 has been shown to
be an internally consistent, valid, and reliable measure of
depression severity [18,19]. For this study, the last item of the
PHQ-9, which assesses for suicidal or self-injurious thoughts,
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was omitted given the use of archival data where further
probing of responses was not feasible. Its inclusion requires
different clinical considerations and handling in research
settings. The adapted scale with item 9 removed is referred to
as the PHQ-8 and has been shown to have strong psychomet-
ric characteristics, including the ability to accurately predict
depression [20].

ML Speech Analysis Model

The semantic-acoustic model evaluated in this study
has demonstrated robust results for accurate prediction
of depression symptom severity and acceptable rates of
error [21-23]. The proprietary ML model includes both
acoustic and semantic models. The acoustic model takes
as input the raw speech signal (rather than precompu-
ted features such as pitch or energy). The production
acoustic workflow is built on a pretrained open-source
wav2vec2 architecture [24] and is trained on proprietary
audio data. The system consists of 4 segment models, each
trained with specific configurations, and 3 segment fusion
models that integrate outputs from the segment networks.
Predictions from the segment fusion models are weighted
to generate the final acoustic score.

Karlin et al

The semantic model (referred to also as a natural lan-
guage processing model) takes as input the output of a
commercial automatic speech recognition (ASR) system.
The model is based on the Longformer architecture [25],
designed to efficiently handle long conversational contexts
using advanced mechanisms such as dilated sliding window
attention. Model training involves a proprietary fine-tun-
ing approach using depression-specific data, using high-qual-
ity proprietary transcripts paired with PHQ scores. Further
refinement is conducted using conversational samples, also
labeled with PHQ scores. Labeled training data come from a
large corpus of proprietary spoken language datasets labeled
with PHQ-8 values. Both models take advantage of publicly
available data for model pretraining, including text corpora
for the natural language processing model.

To generate the final depression severity prediction, the
outputs of the acoustic and language model are combined
using a linear weighting; the weight is optimized using the
CCC metric on the Development set. Figure 1 illustrates the
overall ML analysis, from data preprocessing to prediction
generation.

Figure 1. Deep learning architecture and processing pipeline. PHI: Protected health information; PII: personally identifiable information.
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Identification of Case Management Calls
and Metadata

A total of 2626 recordings of case management calls were
included. They took place between January 2019 and January
2023. Of these calls, 2083 had full item-level data for the first
8 items of the PHQ-9, which were collected verbally during
the course of calls. Calls corresponded to unique members
from 44 different US states and were completed by 46 case
managers. The majority of case managers completed multiple
calls, and approximately one-third completed 20 or more
calls. Each call recording had an associated metadata file
containing member age, biological sex, zip code, whether the
call was conducted by a BH case manager or non-BH (eg,
medical and surgical) case manager, and PHQ-9 item-level
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data. Exclusion criteria for recordings included member age
less than 18 years, speechmail messages, presence of any
speakers beyond the case manager and the member, record-
ings in which the member was not present, and diarization
failures (failures to correctly segment audio into single-
speaker time regions). These exclusion criteria constituted 76
of the 2083 calls, leaving a total of 2007 calls for the analysis.

Partitioning the Data

The evaluation was conducted in 2 phases. To establish
datasets for both phases of the project, the 2007 recordings
and their metadata were partitioned by randomly assigning
them to a development dataset (Dev Set) consisting of
approximately two-thirds of the total available calls (n=1336)
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and a test dataset (Blind Set) consisting of approximately
one-third of the total available calls (n=671). There was no
speaker overlap across these datasets. The partitions were
constructed to ensure reasonably equal representation of the
metadata, including the distribution of PHQ-9 severity (none,
mild, moderate, moderately severe, and severe). The Dev Set
and Blind Set were securely delivered via secure file transfer
protocol to Ellipsis Health, which performed all further data
processing and analyses of the calls and metadata. The Blind
Set was held back until phase 1 was completed.

The 2 datasets (Dev and Blind) were well matched;
however, there were data curation errors such as inclusion
of voicemails, conversations in a different language (mostly
involving a language interpreter), and minors (younger than
18 years). Subsequent to the delivery of each dataset, 76
recordings, 44 from the Dev Set and 32 from the Blind Set,
were found to meet exclusionary criteria through review of
metadata (ie, age) and through diarization tool flags indi-
cating a single speaker or more than 2 speakers. These
76 recordings were removed from the analyses. However,
because the audio tracks were not reviewed by the annotators,
other recordings meeting exclusionary criteria were included
in the Dev and Blind Sets. An analysis was conducted, and it
is estimated that inclusion errors constituted 3% of the total
recordings analyzed.

Data Preprocessing

Upon receiving call recordings, Ellipsis Health performed
diarization, ASR, and redaction of personally identifiable
information using Amazon Web Services Amazon Transcribe
[26]. Redaction of protected health information was per-
formed using Amazon Comprehend Medical [27]. Speaker
role detection and time stamp generation on turns in
conversation (ie, transition from member to case manager
and vice versa) were performed using proprietary algorithms
from Ellipsis Health. The redacted output of the ASR process,
which included transcripts of both the member and the case
manager with PHQ-9 content removed, was used by the
semantic model. Meanwhile, the diarized, redacted audio
containing only the member’s speech, with PHQ-9 content
masked, was used by the acoustic model. The outputs of the
semantic and acoustic models were used (after weighting) to
arrive at the fused output, using the Dev dataset.

Manual Annotation

To remove the verbally administered PHQ-9 from the calls,
a manual annotation process was performed to identify the
regions in the transcripts where the PHQ-9 was administered.
Ellipsis Health used a team of professionals separate from
the team conducting tests of the ML model (ie, ML team)
to perform manual annotation, which consisted of annota-
tors being presented with the case manager portion of the
transcript from each call and having them identify the regions
that contained the PHQ questions. These annotated regions of
audio samples were masked in white noise for the acoustic
model analysis, and the corresponding text was removed from
the transcripts for the semantic model analysis.
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Model Refinement on the Dev Set

In phase 1, the semantic-acoustic model was applied to the
Dev Set (n=1336), and hyperparameters (eg, learning rate
in optimization algorithms, number of hidden layers, and
number of iterations in training a neural network) were
optimized to minimize the CCC [28].

Tests on the Blind Set

Phase 2 of the project was conducted to evaluate the
performance of the semantic-acoustic ML model established
in phase 1. The Blind Set used in phase 2 was provided
to Ellipsis Health without any accompanying PHQ-9 scores
to ensure a blinded test of the model. Other than absence
of PHQ-9 scores, the provided metadata categories were
the same categories as provided for the Dev Set. ASR was
conducted, followed by personally identifiable information
and protected health information redaction of both the audio
and transcript, using the same process as for the Dev Set.
Manual annotation of the recordings was performed as in
phase 1 and the verbally administered PHQ-9 was masked
in the audio file and removed from the call transcript. The
ML team then conducted tests of the ML model to predict
depression severity scores for the Blind Set and across the
metadata subgroups of the Blind Set. Recorded PHQ-9 scores
from the original calls in the Blind Set were subsequently
provided to the ML team, and PHQ-8 scores were then
derived from these PHQ-9 scores and then compared with
ML model predictions of the PHQ-8 scores to complete the
test of model accuracy.

In light of the fact that overreporting and underreporting
are well-known phenomena of surveys, including on sensitive
measures such as the PHQ-9 [28-30], a preliminary explo-
ration of the possible presence of such when responding
to the PHQ-9 was conducted by examining for sizeable
discrepancies between PHQ-8 labels and predicted depression
scores. Overreporting and underreporting were defined as
a difference of =2 categories of classification between the
model prediction and the PHQ-8 score, as this would likely
cause a significant change in a care pathway for a patient, and
this condition was found in 42 of the 2007 total recordings.
Five licensed therapists were recruited to listen and rate the
member for severity of depression symptoms (none, mild,
moderate, and severe). They were assigned recordings such
that 1 therapist listened to each of the 42 recordings, but in
25 of those calls at least 2 therapists provided an additional
assessment. The therapists were blinded to all information,
including the PHQ score and section of the recording where
the survey was administered, the model predictions, and
demographic information. A PHQ-8 score predicted by ML
model was defined as agreeing with a mental health provider
assessment if their assessment was the same or within 1
severity category difference.

Metrics

The ML model results included CCC, mean absolute error
(MAE), area under the receiver operating characteristic curve
(AUROC), and sensitivity and specificity at the point of
equal error rate (EER) for the Dev Set and the Blind Set.
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All classification analyses were conducted with the PHQ-8
as the criterion or observed score. Predicted scores from
the ML regression models were binned according to the
following PHQ-8 depression severity classifications: none
or minimal (0-4), mild (5-9), moderate (10-14), moderately
severe (15-19), and severe (20-24). Next, ROC analyses were
conducted, comparing predicted to observed scores across 5
binary classifications at the 4 PHQ-8 cutoffs (5, 10, 15, and
20): 0-4 versus 5-24, 0-9 versus 10-24, 0-14 versus 15-24,
and 0-19 versus 20-24. AUROC and sensitivity and specific-
ity at the EER were calculated at each cutoff and reported for
the ML model.

Results

Comparison of Member-Level Metadata

Data demographic distributions for members were compara-
ble across both datasets. Ages ranged from 18-98 years in the

Table 1. Distribution of metadata for the Dev and Blind Sets.
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Dev Set and 18-92 years in the Blind Set (Table 1). Approxi-
mately two-thirds of members across the Dev Set (910/1336,
68.1% of participants) and Blind Set (462/671, 68.9% of
participants) were female. Member zip code was used to
establish the SVI [31], which is based on 16 social fac-
tors, including socioeconomic status (eg, below poverty and
unemployed), household characteristics (eg, single parent and
aged 65 years or older), and housing type or transportation
(eg, crowding and no vehicle). In each dataset, members were
predominantly in the low-moderate range for social vulnera-
bility and the majority of calls were BH case management
calls (Table 1).

Metadata Dev Set (n=1336)

Blind Set (n=671)

Age (years), mean (SD), range 53.7 (16.3), 18-98

Age (years), n (%)

<39 296 (22.2)
40-64 704 (52.7)
=65 336 (25.1)
Biological sex, n (%)
Female 910 (68.1)
Male 426 (31.9)
Undefined 0(0)
SVI%, n (%)
1 279 (20.9)
2 617 (46.2)
3 335(25.1)
4 102 (7.6)
Missing 32
Type of CMP, n (%)
BH® 1087 (81.4)
Non-BH 249 (18.6)

PHQ—Sd, mean (SD), range
PHQ-8%,n (%)

10.5 (6.1),0-24

None or minimal 249 (18.6)
Mild 384 (28.7)
Moderate 328 (25.6)
Moderately severe 263 (19.7)
Severe 112 (84)

51.7(16.9), 18-92

183 (27.3)
344 (51.3)
144 (21.4)

462 (68.9)
207 (30.8)
2(03)

150 (15.6)
306 (45.6)
162 (24.1)
51 (7.6)
2(03)

561 (83.6)
110 (16.4)
109 (6.0), 0-24

113 (16.8)
179 (26.7)
174 (25.9)

141 (21.0)
64 (9.5)

4SVTI: Social Vulnerability Index (1 = least vulnerable, 4 = most vulnerable).

PCM: case management.
°BH: behavioral health.
dPHQ—8: Patient Health Questionnaire—8 questions.

®None or minimal=0-4, mild=5-9, moderate=10-14, moderately severe=15-19, and severe=20-24. Percentages may not add up to 100% due to

rounding.
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Regression Results for Overall Tests of
the ML Model

Results for the test of the ML model on the Dev Set (n=1336)
produced a CCC of .=0.57, which is superior to results
expected by chance (0.=0.10-0.20). CCC showed minimal
decrease in the test of the ML model on the Blind Set
(0c=0.54; n=671). Furthermore, MAE values for the ML
model tests across datasets were 3.91 and 4.06 for the Dev
Set and Blind Set, respectively. These values for MAE are
equivalent to less than the score range (5 points) of a single
PHQ-8 severity classification.

Classification Results for Overall Tests of
the ML Model

The AUROC at PHQ-8 cutoff of 10 (ie, “moderate” depres-
sion, the traditional cutoff for the majority of clinical care

Karlin et al

pathways [31,32]) was consistent for the ML model as
applied to the Dev Set (0.83) and Blind Set (0.81), which
are identical to the respective mean AUROC values over
the different cutoff points (Table 2, top panel). In particular,
results for the ML model (AUROC=0.81) on the Blind Set
indicate the robustness of the model in its ability to identify
individuals with PHQ-8 scores above 10 using novel call data
(ie, data without PHQ-8 labels and not previously used for
model refinement).

Table 2. Regression and classification results for overall tests of the machine learning model.

Statistic Dev Set (n=1336) Blind Set (n=671)
ccc? 0.57 0.54
MAEP 391 4.06
AUROC®
Mean? across cutoffs® 0.83 0.81
Cutoff 5 0.81 0.85
Cutoff 10 0.83 0.81
Cutoff 15 0.83 0.79
Cutoff 20 0.83 0.79
Sens=Spec’
Mean across cutoffs 0.74 0.73
Cutoff 5 0.73 0.76
Cutoff 10 0.75 0.72
Cutoff 15 0.74 0.72
Cutoff 20 0.76 0.72

4CCC: concordance correlation coefficient.

PMAE: mean absolute error.

CAUROC: area under the receiver operating characteristic curve.
dMean across 4 cutoffs (5,10, 15, and 20).

®Cutoff numbers were chosen as these are the points where the depression severity category boundaries occur.

fyalue of both sensitivity and specificity at point of equal error.

AUROC values across the 4 cutoff thresholds and across
both datasets ranged from 0.79 to 0.85 (Table 2). The lowest
AUROCs were observed for the ML model (AUROC=0.79)
on the Blind Set at PHQ-8 cutoffs of 15 and 20 (“moder-
ately severe” and “severe” depression). Of note, the size
of the subsample of members in the Blind Set with scores
=20 was only 64 members and may have contributed to the
lower AUROC values for this classification. See Table 1 for
information on sample sizes across classifications for all 3
datasets.

As shown in Table 2, the mean sensitivity and specificity
at the point of equal error across the 4 classifications was
stable for ML model performance. Across the 4 PHQ-8 cutoff
scores, sensitivity and specificity values ranged from 0.72 at
a cutoff of 10, 15, and 20 for the ML model test on the Blind
Set to 0.76 for the ML model test on the Dev Set at a cutoff
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of 20 and on the Blind Set at a cutoff of 5. As observed with
AUROC, values at the lower end of the range for sensitivity
and specificity may have been affected by smaller subsample
sizes (eg, Blind Set with PHQ-8 =20).

Model Performance Across Metadata
Subgroups

ML model performance was evaluated across metadata
subgroups based on age in years (18-39, 40-64, and =65), sex
(male and female), and BH case management versus non-
BH case management and across the 4 SVI levels (1=least
vulnerable and 4=most vulnerable).

The ML model performance between the 2 datasets (Dev
Set and Blind Set) within their subgroups (age [Table 3],
sex [Table 4], type of case management call [Table 5], and
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SVI [Table 6]) reveals both consistent and relatively similar
AUROC cutoff at 10 and EER values with AUROC cutoff at
10 ranging from 0.81 to 0.83 and sensitivity and specificity
at point of equal error ranging from 0.73 to 0.75, implying
good model stability and robustness. See Figures S1-S12 in
Multimedia Appendix 1 for ROC curves (overall and per
subgroup on Blind Set). CCC ranged from 0.44 to 0.61,
with the lowest (0.44) occurring in the most highly socially
vulnerable group in the Blind Set and the highest (0.61)
occurring in both the least socially vulnerable group of the
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Dev Set and the =65 years age group in the Blind Set. In
most cases, the lower CCC values occurred where sample
sizes were approximately 100 or fewer individuals, and our
previous work [33] suggests a minimum count of approx-
imately 200 individuals for robust estimates of prediction
performance. MAE values ranged from 3.62 in the =65 years
age group of the Blind Set to 4.57 in the non-BH group of the
Blind Set. The 2 highest MAE values were associated with
subgroups with sample sizes of approximately 100 or fewer
participants, comparable with results for the CCC.

Table 3. Regression and classification metrics for model tests by the subgroup age.

Dev Set (n=1336)

Blind Set (n=671)

Aged <39 years  Aged 40-64 years Aged =65 years Aged <39 years Aged 40-64 years Aged =65 years
(n=296) (n=704) (n=336) (n=183) (n=344) (n=144)

ccc? 0.58 0.55 0.58 0.57 047 0.61

MAED 391 4.00 377 393 432 3.62

AUROCS cutoffd 10 0.833 0.833 0.33 0.81 0.81 0.81

Sensitivity and 0.76 0.75 0.75 0.72 0.72 0.72

specificity® cutoff 10

3CCC: concordance correlation coefficient.
PMAE: mean absolute error.
CAUROC: area under the receiver operating characteristic curve.

dCutoff thresholds correspond to the boundaries of clinical depression severity classes.

®Value of both sensitivity and specificity at point of equal error.

Table 4. Regression and classification metrics for model tests by the subgroup sex.

Dev Set (n=1336)
Female (n=910)

Male (n=426)

Blind Set (n=671)

Female (n=462) Male (n=207)

cee? 0.56 0.58
MAEP 3.86 4.04
AUROCE cutoffd 10 0.83 0.83
Sensitivity and specificity® cutoff  0.75 0.75

10

0.53 0.54
395 4.29
0.81 0.81
0.72 0.72

4CCC: concordance correlation coefficient.
PMAE: mean absolute error.
CAUROC: area under the receiver operating characteristic curve.

dCutoff thresholds correspond to the boundaries of clinical depression severity classes.

®Value of both sensitivity and specificity at point of equal error.

Table 5. Regression and classification metrics for model tests by the subgroup type of case management.

Dev Set (n=1336)

Blind Set (n=671)

BH® (n=1087) Non-BH (n=249) BH (n=561) Non-BH (n=110)
cccb 0.57 0.58 0.55 0.46
MAE® 392 3.86 4.00 4.40
AUROCY cutoff® 10 0.83 0.83 0.81 0.81
Sensitivity and specificityf cutoff  0.75 0.75 0.72 0.72

10

4BH: behavioral health.

bCCC: concordance correlation coefficient.

°MAE: mean absolute error.

dAUROC: area under the receiver operating characteristic curve.

CCutoff thresholds correspond to the boundaries of clinical depression severity classes.

fyalue of both sensitivity and specificity at point of equal error.
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Table 6. Regression and classification metrics for model tests by the subgroup Social Vulnerability Index (SVI).

Dev Set (n=1336)

Blind Set (n=671)

SVIA=1 SVI=2 SVI=3 SVI=4 SVI=1 SVI=2 SVI=3 SVI=4
(n=279) (n=617) (n=335) (n=102) (1n=50) (n=306) (n=162) (n=51)
cccb 0.61 0.57 0.57 0.46 0.61 0.54 047 0.44
MAES 3.76 3.90 398 4.24 3.83 4.04 4.18 4.57
AUROCY cutoff® 0.33 0.833 0.33 0.83 0.81 0.81 0.81 0.81
10
Sensitivity and 0.75 0.75 0.75 0.75 0.72 0.72 0.72 0.72
specificity’ cutoff
10

4SVTI: Social Vulnerability Index (1=least vulnerable, 4=most vulnerable).
bCCC: concordance correlation coefficient.

°MAE: mean absolute error.

dAUROC: area under the receiver operating characteristic curve.

CCutoff thresholds correspond to the boundaries of clinical depression severity classes.

fvalue of both sensitivity and specificity at point of equal error.

Finally, within the Dev Set, 3.1% (42/1336) of recordings
showed sizable discrepancies (divergence equivalent to 2
or more PHQ-8 categories) between administered PHQ-8
and ML-predicted depression score that could imply PHQ-8
response underreporting (actual depression score much lower
than predicted depression score) or overreporting (actual
depression score much higher than predicted depression
score). A review of these discrepancies by 5 independently
licensed clinicians, who were blinded to the administered
score, yielded PHQ-8 categorization of members’ vocaliza-
tions that were consistent with the ML model categorization
twice as often as they were with the administered PHQ-8
score.

Discussion

Principal Results

The current evaluation, leveraging speech analysis to detect
depression symptoms across different levels of severity
within a large real-world clinical case management context,
represents, to our knowledge, the first evaluation of its kind.
Overall, the findings for the combined acoustic-semantic ML
model demonstrate strong model performance across a variety
of key metrics. The AUROC value of approximately 0.81,
the overall CCC value of 0.54, and mean of the sensitiv-
ity and specificity at the EER of 0.73 in the Blind Set
demonstrate robust clinical support for the model’s ability
to accurately predict severity of depression. These results
compare favorably to previous research, which has primar-
ily relied on much smaller samples and incorporated pilot,
simulation, or controlled study designs [29,30]. Whereas
many prior studies have focused on application of acoustic
or semantic speech analysis, this study reports on an approach
that combined information from both semantic and acous-
tic-based models. Future development and testing of speech
analysis models should continue to explore the benefits of
combining acoustic and semantic models.

It is noteworthy that the model performed consistently
across all major subgroups and PHQ-8 classification levels,
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with AUROC values ranging from 0.79 to 0.85 and CCC
values ranging from 0.44 to 0.61. However, the model did
undercharacterize individuals at the highest PHQ-8 level (ie,
“severe” depression), likely due to smaller sample size in
this category of depression on which this model was trained.
Among the most promising findings from the subgroup
analyses was the model’s strong accuracy in predicting
depression severity among older adults across key metrics.
This finding is particularly significant, given that older adults
have the highest rates of undetected depression [34], are
often less likely to recognize or self-report symptoms of
depression [35], and may experience depression with fewer
dysphoric symptoms and more somatic complaints, which can
be misattributed to physical illness [36,37].

The model’s ability to detect depression symptoms at
lower severity levels offers significant real-world potential for
early identification and person-fit and right-sized interven-
tions earlier in individuals’ clinical trajectories. In addition
to its ability to classify depression presence (PHQ-8<10
vs =10), the model performed well across specific PHQ-8
severity levels, particularly in the minimal and mild ranges.
This suggests promising applications for early, proactive,
cost-effective, and lower-intensity interventions (eg, digital
interventions, BH coaching, and peer or social support)
that may prevent symptom progression and reduce relapse
rates. Notably, beyond the personal and clinical benefits,
earlier interventions and prevention of depression may also
have significant financial implications, potentially reducing
health care costs associated with advanced-stage depression
treatment.

Beyond BH contexts, the model’s performance in general
medical (non-BH) case management calls suggests even
greater potential for broadening depression detection. The
model achieved a comparable level of performance (AUROC
cutoff 10=0.81; range=0.79-0.85) in non-BH case manager
calls, indicating potential for integrating depression detection
into clinical decision-making in settings where the PHQ-9
is not routinely administered and where depression is often
undetected [38]. Furthermore, the potential financial impact
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of enhanced depression detection in non-BH contexts is
considerable, especially given that the total cost of care for
members with both a BH condition and a chronic physical
health condition, experienced by many members in medical-
surgical case management, is approximately 3 times higher
than for those with the same condition but no BH diagnosis
[39,40]. The foregoing, notwithstanding, findings related to
model performance in non-BH case management should be
considered preliminary in light of the smaller sample size
(n=110, Blind Set sample). Accordingly, additional applica-
tion of speech analysis in non-BH contexts and other physical
health settings is warranted.

The findings with respect to the overreporting and
underreporting on the PHQ-8 offer insights into the potential
for speech-based analysis to enhance depression detection
objectivity [41-43]. Specifically, speech analysis may be
less susceptible to bias, whether conscious or unconscious,
relative to subjective report or traditional measurement. The
observed trend of likely underreporting on the PHQ-8 (ie,
the administered score being much lower than the predicted
score) aligns with prior research on the impact of stigma,
lower BH literacy, and other factors that contribute to
self-report bias and underreporting of depression [44]. On
the other hand, overreporting on the PHQ-9 (ie, the admin-
istered score being much higher than the predicted score)
may suggest heightened or exaggerated response tendencies,
personality characteristics, or efforts to obtain help [45].

Finally, this study highlights important opportunities for
speech analysis and other digital phenotyping approaches to
improve administrative and clinical workflows. It is notewor-
thy that case managers spent nearly 20% of total call time
administering the PHQ-9. From an efficiency standpoint,
this is time that could be better allocated to establishing a
therapeutic alliance, collaborating to identify and define BH
goals, addressing ambivalence and other potential obstacles to
achieving those goals, and directly addressing the member’s
chief concerns. Greater efficiency also establishes opportu-
nity for case managers to interact with more members.
From a clinical process standpoint, time spent administering
measures such as the PHQ-9 can be awkward and even
frustrating for members and may adversely affect rapport
and engagement. Furthermore, inconsistencies in PHQ-9
administration can introduce errors or variability in measure-
ment, potentially leading to misinterpretation of symptoms.
In contrast, having objective, real-time data on depression
severity could provide valuable insights for clinical deci-
sion-making and for providing proactive and personalized
treatment plan.

Strengths and Limitations

This study has several key strengths, including its large
sample size, evaluation of speech analysis in a real-world
clinical context, use of naturalistic conversations versus
analog speech tasks (such as reading-defined passages or
phrases, or repeating specified sounds), integration of both
semantic and acoustic properties of speech, and analysis of
model performance across subgroups and depression severity
levels using numerous evaluation metrics. At the same time,
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there are several limitations that should be considered when
interpreting the current findings and guiding future research.

While the large sample size included in this real-world
evaluation is unique in the field of digital phenotyping [15],
the sample sizes for some of the subanalyses, including the
analyses of the non-BH calls and the highest PHQ-9 severity
level (“Severe”) condition, were relatively small. Given this,
caution should be exercised when interpreting these findings.
Moreover, data on member race and ethnicity were not
available. As such, the generalizability of the current results
to different ethnic, cultural, and linguistic groups cannot
be definitively determined. That said, the acoustic-semantic
speech model was developed and trained on a very large and
diverse sample [23,46].

Furthermore, prediction of depression by the model, like
with any ML model, includes a degree of error or impreci-
sion. In the current analysis, this was equivalent to approxi-
mately 4.06 points on average (the reported MAE) on the
PHQ-9, which itself has imperfect accuracy [47]. As such,
predicted scores should be interpreted with this in mind. With
additional data, precision is likely to further increase.

In addition, the collection of the case management
recordings on a single audio channel posed a challenge for
this study, necessitating the use of ASR for conversion of
speech to text, diarization for speaker separation, and speaker
attribution labeling. While these processes generally have
low error rates, they are not entirely error-free. Diarization
was performed using a leading commercial tool as manual
processing of calls would have required listening to and
annotating thousands of hours of recordings, a time-intensive
process that is also prone to errors. Additionally, the use
of automatic speech processing better reflects how an actual
implementation would be performed in a real-world setting.
However, diarization errors (ie, poor or missing speaker
separation) were encountered, and these errors propagated
through the preprocessing and annotation pipeline, affecting
both automated speaker attribution and removal of PHQ-8
content.

Furthermore, data curation errors observed (eg, inclusion
of voicemails and conversations with minors), inevitable
in a real-world dataset of this kind, may have impacted
performance (in both positive and negative directions); on
balance, however, these likely did not have more than a
negligible effect on the reported performance metrics. Many
of these challenges and resulting errors may be attenuated
in prospective implementations (vs the current retrospective-
focused analysis) in the future, given that (1) current call
management systems routinely record speakers on separate
channels, significantly mitigating the challenges of diariza-
tion (many legacy systems do not have diarization capabil-
ity but some may be specially configured to do so), and
(2) formal implementation of this technology within the
case manager’s workflow would limit inclusion of irrelevant
(eg, voicemail messages) or inappropriate (eg, minors and
different languages) calls through either call management
software technology or manual exclusion by the case manager
according to inclusion and exclusion criteria.
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Future Studies and Real-World
Deployments

The successful deployment of Al-driven speech analysis
for depression detection requires careful integration into
existing health care workflows. One promising approach
is its integration into telehealth platforms, where it could
facilitate real-time assessment and early detection during
virtual consultations. Embedding the model into electronic
health records, virtual scribe technology or clinical decision
support systems could further enhance its use by provid-
ing clinicians with objective, data-driven insights alongside
traditional assessments. This study represents a step toward
the rigorous validation of Al-based health care tools, ensuring
their accuracy and reliability across diverse populations.
For successful deployment, ensuring security, safety, and
compliance with Health Insurance Portability and Account-
ability Act, General Data Protection Regulation, and other
data protection regulations is essential, along with contin-
uous monitoring of system performance on test datasets
to maintain reliability and accuracy. Additionally, clinician
adoption depends on ensuring that the tool is user-friendly
and seamlessly integrates into existing workflows without
adding unnecessary burden.

Although the data used in this study are deidentified,
future studies and real-world deployments should incorpo-
rate a protocol for obtaining explicit informed consent from
members, ensuring ethical transparency and alignment with
established guidelines for digital health interventions. One
of the primary challenges in ML-based depression detec-
tion is the mitigation of bias, as algorithmic outputs may
be influenced by dataset imbalances or systemic biases.
In this study, bias evaluation was conducted across key
demographic subgroups, but future research should expand
on bias mitigation strategies and assess ethical Al deployment
frameworks to ensure equitable model performance across
diverse populations.

Additionally, Al governance is a critical factor in real-
world deployment, necessitating adherence to key principles
such as transparency, fairness, and accountability. Transpar-
ency ensures that Al models operate in a manner that
is understandable, explainable, and accessible to stakehold-
ers, including clinicians and patients. Fairness requires that
models are developed and validated in a way that minimizes
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bias and ensures equitable performance across diverse
populations, preventing disparities in mental health assess-
ments. Accountability involves establishing clear oversight
mechanisms to monitor Al decision-making, ensuring that
these technologies align with ethical standards, regulatory
requirements, and best practices for patient care. Future
research and implementation should prioritize these principles
to foster trust and reliability in Al-driven mental health tools.

Finally, while the ML model demonstrated strong
predictive performance, it is important to emphasize that
this tool is intended for initial assessment and triage and
not for medical diagnosis. The model is designed to support
early identification and risk stratification, which should be
followed by clinician evaluation and judgment. This tool is
not intended to replace traditional diagnostic methods.

Conclusions

There is an urgent need to enhance detection and meas-
urement of depression. Implementing digital phenotyping
through the use of speech as a digital biomarker of depres-
sion offers significant promise for improving and accelerating
depression identification and treatment. In short, the current
evaluation, involving the examination of combined acous-
tic and semantic speech analysis for predicting depression
symptom severity across PHQ-9 classification levels in a
large real-world clinical context, represents the first evalua-
tion of its type. The results reported herein provide strong
support for the application and use of a readily available
and unobtrusive biomarker, namely, what and how of spoken
language, for detecting and measuring depression in real-
world practice at this important time. This easily accessi-
ble biomarker has significant potential for application in
health care settings, ranging from “preclinical” case manage-
ment contexts to patient-provider interactions. It is hoped
that the current findings help to advance the development
and application of novel ML technologies for automating
and enhancing depression symptom measurement and for
informing and advancing clinical decision-making, next-
best actions, and personalized treatment recommendations.
Moving analysis of speech for the detection of depression
symptoms—not long ago deemed science fiction—to clinical
reality presents considerable opportunities for changing the
paradigm of BH care to be more efficient, personalized,
proactive, and upstream-focused.
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