JMIR Al Klee et al

Short Paper

Heterogeneity in Effects of Automated Results Feedback
After Online Depression Screening: Secondary Machine-
Learning Based Analysis of the DISCOVER Trial

Matthias Klee!, PhD; Byron C Jaeger?, PhD; Franziska Sikorski®, PhD; Bernd Lowe?, MD; Sebastian Kohlmann'~,
PhD

lDepartment of General Internal Medicine and Psychosomatics, Heidelberg University, Heidelberg, Germany
2Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States
3 Department of Psychosomatic Medicine & Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Corresponding Author:

Sebastian Kohlmann, PhD

Department of General Internal Medicine and Psychosomatics
Heidelberg University

Im Neuenheimer Feld 410

Heidelberg 69120

Germany

Phone: 49 62215632879

Email: sebastian.kohlmann@med.uni-heidelberg.de

Abstract

Background: Online depression screening tools may increase uptake of evidence-based care and consequently lead to
symptom reduction. However, results of the DISCOVER trial suggested no effect of automated results feedback compared
with no feedback after online depression screening on depressive symptom reduction six months after screening. Interpersonal
variation in symptom representation, health care needs, and treatment preferences may nonetheless have led to differential
response to feedback mode on an individual level.

Objective: The aim of this study was to examine heterogeneity of treatment effects (HTE), that is, differential responses to
two feedback modes (tailored or nontailored) versus no feedback (control) following online depression screening.

Methods: We used causal forests, a machine learning method that applies recursive partitioning to estimate conditional
average treatment effects (CATEs). In this secondary data analysis of the DISCOVER trial, eligible participants screened
positive for at least moderate depression severity but had not been diagnosed or treated for depression in the preceding year.
The primary outcome was heterogeneity in depression severity change, over a and six-month follow up period, measured with
the Patient Health Questionnaire-9. Analysis comprised exploration of average treatment effects (ATE), HTE, operationalized
with the area under the targeting operator characteristic curve (AUTOC), and differences in ATE when allocating feedback
based on predicted CATE. We extracted top predictors of depression severity change, given feedback and explored high-CATE
covariate profiles. Prior to analysis, data was split into training and test sets (1:1) to minimize the risk of overfitting and
evaluate predictions in held-out test data.

Results: Data from 946 participants of the DISCOVER trial without missing data were analyzed. We did not detect HTE; no
versus nontailored feedback, AUTOC —0.48 (95% CI —1.62 to 0.67, P=.41); no versus tailored feedback, AUTOC 0.06 (95%
CI -1.21 to 1.33, P=.93); and no versus any feedback, AUTOC -0.20 (95% CI —1.30 to 0.89, P=.72). There was no evidence
of alteration to the ATE in the test set when allocating feedback (tailored or nontailored) based on the predicted CATE. By
examining covariate profiles, we observed a potentially detrimental role of control beliefs, given feedback compared with no
feedback.

Conclusions: We applied causal forests to describe higher-level interactions among a broad range of predictors to detect
HTE. In absence of evidence for HTE, treatment prioritization based on trained models did not improve ATEs. We did not
find evidence of harm or benefit from providing tailored or nontailored feedback after online depression screening regarding
depression severity change after six months. Future studies may test whether screening alone prompts behavioral activation and
downstream depression severity reduction, considering the observed uniform changes across groups.
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Introduction

Online depression screening may foster early identification of
individuals with depressive symptoms and reinforce help-
seeking behavior [1,2]. However, recently published results
of the DISCOVER trial (ClinicalTrials.gov, NCT04633096)
suggested no effect of automated results feedback com-
pared with no feedback after online depression screening on
depressive symptom reduction six months after screening [1].

Randomized controlled trials (RCT) are the gold-standard
method for evaluating intervention efficacy. Still, evidence-
based medicine incorporates the notion of differential
responses to interventions on a person-level, potentially
masking harms or benefits at the group-level [3]. Thus, it is
important to examine individual-level responses to feedback.

Machine-learning (ML) methods have previously been
adapted to examine such heterogeneity of treatment effects
(HTE) [4-6]. ML can circumvent the issue of multiple testing
through cross-validation and by design, account for higher
level interactions [7]. ML approaches to estimate HTE have
been successfully applied in health care literature, especially
in cardiology and psychiatry [5,8].

The aim of this paper was to investigate the presence
of HTE in response to feedback (no feedback ie, control
group vs nontailored or tailored, ie, intervention), following
online depression screening. We tested for the presence of
HTE, based on person-level characteristics at baseline, with
heterogeneity in depression severity change at six months as
the primary outcome. The efficacy of allocating feedback
to individuals with more favorable predicted conditional
treatment response was examined in exploratory analysis.

Methods

Study Sample and Design

DISCOVER is a three-armed RCT examining change in
depression severity six months after online screening with
tailored, nontailored, or no feedback (control). The study was
advertised as a study on stress and psychological well-
being [1]. Recruitment strategies involved print and online
advertisements on social media platforms and in a nationwide
online access survey panel in Germany [1]. Eligible partic-
ipants were 18 years or older, proficient in German, and
screened positive for at least moderate depression severity
(Patient Health Questionnaire-9, PHQ-9 =10) [1]. Participants
with missing data, or those with a diagnosis of or treatment
for depression in the previous year were excluded.

https://ai.jmir.org/2025/1/e70001

Feedback comprised depression screening results, a
recommendation to consult a mental health care professio-
nal or general practitioner, and further information regard-
ing depression and related treatment based on national
guidelines [1,9]. For the tailored feedback group, feedback
was adapted according to participants’ symptom profiles,
treatment preferences, and available guideline-recommended
options [1,9].

Ethical Considerations

Review and approval was provided by the Ethics Committee
of the Hamburg Medical Chamber (PV7039) [9]. Participants
provided online informed consent covering secondary data
analyses [1]. Participants received a € 5 (US $5.85) voucher
for compensation upon each completed follow-up. Data was
deidentified prior to analysis.

Main Outcomes and Measures

The primary outcome was heterogeneity in depression
severity change six months after online screening. Depres-
sion severity was measured with the PHQ-9 [10]. Predictors
involved baseline depression (PHQ-9), anxiety (General-
ized Anxiety Disorder Scale-7; GAD-7 [11]), and somatic
symptom severity (Somatic Symptom Scale-8; SSS-8 [12]),
health-related quality of life (EuroQoL-5 Dimension-5 Level
visual analogue scale [EQ-5D-5 L VAS]) [13], illness beliefs
(Brief Illness Perception Questionnaire; B-IPQ [14,15]),
patient history, depression-related risk factors, and sociode-
mographic characteristics (Table S1 in Multimedia Appendix

1).
Statistical Analysis

Causal Forests (CF) [5,6] have previously been used to
investigate HTE [8] (Box S1 in Multimedia Appendix 1). CFs
estimate conditional average treatment effects (CATE), which
approximate individual-level treatment effects (ITE). ITE
cannot be inferred directly since only one potential outcome
is realized per participant. Thus, CATE are more granular
than average treatment effects (ATE) but less granular than
ITE.

Two CFs were trained based on either training (tau-for-
est) or test data (eval-forest), with a random split (1:1). CFs
were trained with 2000 trees, a sample fraction of 0.5, a
minimum node size of 5, and mtry = 30. ATE and CATE
were computed by contrasting intervention (nontailored [1],
tailored [2], or any [1/2] feedback) to no feedback (con-
trol) with depression severity change as the outcome and a
propensity score for treatment allocation (P=.50) [4,5].

To assess the presence of HTE discretely, tau-forest
predictions of CATE for the test data were grouped into
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quartiles. Then, ATE was estimated in each quartile using
the eval-forest. To assess the presence of HTE continuously,
we computed the area under the targeting operator character-
istic curve (AUTOC) and tested for the presence of HTE
with a significance test for AUTOC (Hi:AUTOC=0) [4].
Significance of AUTOC was tested two-sided, with bootstrap-
ped standard errors (n=200 bootstrap replicates).

For a comprehensive overview of model evaluation and
sample code, see Box S2 in Multimedia Appendix I,
Sverdrup, Petukhova [4] and Klee [16]. Analyses were
conducted using R (version 4.3.1; R Foundation for Statistical
Computing) using the grf package [17].

Klee et al

Results

Baseline Characteristics

After visual inspection of missingness patterns, 19 partici-
pants were removed, assuming missingness at random (Table
S2 in Multimedia Appendix 1). In total, 946 participants were
eligible for analysis. Participants were aged 18 to 79 years,
mean 37.20 (SD 13.98) (Table 1).

Table 1. Baseline characteristics of participants in the analytic data set (N=946).

Nontailored P value? Tailored P value”
No feedback feedback feedback
Characteristic (n=318) (n=313) (n=315)
Age in years, mean (SD) 364 (13.7) 38.2 (13.8) A1 37.0(144) 62
Gender, n (%) 85 73b
Women 232 (73.0) 222 (70.9) — 221(70.2) —
Men 83 (26.1) 88 (28.1) — 91 (28.9) —
Other 3(0.9) 3(1.0) — 3(1.0) —
Education, n (%) .66 55
<10 years 55(17.3) 59 (18.8) — 47 (14.9) —
=10 years 94 (29.6) 99 (31.6) — 104 (33.0) —
University entrance qualification 169 (53.1) 155 (49.5) — 164 (52.1) —
Depression severity (PHQ-9), mean (SD) 14.8 (4.03) 14.7 (4.09) 78 14.8 (3.82) 94
Somatic symptom severity (SSS-Sd), mean (SD) 14.6 (5.23) 14.5 (5.13) 90 14.3 (5.32) 57
Anxiety severity (GAD-7°), mean (SD) 12.0 (4.32) 12.5 (4.23) .19 12.0 (4.29) 94

4P values for pairwise comparisons with the ‘no feedback’ group. Continuous characteristics were compared with Student’s #-test, categorical

characteristics were compared with Xz tests.

by2 approximation may be incorrect due to small cell size. Analysis based on men and women only replicated findings (P=.63 for nontailored

feedback vs no feedback, P=.48 for tailored feedback vs no feedback).
°PHQ-9=Patient Health Questionnaire-9.

dSSS-8=Somatic Symptom Scale-8.

°GAD-7=Generalized Anxiety Disorder Scale-7.

Average Treatment Effect

We did not find evidence of non-zero ATE in either tau- or
eval-forests, suggesting no benefit of providing any form of
feedback compared with the control (no feedback) (Table 2).

Table 2. Average treatment effects for pairwise comparison of feedback conditions.

Comparison Tau-forest" Eval-forest_
ATEFC (SE) ATE (SE)
No feedback versus nontailored feedback 0.04 (0.54) -0.24 (0.55)
No feedback versus tailored feedback -0.38 (0.57) -0.16 (0.57)
No feedback versus any feedback 0.07 (0.48) -0.48 (0.49)

8Tau-forest is based on training data.
bEval-forest is based on test data.
CATE: Average treatment effect.

Heterogeneity in Treatment Effects

There was no evidence of HTE when comparing nontail-
ored (Figure 1) or any feedback with control (Figure S4

https://ai.jmir.org/2025/1/e70001

in Multimedia Appendix 1). However, there was a lower
(ie, more favorable) ATE when comparing tailored feedback
with control among participants with predicted CATE in the
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second most favorable quartile regarding depression severity
change (Figure S1 in Multimedia Appendix 1).

Figure 1. Average treatment effects in participant groups reflecting quartiles of predicted CATE from lowest (L) to highest (R). CATE was predicted
in test data with the tau-forest. ATE was estimated within quartiles with the evaluation forest (based on test data). Positive values indicate less
favorable ATE. ATE: average treatment effect; CATE: conditional average treatment effect.
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Estimated CATE quartile

AUTOC estimates (Figures S2 and S5 in Multimedia predicted CATE did not substantially alter ATE (Figure 2).
Appendix 1) did not suggest the presence of HTE in any This is consistent with the near-zero AUTOC estimates, and
comparison: AUTOC -0.48 95% CI -1.62 to 0.67, P=41, indicates limited potential for altering the effects of feedback
nontailored; AUTOC 0.06, 95% CI —-1.21 to 133, P=.93 mode regarding depression severity change through targeted
tailored; AUTOC -0.20 (95% CI -1.30 to 0.89, P=.72 allocation.

any feedback vs control). Allocating feedback based on

Figure 2. Targeting operator characteristic curve plot. The dashed lines are pointwise 95% confidence intervals conditional on the estimated CATE
function, (ie, the tau-forest based on the training data). The y-lab illustrates the benefit of providing feedback only to a fraction of participants based
on their CATE (ie, treatment priority score), over treating everyone (difference in average treatment effects; ie, PHQ-9 change six months after
screening). The x lab illustrates the fraction treated from highest (L) to lowest (R) CATE. Positive values indicate less favorable ATE. ATE: average
treatment effect; CATE: conditional average treatment effect.
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Top Predictors of Harm or Benefit From
Treatment

The most important predictors of the tau-forest (comparing
nontailored feedback with control) were items assessing
depression—related treatment control belief (B-IPQ), trouble
relaxing (GAD-7), anxiety severity (GAD-7) and trouble
sleeping (SSS-8). For tailored feedback compared with
control, items denoting age, somatic symptom (SSS-8) and
anxiety (GAD-7) severity and depression-related treatment
control belief (B-IPQ) were most important. For any feedback
compared with control, illness beliefs (B-IPQ) were most

Klee et al

important: treatment and personal control, concern, and
emotional response.

Sensitivity Analyses

Higher treatment control (nontailored feedback vs control)
and personal control beliefs (any feedback vs control) were
the only predictors significantly associated with a linear
approximation of CATE (Table 3 and Tables S3 and S4 in
Multimedia Appendix 1). Both predictors were associated
with less favorable CATE estimates, suggesting less favorable
depression severity change at follow-up, given feedback.

Table 3. Best linear projection for top predictors of the causal forest with training data.

Term Estimate SE P value
GAD-7 Item 4: How frequent did you feel impaired by the following symptoms during the past 2 1.60 0.92 08
weeks? — Trouble relaxing (0 not at all to 3 almost every day)

Illness Perception Item 4: How much do you think a treatment can help with these complaints? (0 not at 0.47 0.21 03

all to 10 extremely helpful)

GAD-7? Sum score (0 to 21) 0.00 0.17 99
SSS-8P Item 8: How strongly did you feel impaired by the following complaints during the past 7 days? 0.61 0.50 23

— Trouble sleeping? (0 not at all to 4 very strongly)

3GAD-7: Generalized Anxiety Disorder Scale-7.
bSSS-8: Somatic Symptom Scale-8.

Covariate profiles of the most important predictors are
depicted in Figure 3 and Figures S3 and S6 in Multimedia
Appendix 1. Overall, a higher treatment control belief was

more frequent in the highest (least favorable) CATE quartile.
Findings are less clear for remaining top four most important
predictors.

Figure 3. Covariate profiles for test data with high (upper 25%, magenta) or low (lower 25%, cyan) predicted CATE based on tau-forest. CATE:
conditional average treatment effect; GAD-7: Generalized Anxiety Disorder Scale-7; SSS-8: Somatic Symptom Scale-8.
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in tau-forests did not significantly contribute to predicting
change in depression severity at follow-up above group-level
mean prediction (Table S5 in Multimedia Appendix 1).
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Principal Results

By applying CF to the DISCOVER online RCT, we did not
find evidence for HTE with feedback (tailored, nontailored, or
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any) regarding change in depression severity six months after
screening. As such, no apparent subgroup with an altered
response to any type of feedback mode was detected.

Limitations

First, the selection of participants with at least moderate
depression severity increases the likelihood of regression to
the mean, which may have impeded the investigation of HTE.
Second, generalizability of findings is limited to individuals
participating in an online study about psychological well-
being, who may exhibit distinct severity trajectories. Third,
follow-up time may have been too short to detect variation
in severity change, given, for example, the latency of help
seeking.

Comparison With Prior Work

Our findings are in line with previous results showing
no significant average benefit of any feedback mode for
change in depression severity [1]. Beyond average effects,
we investigated within-group harms and benefits in accord-
ance with an evidence-based medicine approach [3]. We
complement previous research suggesting no between-group
detriments [18] with results suggesting that there are no latent
subgroups that vary in their response to feedback. In contrast
to previous research, our findings are valid irrespective of
a priori defined categorical operationalizations of harmful

Klee et al

or beneficial events. We show that included predictors do
not alter response to feedback, providing an approximated
assessment of individual-level harms and benefits [1,18].

Critically, sensitivity analyses suggested limited calibra-
tion of trained models. However, when testing HTE with CF,
accurate mean prediction of the primary outcome is a first
step necessary to detect deviations from it (ie, HTE). Previous
research illustrates the notorious difficulty of predicting
future depression courses, even with updated analytic tools
[19-21]. Still, by employing a nonparametric method, we
provide HTE estimates, that can account for a broad range of
heterogeneity mechanisms potentially underlying depressive
symptom trajectories and their variation following automated
results feedback [8].

Conclusions

Applying CF, we could examine a broad range of predictors
to detect HTE. In the absence of evidence for HTE, treatment
prioritization based on trained models did not improve ATE:s.
We did not find evidence for harm or benefit of provid-
ing feedback after online depression screening regarding
depression severity change after six months. Future studies
may test if screening alone prompts behavioral activation and
downstream depression severity reduction, considering the
observed uniform changes across groups [22].
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