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Abstract
Background: Efficient allocation of health care resources is essential for long-term hospital operation. Effective intensive
care unit (ICU) management is essential for alleviating the financial strain on health care systems. Accurate prediction of
length-of-stay in ICUs is vital for optimizing capacity planning and resource allocation, with the challenge of achieving early,
real-time predictions.
Objective: This study aimed to develop a predictive model, namely wavelet long short-term memory model (WT-LSTM),
for ICU length-of-stay using only real-time vital sign data. The model is designed for urgent care settings where demographic
and historical patient data or laboratory results may be unavailable; the model leverages real-time inputs to deliver early and
accurate ICU length-of-stay predictions.
Methods: The proposed model integrates discrete wavelet transformation and long short-term memory (LSTM) neural
networks to filter noise from patients’ vital sign series and improve length-of-stay prediction accuracy. Model performance was
evaluated using the electronic ICU database, focusing on 10 common ICU admission diagnoses in the database.
Results: The results demonstrate that WT-LSTM consistently outperforms baseline models, including linear regression,
LSTM, and bidirectional long short-term memory, in predicting ICU length-of-stay using vital sign data, achieving significant
improvements in mean square error. Specifically, the wavelet transformation component of the model enhances the overall
performance of WT-LSTM. Removing this component results in an average decrease of 3.3% in mean square error; such a
phenomenon is particularly pronounced in specific patient cohorts. The model’s adaptability is highlighted through real-time
predictions using only 3-hour, 6-hour, 12-hour, and 24-hour input data. Using only 3 hours of input data, the WT-LSTM model
delivers competitive results across the 10 most common ICU admission diagnoses, often outperforming Acute Physiology
and Chronic Health Evaluation IV, the leading ICU outcome prediction system currently implemented in clinical practice.
WT-LSTM effectively captures patterns from vital signs recorded during the initial hours of a patient’s ICU stay, making it a
promising tool for early prediction and resource optimization in the ICU.
Conclusions: Our proposed WT-LSTM model, based on real-time vital sign data, offers a promising solution for ICU
length-of-stay prediction. Its high accuracy and early prediction capabilities hold significant potential for enhancing clinical
practice, optimizing resource allocation, and supporting critical clinical and administrative decisions in ICU management.
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Introduction
Background and Significance
Efficient allocation of resources has emerged as a critical
concern within the health care domain, with a specific focus
on cost management. The effective administration of the
intensive care unit (ICU) plays a pivotal role in attaining
this objective [1]. ICUs have been reported to contribute
significantly to a hospital’s financial allocation, ranging from
22% to 34% of the overall budget [2,3]. Hence, implementing
improved management strategies for ICUs can effectively
alleviate the financial burdens faced by the health care
system.

Predicting patient outcomes in the ICUs has multifaceted
implications, providing valuable supplementary information
for medical professionals as they make critical clinical and
administrative decisions (it is important to note that these
predictions are intended to complement, not replace, the
judgment of health care providers). First, the prediction of
length of stay aids clinicians in strategizing ICU capacity
planning [4]. Such predictions enable health care institutions
to adeptly manage patient flow, thereby curtailing waiting
durations for critically ill patients. This facilitates optimal
bed turnover and efficient allocation of pivotal resources,
including ventilators and staffing [5]. Second, the quantifi-
cation and optimization of length-of-stay in critical care
units are pivotal for enhancing patient outcomes and clinical
quality [6]. An extended length of stay can potentially
compromise the clinical quality within the ICU. Extended
length of stay can exert undue pressure on ICU capacity,
potentially resulting in the deferment of elective surger-
ies, which is both financially burdensome and detrimen-
tal to patient health [7]. Furthermore, it could escalate
the urgency to refuse or postpone emergency admissions,
potentially jeopardizing patient outcomes. Such scenarios
could also inadvertently shift focus away from the gravely ill
[7]. Accurate length-of-stay predictions empower intensiv-
ists to refine treatment strategies, enhancing patient out-
comes while minimizing unwarranted interventions. Third,
economic considerations are intricately linked with length-of-
stay predictions. ICUs, by their inherent nature, are finan-
cially demanding, administering intricate interventions and
mandating intensive clinician involvement for a niche patient
cohort. An augmented length of stay inevitably monopolizes
more ICU resources, thereby inflating costs. In a milieu
where ICUs grapple with mounting pressures and financial
resources are increasingly limited, the urgency to enhance the
expediency and efficiency of critical care is paramount [8].

In an optimal setting, a patient outcome prediction model
for intensive care would be deployed before any intervention
[9]. However, in current clinical paradigms, the prediction
is typically executed within the first 24 hours following
ICU admission. This is primarily due to the necessity of
integrating various patient-specific risk factors, including
demographic information, diagnostic codes, and laboratory
test results to accurately predict the outcome for individual
patients [9]. The imperative to collate data from diverse
sources poses challenges to the adaptability of existing
methods for real-time predictions. The process is further
complicated by the frequent occurrence of unidentified or
“unknown” patients in the ICU, whose identities cannot be
ascertained upon arrival at the hospital. As a result, demo-
graphic information, medical history, and related data remain
undisclosed [10,11]. The absence of such vital informa-
tion restricts the available input, compelling the model to
rely solely on readily accessible data. In response to this
challenge, researchers and practitioners advocate for the
development of models that rely solely on real-time vital sign
data, enabling predictive capabilities at any point during a
patient’s stay in the ICU.
Objectives
To address the critical need for efficient ICU length-of-
stay prediction with limited patient information that can
be updated in real time, this research aims to develop a
predictive model for ICU length-of-stay based exclusively
on real-time vital sign data. By leveraging real-time vital
sign data, the study enables early and accurate length-of-
stay predictions, facilitating improved ICU capacity planning,
resource optimization, and enhanced patient care outcomes.
Related Work

ICU Length-of-Stay Prediction
The importance of predicting the length of stay in the ICU has
long been acknowledged, with numerous studies addressing
this topic (Table 1). Predominantly, extant research tends
to reduce the complexity of length-of-stay prediction into a
binary classification problem, categorizing patients’ stays as
either prolonged or nonprolonged. Nevertheless, such binary
classifications lack the granularity necessary for medical
practitioners to devise comprehensive care plans. Further-
more, while some regression models have been developed to
predict the actual length of stay for patients in the ICU, these
models are typically limited to predictive horizons of only the
first 24 or 48 hours following ICU admission [12-16].
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Table 1. Literature review.

Previous
research Data source

Data collection
period Type of prediction Methods

Data type or feature used

Domain
knowledge

Demographic
and pre-ICUa
condition

Vital
signs

Laborator
y results

Mobley et al
[17]

Records of
patients
discharged
from a
postcoronary
care unit in
early 1993.

24 h Classification: length
of stay (1 to 20 days).

NNb ✓ ✓ ✓ —c

Zimmerman et
al [16]

In hospital 24 h Regression Linear regression ✓ ✓ ✓ ✓
Van
Houdenhoven
et al [15]

In hospital 72 h Regression Linear regression ✓ ✓ ✓ ✓

De Cocker et al
[18]

In hospital In hospital Classification (if>2,
if>5, if>7)

Risk model or
hazard model

✓ ✓ — ✓
Purushotham et
al [13]

MIMIC-IIId 24 h, 48 h Regression Deep learning
models
(MMDLe, FFNf,
and RNNg)

✓ ✓ ✓ ✓

Rajkomar et al
[19]

In hospital 24 h, 48 h Classification (if≥7
days)

LSTMh ✓ ✓ ✓ ✓
Harutyunyan et
al [20]

MIMIC-III Real time,
each hour after
admission

Classification
problem with 10
classes or buckets

LSTM ✓ ✓ ✓ ✓

Khadanga et al
[21]

MIMIC-II 48 h Multiclass
classification

CNNi + LSTM ✓ — — —

Zebin and
Chaussalet [22]

MIMIC-III 24 h Binary classification DNNj ✓ ✓ — —

Sotoodeh and
Ho [23]

MIMIC-III 48 h Regression Hidden Markov
model-based
framework

— ✓ ✓ ✓

Ma et al [12] In hospital 72 h Regression Decision tree — ✓ ✓ ✓
Sheikhalishahi
et al [14]

eICUk 24 h, 48 h Regression BiLSTMl ✓ ✓ ✓ ✓
Alabbad et al
[24]

In hospital — Classification Random forest,
gradient
boosting,
extreme gradient
boosting,
ensemble
classifier

✓ ✓ — ✓

Liu et al [25] In hospital — Classification Meta learning ✓ ✓ ✓ ✓
aICU: intensive care unit.
bNN: neural network.
cNot available.
dMIMIC-III: Medical Information Mart for Intensive Care III.
eMMDL: multimodal deep learning model.
fFFN: feedforward neural network.
gRNN: recurrent neural network.
hLSTM: long short-term memory.
iCNN: convolutional neural network.
jDNN: deep neural network.
keICU: electronic intensive care unit.
lBiLSTM: bidirectional long short-term memory.

Given the critical condition of ICU patients, accurately
assessing their health status—such as predicting their length
of stay—is crucial, especially at time points specified by

physicians rather than being limited to standardized intervals
like 24 or 48 hours.
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One of the principal challenges that existing models face
is their reliance on multiple data sources, including domain-
specific knowledge, demographic and pre-ICU condition
data, vital signs, and laboratory results. Laboratory results,
in particular, are often subject to processing delays, while
domain knowledge relies on the interpretation of medi-
cal professionals, which can lack flexibility. In addition,
demographic data may sometimes be unavailable, particularly
in cases where patients’ identities are unknown. In contrast,
bedside-monitored vital signs represent a readily available,
real-time data source. However, current research uses vital
sign series in a relatively superficial manner, typically using
basic statistics such as mean, maximum, and minimum
values [16], or categorizing them [26]. Nonetheless, vital
sign time series data often exhibit highly complex patterns,
which can vary significantly across different patient cohorts.
Simplifying these series using basic statistics for categorical
data severely limits downstream models’ ability to uncover
valuable patterns and effectively leverage them for predicting
ICU patients’ length of stay.

To address these limitations, our research endeavors to
design a model that exclusively harnesses the power of 3 vital
sign series to make real-time predictions, thereby offering
a more granular and timely approach to ICU length-of-stay
prediction with both decent accuracy and good generalizabil-
ity.
Models Dealing With Time Series
The use of time series data for prediction has been a central
focus in various domains, leading to the exploration and
development of diverse models [27]. Traditional statistical
models, particularly regression techniques, have historically
played a crucial role in time series prediction [28]. These
models leverage historical data patterns to make forecasts,
providing a foundational framework for subsequent advance-
ments in predictive modeling. However, their performance is
constrained by their underlying hypothesis, as most datasets
struggle to fulfill these assumptions.

The emergence of neural networks has revolutionized time
series prediction. Recurrent neural networks are specifically
designed to capture sequential dependencies within data
[29]. Recurrent neural networks excel in modeling tempo-
ral relationships, making them well-suited for time series
forecasting tasks [30]. However, they may face challenges
when dealing with long-term dependencies due to the
vanishing gradient problem [31]. The introduction of the long
short-term memory (LSTM) model addresses this issue by
incorporating memory cells that can retain information over
extended sequences [32]. LSTMs have shown remarkable
success in capturing complex temporal dependencies, making
them popular for time series prediction tasks. However,
they are not immune to challenges, particularly when the
data is affected by noise [33]. The transformer architecture,
originally designed for natural language processing tasks,
has also found applications in time series prediction [34].
However, a notable challenge lies in the substantial amount of
data often required for effective training [35]. In addition, for
task-specific small datasets, transformers have demonstrated

less competitiveness compared with LSTMs, as evidenced
by research in the medical field [36]. Therefore, it appears
that LSTM remains the preferred choice, notwithstanding its
susceptibility to noise in time series data.

To address the susceptibility of LSTMs to noise, we
propose using wavelet transform techniques as a prepro-
cessing step and introduce the Wavelet-LSTM model. This
approach aims to denoise time series data before feeding
it into LSTM models, with the overarching goal of enhanc-
ing the robustness of LSTM models and improving their
performance in the presence of noisy signals.

Wavelet Transformation in ICU Mortality
Prediction
The application of wavelet transformation remains limited
in ICU outcome prediction. A previous study by Wang et
al [37] demonstrated that features extracted via wave-
let transformation can be among the most informative
compared with those derived from other signal process-
ing techniques. However, their approach applied wavelet
features in a handcrafted and static manner, rather than
integrating them into an end-to-end learning framework.
In addition, much of the existing literature does not
fully use the rich, high-frequency information embedded
in continuous vital sign data. The proposal of a wavelet
LSTM model (WT-LSTM) addresses this gap by incor-
porating wavelet-transformed vital signs directly into the
model architecture, enabling both noise reduction and
multi-resolution pattern extraction in a fully data-driven
way. This represents a key contribution of our work, as it
combines advanced signal processing with deep learning to
enhance predictive performance while maintaining practical
applicability for real-time clinical decision support.

Methods
Model Structure
The WT-LSTM model introduced in this study is pri-
marily composed of 3 key components: a wavelet trans-
form layer, an LSTM layer, and a linear fully connected
layer. Using the vital sign series denoted by Vi t ∈ 2N,
where i = 1, . . . , m, t = 1, . . . , n, N ∈ N+, we use a discrete
wavelet transform (DWT) filter bank to discern the trends
therein. The trends of the vital signs are encapsulated in the
low-frequency component of the signal, while the high-fre-
quency component is predominantly noise. Given a mother
wavelet ψ t , we can construct g t = 12jψ −t2j  sampled at
the points 1, 2j, 22j,...,2N, where j denotes the level of the
DWT. In this investigation, we select j = 2, thereby using
a level 2 DWT filter bank. The coefficients of this filter
bank align precisely with a wavelet coefficient of a discrete
set of child wavelets for a given mother wavelet ψ t . TheV i, t series are channeled through a low-pass filter twice,
culminating in the approximation coefficient Xi t  of the
original signal (Figure 1).
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Figure 1. Alterations in vital sign series during level 2 discrete wavelet transform filter bank application.

By using DWT, high-frequency noise is filtered out,
significantly enhancing the clarity of time series patterns in
patients’ vital signs. These denoised sequences, Xi t  serve as
the input for the LSTM network. At each time point, there
are 3 input features: the values of heart rate, respiration, and
oxygen saturation (SaO2), forming the input vector X  at a
specific moment, represented as VℎeartrateVrespirationVsao2 .

The LSTM architecture efficiently uses temporal
information from time series data by allowing past
information to persist. For input Xi at time stamp i,

Vℎeartrate, iVrespiration, iVsao2, i , an LSTM cell processes it asft = σ Xt*Uf + Ht − 1*Wf  , Ct = tanℎ Xt*Uc + Ht − 1*Wc ,it = σ Xt*Ui + Ht − 1*Wi , Ot = σ Xt*Uo + Ht − 1*Wo ,Ct = ft*Ct − 1 + it*Ct, Ht = Ot*tanℎ Ct , where W, U are the
weight vectors for forget gate f, candidate c, i/p gate i and
o/p gate O. Ht − 1, Ht, Ct − 1 and Ct are the previous and
current cell output and memories respectively (Figure 2). A
linear layer is then applied to the LSTM cell outputs, akin to
performing regression on these outputs. The final result of the
model constitutes the predicted length-of-stay value.

Figure 2. Wavelet long short-term memory model network structure.
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The WT-LSTM model effectively combines the strengths of
signal processing techniques, which excel at filtering noise
from patients’ vital sign time series, with the robust pattern
recognition capabilities of the LSTM model structure. Time
series data of patients’ vital signs often contain significant
noise due to varying disease pathologies, medical interven-
tions, and device errors. The synergy of wavelet and LSTM
components in the proposed model effectively mitigates the
adverse effects of noise on LSTM performance, thereby
enhancing its robustness and overall effectiveness.
Data Description
The experiments were carried out using the electronic
intensive care unit (eICU) database [38]. We extracted

datasets encompassing patient records associated with the
top 10 most prevalent diagnoses at ICU admission (Table
2). This selection allows for more reliable comparisons
across clinically meaningful and commonly observed patient
cohorts. The sole input to the model consisted of vital
sign series, which constituted readily accessible real-time
data from ICU bedside monitoring. These vital signs were
typically interfaced as 1-minute averages and archived as
5-minute median values [37]. The vital signs used in this
study presented themselves as periodic time-series data.
Specifically, our analysis focused on 3 key vital signs: heart
rate, respiration rate, and SaO2, recognized as the most
pertinent indicators for ICU outcome prediction.

Table 2. Patient records with the top 10 most frequent diagnoses at intensive care unit admission.
Abbreviation Diagnosis Records, n
SPa Sepsis, pulmonary 8862
MIb Infarction, acute myocardial (MI) 7228
CVAc CVA, cerebrovascular accident or stroke 6647
HFd CHFe, congestive heart failure 6617
SRf Sepsis, renal/UTIg (including bladder) 5273
RDh Rhythm disturbance (atrial, supraventricular) 4827
DKi Diabetic ketoacidosis 4825
CAj Cardiac arrest (with or without respiratory arrest; for respiratory arrest see Respiratory System) 4580
CABGk CABG alone, coronary artery bypass grafting 4543
EBl Emphysema or bronchitis 4494

aSP: sepsis, pulmonary.
bMI: myocardial infarction.
cCVA: cerebrovascular accident or stroke.
dHF: heart failure.
eCHF: congestive heart failure.
fSR: sepsis, renal.
gUTI: urinary tract infection.
hRD: rhythm disturbance.
iDK: diabetic ketoacidosis.
jCA: cardiac arrest.
kCABG: coronary artery bypass grafting.
lEB: emphysema or bronchitis.

For each experiment, the same patient cohort was used across
all input time windows (eg, 3 h, 6 h, 12 h, and 24 h).
To ensure temporal consistency and real-time applicability,
only vital sign data recorded before the specified time point
were used for model input. Patients with a length of stay
shorter than the input window (eg, less than 24 h in the 24
h experiment) contributed their complete available data. For
patients with longer stays, only the data from the specified
time window were included. This approach preserved the
real-world distribution of ICU lengths of stay while maintain-
ing consistency in patient inclusion and ensuring that the
model relied exclusively on data that would be available at
the corresponding prediction time. The target variable, length
of stay, was modeled and evaluated in units of days.
Ethical Considerations
The eICU databases were deidentified, anonymized, and
approved for sharing by the institutional review boards of

both Beth Israel Deaconess Medical Center and the Massa-
chusetts Institute of Technology. Data access was granted to
an investigator after the completion of a National Institutes of
Health course and successful passing of the associated human
research participant protection examination. Given that the
data are accessible to the public through the eICU database,
the need for ethical approval and informed consent was
waived. The contributing author, YJ, obtained the necessary
authorization to access the anonymized dataset and oversaw
the meticulous data extraction process.
Training Details
The training, validation, and testing of our method follow
the widely adopted hold-out validation procedure. Specifi-
cally, for each experiment, patient records were randomly
split using stratified sampling based on the prediction target
(mortality or length of stay). The data were partitioned into
training (56.25%), validation (18.75%), and test (25%) sets.
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Each experiment was repeated 30 times with different random
seeds to ensure robustness.

The specific training procedure and parameter settings
of our method are summarized below. Our method was
developed using PyTorch. We trained the WT-LSTM model
for up to 100 epochs with early stopping based on valida-
tion loss. The optimizer used was Adam with learning rates
tuned over 0.08, 0.1, 0.12, and 0.15. A batch size of 16
was used consistently across all runs. The best-performing
model checkpoint (based on validation loss) was saved for
evaluation on the test set. We have set torch.manual_seed(1)
for reproducibility.

Results
Overview
In this section, we primarily present the outcomes of 3
key experiments. To commence, we juxtapose the results
of the WT-LSTM model using mean square error (MSE),
a commonly used metric for evaluating the performance
of regression models, against benchmark methods used

by existing research, including linear regression, LSTM,
bidirectional long short-term memory (BiLSTM) using
24-hour vital sign data. Subsequently, we extend our
analysis to experiments involving 3-hour, 6-hour, and 12-hour
prediction intervals, thus showcasing the model’s real-time
and early prediction capabilities. The results are compared
with the best-performing ICU outcome prediction method
currently used in ICUs, that is, the Acute Physiology and
Chronic Health Evaluation (APACHE) IV system [16]. In
addition, we present the length-of-stay prediction distribu-
tions for each patient cohort generated by our proposed model
and draw comparisons with the predictions generated by the
APACHE IV model.
Comparison With Baselines
Previous studies on length-of-stay prediction have employed
linear regression, LSTM, and BiLSTM models, which are
adopted as baselines in our research, using vital sign series as
inputs. This study conducts a comparative analysis between
the performance of the WT-LSTM model, using 24-hour vital
sign data, and the baselines to validate the effectiveness of
our model (Table 3).

Table 3. Comparisons between wavelet long short-term memory model and benchmarks using 24 h vital signs as inputs.
Disease Linear regression BiLSTMa LSTMb WT-LSTMc Improvement compared with LSTM, n (%)
HFd 17.61 14.75 13.84 13.24 0.6 (4.34)
CVAe 15.16 12.33 11.59 11.45 0.14 (1.21)
MIf 8.15 6.03 5.54 5.53 0.01 (0.18)
SPg 38.77 29.41 24.29 24.31 –0.02 (0.08)
SRh 15.24 9.99 9.08 8.84 0.24 (2.64)
RDi 10.69 7.71 6.66 6.02 0.64 (9.61)
DKj 4.08 2.38 2.39 2.37 0.02 (0.84)
CAk 38.77 22 20.04 19.22 0.82 (4.09)
CABGl 14.08 11.95 9.47 8.78 0.69 (7.29)
EBm 19.1 12.3 11.58 11.25 0.33 (2.85)

aBiLSTM: bidirectional long short-term memory.
bLSTM: long short-term memory.
cWT-LSTM: wavelet long short-term memory.
dHF: heart failure.
eCVA: cerebrovascular accident or stroke.
fMI: myocardial infarction.
gSP: sepsis, pulmonary.
hSR: sepsis, renal.
iRD: rhythm disturbance.
jDK: diabetic ketoacidosis.
kCA: cardiac arrest.
lCABG: coronary artery bypass grafting.
mEB: emphysema or bronchitis.

WT-LSTM outperforms all the baselines in 9 out of the
10 patient cohorts. In the remaining patient cohort (sepsis,
pulmonary [SP]), while the WT-LSTM model did not achieve
the best performance, its performance was very close to that
of the best baseline in terms of MSE (24.29 for LSTM vs
24.31 for WT-LSTM) and outperformed the other 2 baselines.
It is evident that when handling patients’ time series of vital
sign data, WT-LSTM demonstrates its strengths compared
with the baselines.

Furthermore, the performance disparity between the
LSTM model and the WT-LSTM model serves as an
evaluation of the denoising impact of wavelet transformation
on vital sign series and its subsequent contribution to model
performance. The inclusion of the wavelet transformation
component in the WT-LSTM model results in an average
improvement of 3.3% in prediction performance, measured
through MSE. Notably, the most substantial enhancement is
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observed in the patient cohort with rhythm disturbance (RD),
where performance improves by 9.61%.

These experimental results signify that, among all the
models addressing vital sign data for the regression predic-
tion task of ICU length-of-stay, WT-LSTM emerges as the
superior choice. This aligns with our intuitive design of the
model structure.
Real-Time Prediction
The WT-LSTM model, by exclusively using vital sign series
as its input, exhibits remarkable adaptability in facilitating
real-time predictive capabilities. To illustrate this, a ser-
ies of experiments is conducted to evaluate the model’s
performance with varying lengths of patient time series data

as input. In these experiments, we compare the WT-LSTM
model with the widely used APACHE IV model, known
for its credibility in predicting ICU outcomes, which relies
on 24-hour data and includes demographic information, vital
sign values, and laboratory results as inputs.

In comparisons using 24-hour data inputs across 10
distinct patient cohorts with various diagnoses, the WT-
LSTM model outperforms the APACHE IV model in 9 out of
the 10 cases (Table 4). Particularly noteworthy is the fact that,
for 8 out of the 10 cohorts, the WT-LSTM model exhibits a
significant performance enhancement, reducing the MSE by
more than 10% compared with the APACHE IV model. In
over half of the cohorts, the improvement surpasses the 20%
mark.

Table 4. Real-time prediction comparison between wavelet long short-term memory and Acute Physiology and Chronic Health Evaluation IV.

Disease
APACHEa IV
(24 h) 3 h

WT-LSTMb 3 h
improvement compared
with APACHE IV, n
(%) 6 h 12 h 24 h

WT-LSTM 24 h
improvement
compared with
APACHE IV, n
(%)

HFc 12.80 15.23 −2.43 (−18.98) 15.20 15.05 13.24 −0.44 (3.44)
CVAd 11.58 12.72 −1.14 (−9.84) 12.71 12.67 11.45 0.13 (1.12)
MIe 6.85 6.10 0.75 (10.95) 6.06 6.03 5.53 1.32 (19.27)
SPf 34.67 29.92 4.75 (13.7) 29.76 29.69 24.31 10.36 (29.88)
SRg 11.14 10.36 0.78 (7) 10.32 10.26 8.84 2.3 (20.65)
RDh 7.54 7.96 −0.42 (−5.57) 7.91 7.72 6.02 1.52 (20.16)
DKi 2.72 2.44 0.28 (10.29) 2.44 2.39 2.37 0.35 (12.87)
CAj 30.43 24.77 5.66 (18.6) 24.37 23.48 19.22 11.21 (36.84)
CABGk 11.84 12.21 −0.37 (−3.13) 12.07 11.64 8.78 3.06 (25.84)
EBl 13.52 13.06 0.46 (3.4) 12.86 12.72 11.25 2.27 (16.79)

aAPACHE: Acute Physiology and Chronic Health Evaluation.
bWT-LSTM: wavelet long short-term memory.
cHF: heart failure.
dCVA: cerebrovascular accident or stroke.
eMI: myocardial infarction.
fSP: sepsis, pulmonary.
gSR: sepsis, renal.
hRD: rhythm disturbance.
iDK: diabetic ketoacidosis.
jCA: cardiac arrest.
kCABG: coronary artery bypass grafting.
lEB: emphysema or bronchitis.

The results also demonstrate that the initial 3-hour vital sign
data provides the most significant insights for the prediction
of ICU length of stay. The early-phase vital sign patterns of
patients carry substantial implications for the assessment of
their clinical condition, and the extension of the input time
series yields relatively marginal improvements in the model’s
performance. Particularly, in the transition from 3-hour to
12-hour input intervals, the results demonstrate a noteworthy
degree of similarity. However, when a 24-hour input interval
is used, the model’s performance exhibits a more pronounced
enhancement.

It is imperative to highlight that, for over half of the patient
cohorts, the 3-hour results surpass those of the APACHE IV

model. This observation underscores the model’s significant
potential for early prediction.
Prediction Distribution Comparison
Between WT-LSTM and APACHE IV
To gain deeper insights into the distinctions in prediction
results between WT-LSTM and APACHE IV, we generated
plots that depict the predicted length-of-stay by both methods,
in conjunction with the true values of the length-of-stay for
the 10 distinct patient cohorts.

Observations gleaned underscore significant disparities in
the patterns of length-of-stay predictions and actual val-
ues (Figure 3). Notably, the true values of length of stay
exhibit a pronounced right-skewed distribution, whereas the
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predictions generated by APACHE IV tend to be more
conservative in their estimates. WT-LSTM, on the other
hand, positions itself between these 2 extremes, manifest-
ing a propensity to predict values that gravitate toward the
statistical average. The possible reason is that our method
is based on deep learning, trained in a supervised manner
using the true length of stay and optimized with a MSE loss

function. Deep learning models optimized for MSE are often
biased toward conservative predictions due to the bias-var-
iance trade-off, which leads them to underpredict extreme
values. For example, when a model trained with MSE makes
an incorrect prediction on an extreme value, the squared error
amplifies the loss significantly, discouraging the model from
making such predictions.

Figure 3. Predicted distribution of wavelet long short-term memory model with 3 h of vital signs versus Acute Physiology and Chronic Health
Evaluation IV. CA: cardiac arrest; CABG: coronary artery bypass grafting; CVA: cerebrovascular accident or stroke; DK: diabetic ketoacidosis; EB:
emphysema or bronchitis; HF: heart failure; MI: myocardial infarction; RD: rhythm disturbance; SR: sepsis, renal; SP: sepsis, pulmonary.

We also compared the prediction distributions between the
WT-LSTM model using the full 24-hour input series and
APACHE IV (Figure 4). The results show that the distri-
bution of predicted length-of-stay becomes more dispersed
when 24 hours of data are used, with improved alignment

to the true length-of-stay distribution. This suggests that
increased input duration enhances the model’s sensitivity
to patient-specific variation. However, the corresponding
improvement in predictive accuracy, as measured by MSE,
is relatively modest, as discussed previously—highlighting
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the strength of WT-LSTM’s early prediction capability, even
when only short-term data are available.

These findings highlight that WT-LSTM, which relies
solely on 3 hours of vital sign data, provides predictions that

are highly competitive when compared with those generated
by APACHE IV, which uses 24 hours of data. Furthermore,
it has the potential to serve as an early warning system for
monitoring the health conditions of patients.

Figure 4. Predicted distribution of wavelet long short-term memory model with 24 hours of vital signs versus Acute Physiology and Chronic Health
Evaluation IV. CA: cardiac arrest; CABG: coronary artery bypass grafting; CVA: cerebrovascular accident or stroke; DK: diabetic ketoacidosis; EB:
emphysema or bronchitis; HF: heart failure; MI: myocardial infarction; RD: rhythm disturbance; SR: sepsis, renal; SP: sepsis, pulmonary.

JMIR AI Jiang et al

https://ai.jmir.org/2025/1/e71247 JMIR AI 2025 | vol. 4 | e71247 | p. 10
(page number not for citation purposes)

https://ai.jmir.org/2025/1/e71247


Discussion
Limitations and Performance
Interpretation
WT-LSTM has demonstrated its advantages in predicting
ICU patients’ length of stay by using only real-time data
that are readily accessible, achieving performance comparable
with or better than most benchmark methods, including the
best-performing method currently used in ICUs (ie, APACHE
IV). However, it is essential to acknowledge its limitations.
From the distribution comparisons presented in the results, it
becomes evident that in certain patient cohorts, WT-LSTM
tends to predict length-of-stay toward the mean, indicative of
potential insufficient information.

One limitation of this study is the restriction to the top
10 ICU admission diagnoses in the eICU database. While
this selection was made to ensure adequate sample sizes
and manageable computational requirements, it may limit the
generalizability of our findings to less common diagnoses
or more heterogeneous ICU populations. Future work could
extend the model to a broader patient population as resources
permit.

The prediction results exhibit greater reliability and
accuracy in patient cohorts with cardiac arrest (CA), RD,
and diabetic ketoacidosis (DK), while showing relatively
weaker predictions in cohorts with heart failure (HF), SP,
and coronary artery bypass grafting (CABG). The primary
reason for this discrepancy could be the diverse impacts
that diseases have on the 3 vital signs. In disease cohorts
where patient conditions significantly impact vital signs,
distinguishing patients’ risk levels becomes challenging. For
example, patients with HF often present with a rapid or
irregular heartbeat, shortness of breath, and decreased SaO2
[39]. Similarly, patients with SP exhibit shortness of breath,
an elevated heart rate, and decreased SaO2 [40]. Predicting
outcomes using only these 3 vital signs proves challenging.
In patient cohorts with diseases that have a limited impact on
the 3 vital signs, such as CABG, which lacks clear signals
from these vital signs, the performance of WT-LSTM is
also limited. Conversely, for certain patient cohorts, the 3
adopted vital sign time series exhibit diverse patterns, and
patient conditions have certain impacts on these vital signs;
such variability can enhance the prediction capabilities of
the WT-LSTM. For instance, patients with RD show varied
patterns on respiration and SaO2 based on the type and
severity of rhythm disturbance [41]. Similarly, DK and CA
impact SaO2 differently based on the severity of acido-
sis and the involvement of respiratory arrest, respectively.
This suggests that the predictive capability of WT-LSTM
is influenced by the nature of the diseases and their respec-
tive impacts on vital signs. Recognizing these nuances is
crucial for refining the model and improving its predictive
performance across diverse patient cohorts. Furthermore,
exploring additional vital signs specific to certain disease
groups provides an opportunity to adapt the model to different
conditions, potentially further improving its performance.

Besides, WT-LSTM’s exclusive reliance on vital sign
data may lead to not fully capturing the complexity of
certain clinical scenarios. For instance, critically ill patients
undergoing prolonged interventions, such as mechanical
ventilation, may exhibit relatively stable or normalized vital
signs while still requiring extended ICU care. In such cases,
the model may underestimate length of stay due to the
absence of contextual clinical information. While the use
of vital signs alone enhances the model’s applicability in
real-time and data-limited settings, future work could explore
the integration of additional variables such as medication
use, intervention records, or clinical documentation to better
account for factors not directly observable through vital sign
patterns.

In addition, WT-LSTM’s exclusive reliance on vital sign
data inherently limits its utility for individual-level predic-
tion. The model performance at the individual scale is
constrained by relatively low R² values (<10%) and wider
prediction variance (higher root-mean-square error; Multi-
media Appendix 1), as well as imperfect calibration. This
is reflected in both the sharp distributional peaks seen in
predicted length-of-stay. These patterns suggest that the
model performs best when estimating average outcomes
across a population but may struggle with edge cases or
highly personalized clinical contexts. While this limitation
does not preclude its use for operational or cohort-level
applications, it is important to exercise caution in interpreting
WT-LSTM predictions for individual patient decision-mak-
ing. Future enhancements, such as incorporating auxiliary
features or using distribution-aware loss functions, could help
address this gap.

In Table 3, the BiLSTM model demonstrated worse
performance than the unidirectional LSTM across most
patient cohorts. This finding may be attributed to the temporal
nature of ICU data, where the most predictive information
is often concentrated in the initial hours following admis-
sion. Unlike LSTM, which processes data in a forward-look-
ing manner aligned with real-time clinical decision-making,
BiLSTM leverages both past and future time steps—an
assumption that may not hold in real-world ICU set-
tings where future observations are unavailable. In addi-
tion, BiLSTM’s bidirectional architecture increases model
complexity and may lead to overfitting when training data is
relatively limited, especially when early vital signs dominate
the input. These factors suggest that BiLSTM’s backward
temporal dependency may dilute the predictive strength
of early signals, thereby reducing its overall effectiveness
in this context. This further supports the design choice
of WT-LSTM, which retains a unidirectional structure
while enhancing temporal feature extraction through wavelet
transformation.

Beyond individual-level predictions, the WT-LSTM model
also has potential applications in ICU benchmarking and
operational assessment. Early and accurate predictions of
ICU length of stay can inform capacity planning, staff-
ing allocation, and overall resource usage—key metrics
in evaluating ICU efficiency. Previous works [42-45]
have demonstrated the value of data-driven approaches
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in benchmarking ICU performance across institutions. By
relying solely on real-time vital signs, our model offers
a lightweight and scalable solution that could support
these benchmarking efforts, particularly in settings with
limited access to comprehensive electronic health record
data. Integrating such predictive tools into ICU manage-
ment workflows may help improve institutional comparisons,
optimize throughput, and enhance system-level decision-mak-
ing.
Conclusions
This study introduces a novel model, WT-LSTM, which
incorporates signal processing techniques to augment the
performance of LSTM cells, specifically for the purpose of
predicting ICU length-of-stay. WT-LSTM operates exclu-
sively on readily available vital sign data, which effectively
addresses 2 significant challenges in current research for ICU
outcome prediction: real-time prediction capabilities and the
lack of important information for unidentified patients.

The model’s performance is rigorously evaluated using the
eICU database, focusing on patient records related to the top

10 most frequently diagnosed conditions. It is benchmarked
against existing methods, including APACHE IV, which is
a widely recognized and best-performing method currently
used for ICU outcome prediction. Remarkably, when using
24-hour heart rate, respiration, and SaO2 time series as input,
WT-LSTM significantly outperforms APACHE IV across
most patient cohorts. Strikingly, even with just 3-hour vital
sign series, WT-LSTM surpasses APACHE IV—despite the
latter using 24 hours of data—in more than half of the patient
cohorts.

The predictive distribution generated by WT-LSTM
exhibits a tendency to predict values closer to the stat-
istical average, offering a meaningful indicator for the
early detection of changes in patients’ health conditions.
This capacity to predict ICU length-of-stay both early and
accurately not only provides valuable insights into patients’
health statuses, thereby benefiting health care providers in
their clinical practice, but also offers guidance for opti-
mizing the allocation of ICU resources. Ultimately, these
advancements hold the potential to contribute significantly to
healthcare management.
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