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Abstract
Background: Medical image segmentation is crucial for diagnosis and treatment planning in radiology, but it traditionally
requires extensive manual effort and specialized training data. With its novel video tracking capabilities, the Segment Anything
Model 2 (SAM 2) presents a potential solution for automated 3D medical image segmentation without the need for domain-
specific training. However, its effectiveness in medical applications, particularly in abdominal computed tomography (CT)
imaging remains unexplored.
Objective: The aim of this study was to evaluate the zero-shot performance of SAM 2 in 3D segmentation of abdominal
organs in CT scans and to investigate the effects of prompt settings on segmentation results.
Methods: In this retrospective study, we used a subset of the TotalSegmentator CT dataset from eight institutions to assess
SAM 2’s ability to segment eight abdominal organs. Segmentation was initiated from three different z-coordinate levels
(caudal, mid, and cranial levels) of each organ. Performance was measured using the dice similarity coefficient (DSC). We
also analyzed the impact of “negative prompts,” which explicitly exclude certain regions from the segmentation process, on
accuracy.
Results: A total of 123 patients (mean age 60.7, SD 15.5 years; 63 men, 60 women) were evaluated. As a zero-shot approach,
larger organs with clear boundaries demonstrated high segmentation performance, with mean DSCs as follows: liver, 0.821
(SD 0.192); right kidney, 0.862 (SD 0.212); left kidney, 0.870 (SD 0.154); and spleen, 0.891 (SD 0.131). Smaller organs
showed lower performance: gallbladder, 0.531 (SD 0.291); pancreas, 0.361 (SD 0.197); and adrenal glands—right, 0.203 (SD
0.222) and left, 0.308 (SD 0.234). The initial slice for segmentation and the use of negative prompts significantly influenced
the results. By removing negative prompts from the input, the DSCs significantly decreased for six organs.
Conclusions: SAM 2 demonstrated promising zero-shot performance in segmenting certain abdominal organs in CT scans,
particularly larger organs. Performance was significantly influenced by input negative prompts and initial slice selection,
highlighting the importance of optimizing these factors.
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Introduction
Medical image segmentation is a critical task in radiol-
ogy, playing a vital role in diagnosis, treatment planning,
and clinical research [1,2]. Traditionally, this process has
been labor-intensive, requiring manual delineation by skilled
radiologists. However, recent advancements in deep learning
have revolutionized this field, expanding the scope of
automated analysis and significantly enhancing performance
across diverse medical imaging tasks.

The Segment Anything Model (SAM), introduced by Meta
AI, represented a significant leap forward in image segmen-
tation technology [3]. Trained on over a billion masks,
SAM demonstrated remarkable versatility in segmenting
a wide array of objects across various domains. SAM’s
zero-shot performance—its ability to segment objects it
has never seen during training—in medical images has
been extensively evaluated [4,5], and specialized models
such as MedSAM [6], which underwent additional training
for medical imaging applications, have been introduced.
These developments have demonstrated SAM’s potential in
radiological domains, including CT and magnetic resonance
imaging (MRI). However, SAM was primarily designed for
2D image segmentation, which imposed inherent limitations
on its direct applicability to 3D volumetric data.

SAM 2, released in July 2024, introduced video segmenta-
tion capabilities [7], applicable to 3D medical imaging like
CT scans. Although not specifically designed for medical
use, its zero-shot ability and video tracking features offer
a promising approach to 3D medical image segmentation,
potentially overcoming limitations of traditional methods that
require extensive domain-specific training. Testing SAM 2’s
zero-shot performance is crucial because it could signifi-
cantly reduce the need for large, annotated medical data-
sets and specialized model training, potentially accelerating
the deployment of artificial intelligence in various medical
imaging applications.

SAM 2’s zero-shot performance in radiology and
the impact of input factors remain understudied, despite
evaluations in surgical video segmentation [8] and special-
ized versions like Medical SAM2 [9]. We assess SAM
2’s zero-shot performance in medical imaging, examining
how target organ size, initial slice selection, and negative
prompts influence its segmentation accuracy. These factors
are crucial for optimizing SAM 2’s performance in radiologi-
cal applications.

We focused our evaluation on abdominal organs due
to their significant clinical importance. Morphological and
size analysis of these organs is crucial for disease detection
[10]; pancreatic atrophy may indicate highly fatal pancreatic
cancer [11] and liver morphology changes can signal cirrhosis
[12]. Renal atrophy is associated with chronic kidney
diseases [13], and a recent study has shown that kidney

volume measurements obtained through accurate segmenta-
tion models effectively predict kidney function [14]. These
volumetric assessments require precise 3D segmentation,
making abdominal imaging an ideal test case for evaluating
SAM 2’s capabilities in clinically relevant scenarios.

This comprehensive evaluation combining zero-shot
performance assessment and input factor analysis is one of
the earliest investigations for SAM 2 applied to 3D medi-
cal imaging. Our exploration is analogous to large language
models, where performance varies significantly based on
prompt adjustments [15]. By examining prompt engineering
in segmentation, we aim to provide deeper insights into
adapting general-purpose AI models for specialized medical
imaging applications.

Methods
This study was conducted as a retrospective study and
adheres to the Checklist for Artificial Intelligence in Medical
Imaging (CLAIM): 2024 Update [16,17].

Ethical Considerations
We used the openly available TotalSegmentator dataset [18],
a CT image segmentation dataset. The TotalSegmentator
dataset is released under the Creative Commons Attribution
4.0 International license, permitting unrestricted reuse for
research. The original CT images were collected retrospec-
tively at University Hospital Basel. The Ethics Commit-
tee Northwest and Central Switzerland (EKNZ) approved
a waiver of ethical approval for that retrospective study
(BASEC Req-2022–00495). No additional ethics review was
required for this secondary analysis. Patient consent was
waived by the EKNZ due to the deidentified, retrospec-
tive nature of the original data collection. All CT images
in the TotalSegmentator dataset were fully deidentified of
any protected health information before public release. The
dataset contains anonymized images and no patient identifi-
ers. No financial or other compensation was provided to
participants for the original data collection, and none was
provided for this secondary analysis.

Dataset
We aimed to evaluate the segmentation performance of major
organs within the imaging range of abdominal CT, one of the
most common medical imaging modalities. To conduct this
performance evaluation, we used a subset of the TotalSeg-
mentator CT dataset version 1.0 [18]. The TotalSegmenta-
tor dataset is a large-scale, multiorgan segmentation dataset
collected from eight institutions. We selected this dataset for
its comprehensive organ segmentation masks and available
institutional metadata for each case. These segmentation
masks underwent expert verification to ensure high quality,
making the dataset particularly suitable for our study.
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Our study included cases that encompassed the abdominal
region, while CT angiography scans were excluded from the
analysis.

To ensure representation from all eight institutions while
managing the dataset size, we implemented a sampling
strategy. We set a maximum of 20 cases per institution and
randomly selected cases up to this limit. For institutions with
fewer than 20 cases, all available cases were included.

We focused on 8 major abdominal organs for our analysis:
1. Liver
2. Right kidney
3. Left kidney

4. Spleen
5. Gallbladder
6. Pancreas
7. Right adrenal gland
8. Left adrenal gland

These organs were selected based on their clinical signifi-
cance and visibility in standard abdominal CT scans. To
account for potential annotation deficiencies, we excluded
segmentation masks with extremely small volumes by setting
a threshold of 100 voxels. Masks below this threshold were
omitted from the analysis. The dataset selection flowchart is
illustrated in Figure 1.

Figure 1. Flow diagram illustrating the CT scan selection process from the TotalSegmentator dataset for evaluation of SAM 2. CT: computed
tomography; SAM 2: Segment Anything Model 2.

Data Preprocessing
The dataset was available in NIfTI file format. For SAM 2
inference, we extracted each horizontal slice from the 3D
volumes to create subsets of 2D images for each scan. We
applied windowing to the CT scans, using a window level of
50 and a window width of 400 Hounsfield units. Following
windowing, we performed min-max scaling on the data. The
scaled values were then converted to 8-bit integers, resulting
in a range of 0‐255. These processed 2D images were saved
as sequential JPEG files.

For SAM 2 inference, we selectively processed only the
slices containing abdominal organs. This approach focused
on optimizing computational efficiency, resulting in faster
inference speeds.
Analysis of Organ Mask Volumes
For the volumetric analysis, we used the existing segmenta-
tion masks from the TotalSegmentator dataset to calculate the
volume of each organ in voxels. We chose to measure in
voxels rather than physical units, as our model inputs do not
consider voxel scale.

Additionally, we analyzed cross-sectional areas of organ
masks along the z-axis. For each organ, we calculated mean
mask areas at the 25th, 50th, and 75th percentile z-coordi-
nates, corresponding to the initial prompt locations used in
SAM 2 segmentation.
SAM 2 Implementation for 3D Medical
Image Segmentation
SAM 2 is a segmentation model not specifically designed for
medical images, but for general video content such as sports
or animal footage. These models are trained on a large-scale
dataset, enabling them to perform segmentation on any object.
SAM 2’s main feature is its ability to support not only 2D
images but also videos. By providing coordinates indicating
the target object for segmentation, SAM 2 can track and
segment objects appearing within the video. An overview of
CT volume segmentation using SAM 2’s video predictor is
shown in Figure 2.
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Figure 2. Workflow of 3D medical image segmentation using SAM 2. This figure illustrates a two-stage process for 3D medical image segmentation.
The top row shows the prompt input process, where a slice is selected from a CT volume as an initial frame and XY-coordinates are added as prompts
for organ segmentation (red crosses: positive prompts; blue crosses: negative prompts). These are then input into SAM 2. The bottom row depicts
the 3D segmentation process, where SAM 2 performs forward and reverse predictions to generate 3D segmentation masks at both cranial and caudal
sides. These masks are ultimately merged to create a full 3D segmentation mask of the target organ. CT: computed tomography; SAM 2: Segment
Anything Model 2.

Adaptation for 3D Medical Imaging
Although SAM 2 was originally intended for tracking objects
in general videos, we recognized that 3D volumes such as
CT and MRI scans can be considered as videos composed of
numerous 2D images. Using publicly available datasets with
segmentation masks, we applied preprocessing compatible
with SAM 2’s video prediction capabilities. This allowed
us to construct a pipeline capable of performing multior-
gan segmentation in a zero-shot manner, without additional
training of SAM 2.

Bidirectional Prediction Approach
While SAM 2’s video prediction is unidirectional, it can
process in both directions from the initial frame. To obtain
a complete segmentation mask for the entire volume,
we implemented a simple bidirectional approach: forward
direction from the starting slice to the cranial end reverse
direction from the starting slice to the caudal end. The
two segmentation masks obtained from these bidirectional
inferences were then merged to create a complete 3D
segmentation mask.

Model Inference and Prompt Setting
SAM 2’s video prediction requires input of both the video
(numbered 2D images) and prompt (coordinates for the target
object). We used axial slices for prompt input, as these

views serve as the foundation of radiological interpretation
in clinical practice. This approach aligns with the standard
workflow of radiologists when adapting SAM2 for medical
image analysis. In practice, the prompt must be manually
specified by a user. However, given the need to evaluate
a large number of objects, we devised an algorithm to
automatically obtain prompts:

1. Z-coordinate focus: Using 25th (caudal-level), 50th
(mid-level), and 75th percentiles (cranial-level) for
comprehensive organ representation.

2. Random selection within organ boundaries:
• Five positive prompts from within the segmenta-

tion mask
• Five negative prompts were sampled from regions

2‐3 voxels outside the mask boundary, excluding
the immediate 1-voxel margin

This method maintains reproducibility, reduces bias from
the user’s prompting skill, and leverages SAM 2’s capabil-
ity to use both positive and negative prompts for improved
accuracy.

In this study, we refer to the 3D segmentations initiated
at each of these positions as caudal-approach, mid-approach,
and cranial-approach, corresponding to segmentations starting
from the caudal, mid, and cranial-level slices, respectively.
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Model Version
For our study, we selected the “sam2_hiera_large” model due
to its superior performance among the available versions. We
used version 1.0 of the SAM 2 [19]. Our implementation was
carried out using Python (version 3.10.12).
Statistical Analysis
To evaluate the model’s performance, we calculated the
Dice similarity coefficient (DSC) [20]. This evaluation was
performed organ-wise across the dataset to provide a detailed
analysis.

We then compared the segmentation performance
across the different approaches with or without negative
prompts. We performed three pairwise comparisons for the
approaches: caudal-approach versus mid-approach, caudal-
approach versus cranial-approach, and mid-approach versus
cranial-approach. Additionally, we compared performance
with and without negative prompts.

When considering organ volumes in detail, we calculated
Spearman correlation coefficients to examine the relationship
between organ volumes and DSCs [21,22].

To account for multiple comparisons, we applied the
Bonferroni correction. After Bonferroni correction, a P value
of <.05/3 (approximately 0.0167) was considered statistically
significant.

All statistical analyses were conducted using SciPy
(version 1.14.0).

Results
Data Characteristics
Our sampling strategy resulted in a total of 123 scans. Twenty
scans each were selected from five institutions, while the
remaining three institutions contributed 5, 5, and 13 cases
respectively. The average age of the patients in our selected
sample was 60.7 (SD 15.5) years. The gender distribution was
nearly equal: 63 male and 60 female individuals.

903 organ segmentations were obtained from 123 scans.
12 masks with volumes of 100 voxels or smaller were then
excluded from the analysis, and the final dataset consisted of
891 organ segmentations.
Analysis of Organ Mask Volumes and
Areas
Organ volumes, measured in voxels and are detailed in Table
1. The liver was the largest organ, followed by the spleen;
kidneys were next in size, with similar volumes on the left
and right side. Compared to the liver’s mean volume, the
pancreas was approximately 1/25th the size of the liver; the
gallbladder was less than 1/70, and both adrenal glands were
less than 1/400. These three organs (ie, pancreas, gallbladder,
and adrenal glands) can be categorized as small organs.

Table 1. Descriptive statistics of organ volumes in voxels derived from computed tomography scan mask volumes.
Organ Organ volumes (voxels), mean (SD) Mina Maxb Samples (n)
Liver 465,008.6 (156,091.00) 19,768 963,401 119
Right kidney 39,381.57 (18,122.20) 216 79,713 108
Left kidney 41,246.74 (21,144.60) 666 129,706 111
Spleen 71,730.34 (45,884.40) 13,818 303,676 115
Gallbladder 6,247.61 (4,902.72) 170 20,763 89
Pancreas 18,526.41 (8,502.56) 707 37,855 116
Right adrenal gland 1,101.86 (465.47) 216 2590 118
Left adrenal gland 1,259.03 (522.81) 135 2977 115

aMin: Minimum
bMax: Maximum

Organ cross-sectional area analysis showed diverse trends
across eight organs. The liver was the largest in size,
increasing caudally to cranially. The pancreas steadily
increased while adrenal glands, though smallest, peaked at
mid-level. The details are provided in Figure S1 in Multime-
dia Appendix 1.
Multiorgan Segmentation Performance
We evaluated the performance for multiorgan segmentation
using different starting slice positions. The DSCs are reported
as mean (SD) to reflect performance variability. All results
are detailed in Table 2.

The left kidney demonstrated the best overall performance,
maintaining high DSCs across all starting positions: mean
0.870 (SD 0.154) , mean 0.825 (0.221), and 0.808 (SD
0.242) for the caudal-approach, mid-approach, and cranial-
approach, respectively. Notably, it was the only organ
showing no statistically significant differences between any
starting positions (all P>.0167).

The box plots (Figure 3) show that most organs reached
DSCs above 0.8, with some approaching or nearly reaching
1.0. However, the box plots also reveal instances of very
low DSC values approaching 0 across various organs and
approaches, indicating significant variability in segmentation
performance.
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Starting slice level had a significant impact on most
organs. Organs demonstrated various patterns in segmenta-
tion performance depending on the starting level. The liver
showed a significant decrease in performance as the starting
position moved superiorly, with DSC dropping from mean
0.821 (SD 0.192) with mean caudal-approach to 0.702 (SD
0.259) with cranial-approach (P<.01). Smaller organs such as
the pancreas, adrenal glands, and gallbladder showed the most
pronounced impact of the starting position. For these organs,
performance significantly decreased when changing from a
caudal-approach to a cranial-approach (all Ps<.01).

Larger organs such as liver, kidneys, and spleen con-
sistently demonstrated higher DSCs compared to smaller
organs across all approaches. A moderate correlation was

observed across all settings when using caudal-approach
(ρ=0.731; P<.01), mid-approach (ρ=0.698; P<.01), and
cranial-approach (ρ=0.699; P<.01) (12,13). As shown in
Table 3, when correlation coefficients were calculated
separately for each organ, fair correlations were demonstrated
for almost all items, particularly for smaller organs.

We also investigated the impact of including nega-
tive prompts on segmentation performance across different
organs, focusing specifically on the caudal-approach (Table 4
and Figure S2 in Multimedia Appendix 1). All organs except
the liver (P=.32) and spleen (P=.27) demonstrated significant
increases in DSC (P<.01) with the inclusion of negative
prompts.

Table 2. DSCsa for multiorgan segmentation by different approaches (ie, caudal, mid, and cranial).
Organ and approach DSC,a mean (SD) P valueb

Liver caudal versus mid: <.01 caudal versus cranial: <.01mid versus cranial: .07
  caudal 0.821 (0.192)
  mid 0.754 (0.223)
  cranial 0.702 (0.259)
Right kidney caudal versus mid: .03 caudal versus cranial: .16 mid versus cranial: <.01
  caudal 0.862 (0.189)
  mid 0.862 (0.212)
  cranial 0.801 (0.270)
Left kidney caudal versus mid: .40 caudal versus cranial: .15 mid versus cranial: .15
  caudal 0.870 (0.154)
  mid 0.825 (0.221)
  cranial 0.808 (0.242)
Spleen caudal versus mid: <.01 caudal versus cranial: .017 mid versus cranial: .56
  caudal 0.891 (0.131)
  mid 0.839 (0.187)
  cranial 0.768 (0.302)
Gallbladder caudal versus mid: .95 caudal versus cranial: <.01mid versus cranial: .08
  caudal 0.527 (0.288)
  mid 0.531 (0.291)
  cranial 0.461 (0.314)
Pancreas caudal versus mid: .92 caudal versus cranial: <.01mid versus cranial: <.01
  caudal 0.353 (0.168)
  mid 0.361 (0.197)
  cranial 0.287 (0.209)
Right adrenal gland caudal versus mid: <.01 caudal versus cranial: <.01mid versus cranial: <.01
  caudal 0.203 (0.222)
  mid 0.177 (0.235)
  cranial 0.112 (0.178)
Left adrenal gland caudal versus mid: <.01 caudal versus cranial: <.01mid versus cranial: .08
  caudal 0.308 (0.234)
  mid 0.252 (0.226)
  cranial 0.226 (0.238)

aDSC: Dice Similarity Coefficient.
bP values from Wilcoxon signed-rank tests are provided for comparisons between approaches (caudal vs mid, caudal vs cranial, and mid vs cranial).
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Figure 3. Box plots of DSCs for eight organs (displayed in separate subplots) across three approaches: caudal-approach, mid-approach, and
cranial-approach. Each subplot shows the distribution of DSCs (y-axis, range 0‐1) for a specific organ, with the three approaches compared along the
x-axis. DSC: Dice Similarity Coefficient.

Table 3. Spearman correlation coefficients between ground truth values of organ volumes and dice similarity coefficients in caudal, mid, and cranial
levels.

Organ
Spearman correlation
coefficient, ρ (caudal) ρa P value

Spearman correlation
coefficient, ρ (mid)a P value

Spearman correlation
coefficient, ρ (cranial)a P value

Liver 0.328 <.01 0.0489 .60 0.163 .08
Right kidney 0.231 .02 0.347 <.01 0.509 <.01
Left kidney −0.0107 .91 0.293 <.01 0.295 <.01
Spleen 0.38 <.01 0.307 <.01 0.355 <.01
Gallbladder 0.499 <.01 0.509 <.01 0.469 <.01
Pancreas 0.475 <.01 0.386 <.01 0.379 <.01
Right adrenal gland 0.371 <.01 0.424 <.01 0.278 <.01
Left adrenal gland 0.452 <.01 0.339 <.01 0.447 <.01

aSpearman rank correlation coefficient (ρ) was used to examine the relationship between object volumes and dice similarity coefficients.

Table 4. Comparison of multiorgan segmentation performance without negative prompts.
Organ DSCa mean (SD) Differenceb P valuec

Liver 0.785 (0.244) −0.036 .32
Right kidney 0.858 (0.203) −0.004 <.01
Left kidney 0.847 (0.192) −0.023 <.01
Spleen 0.867 (0.213) −0.024 .27
Gallbladder 0.438 (0.338) −0.089 <.01
Pancreas 0.277 (0.197) −0.076 <.01
Right adrenal gland 0.084 (0.151) −0.119 <.01
Left adrenal gland 0.190 (0.230) −0.118 <.01

aDSC: dice similarity coefficient.
bChange when negative prompts are excluded (negative values indicate lower performance without prompts).
cP value represents the results of Wilcoxon signed-rank tests comparing performance with, and without negative prompts for each organ.

In Figure 4, we present the highest DSC masks, excluding
cases where the ground truth segmentations were incomplete.
The highest performing masks, as visualized, generated for

each organ in 3D were nearly indistinguishable from the
ground truth.
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Figure 4. Successful segmentation results for eight abdominal organs. Each row shows different organ with ground truth (left) and predicted (right)
3D masks. Values in parentheses indicate the DSC for each segmentation. DSC: dice similarity coefficient.

On the other hand, there were cases where the performance
fluctuated significantly due to differences in the approach.
We present an example of the liver segmentation results in
Figure 5. The DSC decreased by 0.564 (from 0.924 with
caudal-approach to 0.360 with cranial-approach). For the
caudal-approach, the initial slice segmentation appears to
have been easier due to clear contrast with the surroundings.

The cranial-approach resulted in lower DSC values compared
to the caudal-approach. Visual inspection of the segmentation
results showed incomplete masking and potential inclusion of
the inferior vena cava in the liver mask, particularly in areas
where boundaries between the liver, inferior vena cava, and
abdominal wall were less distinct.
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Figure 5. Comparison of segmentation results using caudal-approach and cranial-approach, showing 2D axial slices with ground truth and predicted
mask for both initial slices (top row, with yellow representing the ground truth of liver, blue and red points indicating negative and positive prompts,
respectively), alongside 3D renderings of liver segmentation for ground truth, caudal-approach, and cranial-approach (bottom row).

Discussion
To our knowledge, this is the first research that not only
validates the performance of zero-shot SAM 2 on abdomi-
nal organs but also considers the impact of prompt input
strategies such as slice positioning and negative prompts.
Our findings demonstrate the potential of SAM 2, a gen-
eral-purpose segmentation model in segmenting abdominal
organs from CT scans. SAM2 showed promising performance
for larger organs with clear boundaries, such as the liver,
kidneys, and spleen, achieving a mean DSC of 0.821‐0.891.
Although SAM 2 was not specifically designed for medical
image analysis, its notable performance suggests potential
applicability to a wide range of organs and lesions. The
choice of initial prompt position had a significant impact on
segmentation accuracy, and the optimal position depended on
the organ. Excluding negative prompts led to a significant
decrease in DSC for all organs except the spleen and liver,
highlighting their importance in segmentation accuracy. SAM
2 struggled with smaller and less defined structures such as
the adrenal glands, pancreas, and gallbladder, resulting in
lower DSCs. Interestingly, we observed a moderate posi-
tive correlation between organ volume and DSCs (ρ=0.731,
P<.01), suggesting that volume size is one of several key
factors influencing segmentation accuracy.

While prior studies have explored zero-shot segmenta-
tion performance in CT and MRI [23,24], our research
makes several unique contributions to this emerging field.
Ma et al [23] conducted a comprehensive benchmarking
of SAM 2 across multiple medical image modalities and
demonstrated its potential for transfer learning in the medical

domain. Similarly, Dong et al [24] explored various prompt
strategies and propagation directions for 3D segmentation.
In contrast, our work specifically examines abdominal
CT imaging, analyzing how prompt positioning and nega-
tive prompts significantly influence segmentation outcomes.
Unlike previous studies, we investigated segmentation from
clinically relevant positions (ie, caudal, mid, and cranial) and
found that optimal starting positions vary by organ, with
negative prompts being crucial for smaller organ segmenta-
tion.

A key advantage of SAM 2 is its ability to generate
segmentation masks with just a few clicks on a single
slice, drastically reducing the workload for radiologists who
previously relied on labor-intensive manual annotations.
Furthermore, optimizing prompt input strategies is essential
for achieving even greater model performance, as evidenced
by SAM’s history of various prompt optimization techniques,
including automatic prompt generation and learnable prompts
[25]. Although the scores are lower compared to previous
supervised methods, which can achieve mean DSCs in the
upper 0.9 range for some organs, they are still notably high
for a zero-shot prediction. Moreover, the ability to segment
an entire 3D volume by simply selecting and clicking on a
target structure in a single slice is particularly significant.
This aligns with challenges typically observed in abdomi-
nal organ segmentation, even with supervised 3D models.
Notably, supervised approaches like TotalSegmentator (based
on nnUNet [26]), UNet [27], SegUNet [28], and SwinU-
NETR [29] also tend to show lower DSC for bilateral
adrenal glands and gallbladder compared to other organs
[30], a trend mirrored in SAM 2’s performance. Segmentation
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performance can be inferred to depend on multiple factors
related to the 3D morphology, volume size, and contrast with
surrounding tissues of target structure. These findings suggest
the importance of optimizing prompts taking into account the
characteristics of the targeted structure.

Our study had several limitations. First, our validation
relied on a single dataset of abdominal CT scans, despite
being a multi-institutional study. For studies focused on
abdominal organs, there are publicly available datasets such
as AbdomenCT-1K [31], which is included in AbdomenAt-
las [32,33]. To expand the validation to other anatomical
structures and imaging modalities, datasets such as Verte-
bral Segmentation [34], TotalSegmentator’s MRI [35] and
Duke Liver datasets [36] could also be considered, all
of which include segmentation masks for their respective
targets. Expanding our validation using these resources would
allow for a more robust evaluation. Additionally, as our

approach was designed to address zero-shot performance
validation, we did not perform any additional training such
as fine-tuning. Performance improvements can be expected
by using task-specific supervised methods instead of zero-
shot. Furthermore, while we used an automated approach
to evaluate a large number of organs, there is potential for
improved accuracy through manual prompts inputting.

In conclusion, SAM 2 has demonstrated promising
zero-shot performance in segmenting certain abdominal
organs in CT scans, particularly larger organs with clear
boundaries, highlighting its potential for cross-domain
generalization in medical imaging. However, further
improvements are needed for smaller and less distinct
structures. Our study underscores the importance of applying
general models to unseen medical images and optimizing
input prompts, which together could significantly enhance the
accuracy of medical image segmentation.
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