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Abstract
Background: Free-text clinical data are unstructured and narrative in nature, providing a rich source of patient information,
but extracting research-quality clinical phenotypes from these data remains a challenge. Manually reviewing and extracting
clinical phenotypes from free-text patient notes is a time-consuming process and not suitable for large-scale datasets. On
the other hand, automatically extracting clinical phenotypes can be challenging because medical researchers lack gold-stand-
ard annotated references and other purpose-built resources, including software. Recent large language models (LLMs) can
understand natural language instructions, which help them adapt to different domains and tasks without the need for specific
training data. This makes them suitable for clinical applications, though their use in this field is limited.
Objective: We aimed to develop an LLM pipeline based on the few-shot learning framework that could extract clinical
information from free-text clinical summaries. We assessed the performance of this pipeline for classifying individuals with
confirmed or suspected comorbid intellectual disability (ID) from clinical summaries of patients with severe mental illness and
performed genetic validation of the results by testing whether individuals with LLM-defined ID carried more genetic variants
known to confer risk of ID when compared with individuals without LLM-defined ID.
Methods: We developed novel approaches for performing classification, based on an intermediate information extraction (IE)
step and human-in-the-loop techniques. We evaluated two models: Fine-Tuned Language Text-To-Text Transfer Transformer
(Flan-T5) and Large Language Model Architecture (LLaMA). The dataset comprised 1144 free-text clinical summaries, of
which 314 were manually annotated and used as a gold standard for evaluating automated methods. We also used published
genetic data from 547 individuals to perform a genetic validation of the classification results; Firth’s penalized logistic
regression framework was used to test whether individuals with LLM-defined ID carry significantly more de novo variants in
known developmental disorder risk genes than individuals without LLM-defined ID.
Results: The results demonstrate that a 2-stage approach, combining IE with manual validation, can effectively identify
individuals with suspected IDs from free-text patient records, requiring only a single training example per classification
label. The best-performing method based on the Flan-T5 model and incorporating the IE step achieved an F1-score of 0.867.
Individuals classified as having ID by the best performing model were significantly enriched for de novo variants in known
developmental disorder risk genes (odds ratio 29.1, 95% CI 7.36-107; P=2.1×10−5).
Conclusions: LLMs and in-context learning techniques combined with human-in-the-loop approaches can be highly
beneficial for extraction and categorization of information from free-text clinical data. In this proof-of-concept study, we
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show that LLMs can be used to identify individuals with a severe mental illness who also have suspected ID, which is a
biologically and clinically meaningful subgroup of patients.

JMIR AI 2025;4:e72256; doi: 10.2196/72256
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Introduction
Background
Text classification of clinical data is a challenging prob-
lem due to highly specialized terminology, diverse docu-
ment structures, and the heavy reliance of most methods
on annotated data [1,2]. Standard approaches to overcome
these challenges involve the use of task-specific knowledge
and rule-based methods [3-6], which make them inappli-
cable to a wider range of tasks. This is because such
methods rely heavily on handcrafted features and domain-
specific rules, which do not generalize well beyond the
narrow set of conditions they were designed for. Language
models are neural network architectures trained to under-
stand and generate human language by learning statistical
patterns in large text corpora. Among the most influential
are masked language models such as BERT (Bidirectional
Encoder Representations From Transformers) and RoBERTa
(Robustly Optimized BERT Approach) [7-12], which are
pretrained on general-domain text and then fine-tuned—
that is, further trained on labeled data for a specific down-
stream task such as text classification. In the biomedical
and clinical domains, specialized variants such as BioBERT
(BERT for Biomedical Text Mining) [13] and Clinical
Bidirectional Encoder Representations From Transformers
(ClinicalBERT) [14] have been developed by continuing
pretraining on domain-specific corpora. These models have
demonstrated improved performance in tasks like clinical
concept extraction and classification. However, despite their
success, they still require large amounts of annotated training
data to achieve strong performance [15], which is often
a limiting factor in clinical settings where labeled data
are scarce [12,16-18]. Therefore, methods should ideally
work without training data in a zero- or few-shot frame-
work. Recent advances in natural language processing (NLP)
have introduced alternative methods using text generation or
large language models (LLMs) like Large Language Model
Architecture (LLaMA) [19], which perform unseen tasks
via in-context learning (prompting) [11,20-23]. Prompting
involves giving the model natural language instructions
that describe the task [24]. In few-shot prompting, these
instructions are accompanied by a few training examples
[24]. Unlike fine-tuning, prompting does not modify model
weights, making it less resource intensive. Research shows
that prompting can match or exceed the performance of
standard fine-tuning [9,25]. Further gains in zero-shot settings
have been achieved by fine-tuning models on task instruc-
tions, as in Fine-Tuned Language Net Text-To-Text Transfer
Transformer (Flan-T5) [26,27]. However, their application in
the clinical domain remains limited.

In contrast to previous work, we explore a novel approach
for performing classification for clinical data. We use an
intermediate information extraction (IE) step and human-in-
the-loop framework to maximize the performance of in-
context learning techniques and LLMs for one-shot setting.
As a real-world example, we applied this procedure to
free-text clinical summaries in a cohort of patients with
severe mental illness and classified individuals with suspected
comorbid intellectual disability (ID). These free-text clinical
summaries were previously created from discharge patient
notes and clinical interviews for research purposes. This is
a challenging task as these summaries have diverse struc-
ture and terminology and may contain information related to
different types of disabilities that can be hard to distinguish
without detailed reports of the person’s cognitive functioning
(eg, “learning disability” vs “intellectual disability”) [28].
Further, the presence of ID can be described using diverse
terminology and be implicitly referred to within the text
by recording outcomes and scores from different types of
clinical tests and assessments without explicitly mentioning
any disability. To provide evidence that our LLM approach
can identify a biologically meaningful subgroup of patients,
we used genetic data that is available in a subset of patients
with schizophrenia to test whether individuals classified by
LLMs to have suspected comorbid ID carry significantly
more rare variants in ID-associated genes than individuals
without LLM-defined ID.
Related Work
We discuss relevant work using LLMs for extracting and
classifying information within clinical texts, as well as
outline challenges and research gaps within the literature (see
sections “Text Classification for Clinical Text” and “Human-
in-the-Loop–Based Approaches”). Finally, we present a use
case from psychiatric genetics, a discipline with close
relationships to the broader fields of clinical genetics and rare
disease research (section “Genetic Analysis”).

Text Classification for Clinical Text
The generalization capabilities of text-generation models in
few-shot settings make them suitable for the clinical domain,
which often lacks annotated data and is also associated with
limited access to datasets and language resources [29,30].
Thus, recent research in the clinical NLP field has focused
on leveraging and evaluating the performance of such models
for various tasks, including classification [1,31-37]. Some
papers focus on providing dataset resources to support easier
evaluation and benchmarking of LLMs in zero- and few-
shot settings [1,37], as well as instruction or domain-trained
models based on LLaMA [32,34,36]. These works show
promising results for some downstream tasks.
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A similar work to ours by Lu et al [33] proposes a
knowledge-enhanced prompt learning method for classifica-
tion of diagnosis from clinical texts. The approach is based
on extracting relevant knowledge to the given diagnosis
from heterogeneous knowledge resources and integrating it
into a prompt sequence along with the clinical note. The
authors experiment with more traditional neural network
approaches, as well as masked language models. In contrast
to this work, we analyze recently developed LLMs such
as Flan-T5 and LLaMA, and we focus on exploring in-con-
text learning techniques. In similar research by Fabregat
et al [31], a Bidirectional Long Short-Term Memory (Bi-
LSTM) architecture is used to extract the presence of named
disabilities (including IDs) from clinical notes. In our paper,
we extract intellectual disabilities, where for some patients
these are not mentioned explicitly but instead referred to
within the text by using different terminology as well as the
results of relevant tests and assessments.

Another work introduces Generative Pre-Trained
Transformer for Biomedical Text Generation and Mining
(BioGPT) [38], a language model pretrained on large-scale
biomedical literature and evaluated on a range of tasks
such as relation extraction, question answering (eg, Pub-
MedQA), document classification, and text generation. While
it outperforms BERT-based models on these benchmarks,
it is built on the older GPT-2 architecture and was trained
exclusively on biomedical research articles. This limits its
applicability to clinical contexts, particularly for understand-
ing the more informal language often found in patient note
summaries. Moreover, BioGPT is relatively small, with only
1.5 billion parameters, making it less capable compared to
more recent and larger models such as LLaMA [19] and
Flan-T5 [26], which offer improved generalization, reasoning,
and contextual understanding across diverse domains.

Despite these recent attempts in leveraging LLMs for the
clinical domain, most of the work in NLP-related applica-
tions for the health care domain is still relying on the use
of more data-consuming approaches for text classification
and IE [3-6]. In contrast to previous work, we explore
different approaches for performing classification for patient
notes using an intermediate IE step and human-in-the-loop
approach to maximize the performance of in-context learning
techniques and LLMs for one-shot setting.

Human-in-the-Loop–Based Approaches
Incorporating expert knowledge and human validation
within automated approaches can have high benefits in the
health care domain, given the undesirable consequences of
misclassification inherent to some tasks and the subsequent
need for highly accurate models [39]. Despite this, research in
developing such hybrid approaches is very limited, focus-
ing mainly on incorporating domain knowledge within more
traditional rule-based and dictionary-based approaches for IE
[40,41]. For instance, the authors of [40] use a human-in-
the-loop approach for constructing a lexicon for extracting
medication names from clinical records. The authors of [41]
use a human-based verification step for building an ontol-
ogy for structuring radiology reports. In contrast, our work

is the first attempt in incorporating human knowledge with
state-of-the-art NLP models to develop more accurate text
classification approaches for scenarios with no training data
available, except for a few examples.

Genetic Validation of ID Identified by LLM
Schizophrenia is a severe and highly heritable psychiat-
ric disorder [42]. Impaired cognition is a core symptom
of schizophrenia that strongly predicts worse functional
outcomes [43]. Studies have demonstrated that rare and
common genetic variation contributes to variation in
cognitive ability, or proxies of cognition such as educa-
tional attainment, in schizophrenia. For example, we recently
showed that genes associated with early onset developmen-
tal disorders (including ID) are enriched for damaging rare
variants in individuals with schizophrenia and suspected
comorbid ID [44]. In our previous work, we classified
patients with schizophrenia with suspected comorbid ID
by manually curating free-text clinical summaries. In this
study, we analyzed the same exome-sequencing data and
clinical summaries used in [44] and tested whether individu-
als with schizophrenia and LLM-classified comorbid ID carry
significantly more damaging rare variants in known ID-asso-
ciated genes compared with individuals with schizophrenia
who did not have LLM-classified ID. Demonstrating that
individuals with LLM-classified ID are enriched for such
mutations would provide evidence that our LLM approach
can identify a biologically meaningful subgroup of patients
with schizophrenia.
Objectives of This Study
Our objectives were as follows. First, we aimed to develop
a novel 2-step approach that does not require training data
for classifying individual patients with suspected ID within
psychiatric clinical summaries. Toward this end, we explored
approaches that use text generation models coupled with
prompting techniques to perform IE for identifying ID-related
information from the summaries, after which we performed
classification on the extracted text. Second, we aimed to
compare the performance of approaches that involve human-
in-the-loop techniques and fully automated approaches. Third,
we aimed to perform a multifaceted evaluation of model
performance and analyze the effect of prompt information
type (eg, task definitions vs examples provided as part of
the prompt) on the performance for IE and text classifica-
tion tasks. Lastly, we aimed to perform a genetic validation
of the results via an experiment testing whether individuals
with LLM-defined ID carry more genetic variants known to
confer risk of ID when compared with individuals without
LLM-defined ID.

Methods
Data

Corpus of Clinical Free-Text Data
The corpus contained free-text clinical summaries of
1144 individuals with severe mental illness, including
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schizophrenia and bipolar disorder. The summaries for each
person contained information related to symptoms, reactions
to prescribed treatments and medications, as well as any
other observations that can be clinically relevant, such as
the comorbid presence of other illnesses and developmental
conditions (including ID). The summaries were not writ-
ten for the purpose of the current project but at the time
of patient recruitment for general research purposes. The
summaries contained information from discharge summaries
and clinical interviews with psychiatrists. Some clinical
summaries also included the Schedules for Clinical Assess-
ment in Neuropsychiatry (SCAN) interview [45], which is a
semistructured clinical interview used to assess and diagnose
psychiatric disorders. In addition, our dataset was a strong
representation of real-world free-text clinical summaries,

which often present challenges such as inconsistent structure,
lack of labeled training data, and the use of diverse termi-
nology where diseases and diagnoses may not be explicitly
mentioned. Since the dataset was not specifically collected
for this study, it offers potential for a wide range of research
applications.

Dataset Annotation
We annotated 314 patient notes by manually curating the
free text and identifying evidence of ID (see Table 1 for an
overview of the annotation dataset). In addition to these 314
patient summaries, the best performing automatic approaches
were used to classify an additional 830 patients.

Table 1. Overview of the dataset.
Class Number of tests Average number of tokens
IDa 29 222
No IDb 285 185
Total 314 190

aID: intellectual disability.
bNo ID: no evidence of intellectual disability present in the patient note (or lack of evidence).

Methodology

Pipeline
We explored three different approaches for performing
classification. First, we performed classification on the
entire dataset to allow comparison with standard approaches.
Second, we performed IE for identifying ID-related informa-
tion from the summaries, and then we performed classifica-
tion on the extracted text. Third, we proposed the use of
a human-in-the-loop approach as an alternative to a fully
automated approach where we use the IE step to extract only
the relevant information to the task in a more concise format,
which can support experts in performing more efficient and
less error-prone annotation of documents.

Prompting Techniques
We used three prompting techniques (see Table 2) for both
IE and classification tasks: basic, definitions, and defini-
tions+examples. This allowed us to identify what type of
prompt information (ie, information provided as part of the
instruction) is more beneficial for the model’s performance.

1. Basic prompt: In this prompt, we simply provided a
question to the model without further information about
the task.

2. Definitions-enhanced prompt: In this prompt, we
provided some descriptions about the tasks, that is,
definition about intellectual disabilities, along with the
question. We provided the same definition for both IE
and classification models.

3. Definitions+examples prompt: In this prompt, along
with the definition, we provided one example per label
—for the IE task, we provided one example of an
output that contains ID-related features and one that
does not. The examples were selected randomly from
the dataset. For generating data for the test sequences,
we used a sampling method.

The definition used as part of the prompts for performing
classification and IE is given in Textbox 1. The definition
was taken from the International Statistical Classification of
Diseases, Tenth Revision (ICD-10 [46]), which is a medical
classification list by the World Health Organization.
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Table 2. Different prompt learning methods for clinical data.
Information extraction prompts Classification prompts

Basic prompta What is the evidence of intellectual disability the
patient displays from the given patient note?
Patient Note: SZ, IQ of 65., paranoid elements...
[Answer]

Does the patient display any evidence of intellec-
tual disability from the given patient note?
Patient Note: SZ, IQ of 65., paranoid elements...
[Answer]

Definitionsb [DEF]
What is the evidence of intellectual disability the
patient displays from the given patient note?
Patient Note: SZ, IQ of 65., paranoid elements...
[Answer]

[DEF]
Does the patient display any evidence of
intellectual disability from the given patient note?
Patient Note: SZ, IQ of 65., paranoid elements...
[Answer]

Definitions +examplesc [DEF]
What is the evidence of intellectual disability the
patient displays from the given patient note?
Patient Note: SZ, IQ of 65., paranoid elements...
[IQ of 65.]
Patient Note: Started hallucinating; Education:
Lawyer...[No evidence.]
Patient Note: SZ, premature birth, attended special
school...[Answer.]

[DEF]
Does the patient display any evidence of
intellectual disability from the given patient note?
Patient Note: SZ, IQ of 65., paranoid elements...
[Yes]
Patient Note: Started hallucinating; Education:
Lawyer...[No]
Patient Note: SZ, premature birth, attended special
school...[Answer]

aThe ”Basic prompt” method simply adds questions to the clinical summaries.
bThe “Definitions” prompt incorporates medical knowledge, ie, definition of intellectual disability, within the prompt.
cThe “Definitions+examples” method adds two annotated examples for both tasks, information extraction (IE) and classification. For example, in the
IE task, we provide two patient summaries: one that contains an intellectual disability–related feature (eg, “IQ of 65”) and one that does not. The first
supports the presence of the feature and is labeled with the correct answer in square brackets (eg, [“IQ of 65”]). The second lacks such a feature and
is labeled as “no evidence.” Additionally, new patient summaries marked with “[Answer]” are examples of where the model is expected to generate a
prediction.

Textbox 1. Definition used in prompts.
You are a health care assistant, and you have been asked to identify if the given patient has intellectual disability (ID) for
the given patient note. Please use the information about intellectual disabilities given below to extract the right information.
Intellectual disability (ID), previously known as mental retardation, is a term that is used when an individual has below-
average intelligence or mental ability. Intellectual disability (ID) can be identified within the first two years of a child’s
life if he or she has more severe intellectual disabilities. However, mild intellectual disability may not be identifiable until
the child reaches school-age, when challenges with academic learning become present. While it typically occurs during the
developmental periods, it is also possible for intellectual disability to develop later as the result of illness or brain injury.
Signs and symptoms of intellectual disabilities include: premature birth, delayed development, learning and developing
more slowly than other children same age, difficulty communicating or socialising with others, lower than average scores
on IQ tests, difficulties talking or talking late, having problems remembering things, inability to connect actions with
consequences, difficulty with problem-solving or logical thinking, trouble learning in school, need to attend special school,
inability to do everyday tasks like getting dressed or using the restroom without help.

Experimental Setup
In this section, we describe our experimental setting for the
task of identifying patients with ID in free-text clinical data.

Comparison Models
We performed analysis with LLaMA 2 [19] as a represen-
tative of a large autoregressive generation model with 70
billion parameters. As a representative of a smaller but
instruction-tuned model, we used Flan-T5 [26], in particular
its XXL version with 11 billion parameters. The model was
fine-tuned using the Flan instruction tuning tasks collection
[26]. The collection also included datasets related to the
medical domain and classification tasks. We used the XXL
version with 11 billion parameters. We downloaded the
models from Hugging Face [47]. Due to the sensitivity of
the patient notes, we decided against using OpenAI models or

other external application programming interfaces requiring
data upload for performing analysis. We chose LLaMA and
Flan-T5 for our experiments because they are among the
most recent, largest, and most versatile language models
available, demonstrating strong performance across a wide
range of tasks. Notably, Flan-T5’s training data includes
medical content, which enhances its ability to understand and
generate clinically relevant text, which makes it especially
suitable for our use case. The model parameters we used
for summarization and text classification are as follows: for
Flan-T5, we used a temperature of 0.7 and a maximum of
10 and 30 generated tokens for classification and summariza-
tion, respectively. These are the default values recommended
for these models. We used approximately 24 hours of GPU
budget and the Nvidia RTX 4090 GPU (Nvidia Corporation).
The implementation is available at GitHub [48].
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Evaluation
We report classification results based on precision, recall, and
standard micro- and macroaveraged F1 [49]. We judged the
quality of the data generated during the IE stage based on
the performance of the classification model applied to the IE
output.

Genetic Analysis
We analyzed published genetic data that we previously
generated from 547 individuals with schizophrenia who also
have free-text clinical data (the paper by Rammos et al [44]
provides a full description of this sample and genetic dataset).
In this genetic analysis, we compared the rate of de novo
variants (ie, newly arising mutations that were not inherited
from either parent) in known developmental disorder risk
genes between patients with suspected comorbid ID and
patients without ID using Firth’s penalized likelihood logistic
regression test, covarying for 10 principal components that
were derived from the genetic data to control for genetic
ancestry and sex. In the genetic analysis, we examined
three classifications of ID: (1) ID defined through manual
curation of the clinical summaries; (2) ID defined by the best
performing fully automated NLP classification model; and (3)
ID by the best performing human-in-the-loop classification
model. Based on our previous study, we expected patients
with suspected comorbid ID to have significantly more de
novo variants in developmental disorder risk genes than
patients without comorbid ID [44].
Ethical Considerations

The following committees provided ethical approval for
this study: Ethics Commission, Higher Medical University,
Plovdiv, 4002 V Aprilov Blvd 15a; Protocol Ethics Com-
mittee to the Alexander University Hospital, Sofia 1431, 1
St G Sofiisk St, Local Ethics Committee, District Dispen-
sary for psychiatric disorders, Russe, bul; Ethics Commit-
tee at the State Psychiatric Hospital “Dr Georgi Kisiov,”
Radnevo, 6269, Magda Petkanova St 1, Radnevo (protocol of
2.10.2000); and Ethics Committee at the District Dispensary
for psychiatric disorders, Blagoevgrad (protocol N2/2000). In
the United Kingdom, the project was approved by the Bro
Taf Local Research Ethics Committee, Churchill House, 17
Churchill Way, Cardiff CF10 2TW, protocol 02/4523. All
study participants provided written informed consent with
the ability to opt out at any time. Data were deidentified
prior to analysis, and no identifying participant information is
presented in this study. Participants were not compensated for
their inclusion in the study.

The use of LLMs in processing clinical notes rai-
ses significant ethical challenges that must be carefully

addressed. Preserving patient privacy is an essential prior-
ity when it comes to analyzing clinical notes. Even when
deidentified, the risk of reidentification remains, especially
with powerful models capable of memorizing or inferring
sensitive data. Model transparency is another key con-
cern, making it difficult to interpret LLM decision-making
processes and validate their outputs in clinical settings where
accountability is crucial. Further, bias in training data can
propagate or even amplify existing disparities in health care,
potentially leading to skewed predictions [50,51].

While a comprehensive treatment of these issues lies
outside the scope of our current work, we actively consid-
ered these ethical concerns throughout our research. To
mitigate risks, we have not released the dataset publicly, and
we limited our experiments to open-source models. More-
over, our proposed integration of human-in-the-loop methods
provides an additional layer of oversight, helping to ensure
more responsible and secure use of LLMs in sensitive clinical
applications.

Results
The Role of IE
Results in Table 3 show that Flan-T5 consistently outper-
forms LLaMA 2 regardless of classification approach or
prompt use. This suggests that a smaller but instruction-
tuned model, pretrained using datasets relevant to the clinical
domain, is more suitable for classification in low-resource
settings when compared with a bigger model. Further, results
show that the performance of IE approaches is highly
dependent on the prompt used, where the difference in
F1-score for the positive class between the best and worst
performing IE approach is around 0.5 (see Figure 1). A trend
in the performance of both models (see Table 3) shows that
a prompt combining a description of the task and examples
leads to the best classification results versus a basic prompt or
a prompt based only on definitions. Further, the best results
were achieved with the Flan-T5 model using the IE inter-
mediate step with a “definitions+examples” prompt inform-
ing both classification and IE (precision=1.00; recall=0.758)
versus performing classification on the entire notes (P=.87;
r=0.77).

These results show the potential of LLMs and in-con-
text learning techniques to support classification tasks in
the clinical domain. However, the performance of Flan-T5
varies with different prompts, whereas the LLaMA model
achieves consistent improvements in classification regardless
of the prompt. These findings highlight the prompt sensitivity
issue in language models, particularly in smaller models like
Flan-T5.
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Table 3. Classification results.
Input and classificationa Flan-T5b LLaMAc

Precd Rece F1(pos)f Macrog Acch Prec Rec F1(pos) Macro Acc
Full notes

basic 0.741 0.793 0.767 0.871 0.955 0.083 0.279 0.127 0.403 0.467
examples 0.676 0.766 0.718 0.843 0.942 0.122 0.758 0.210 0.406 0.471
def 0.741 0.689 0.714 0.843 0.948 0.113 0.379 0.174 0.482 0.665
def+ex 0.869 0.689 0.769 0.874 0.961 0.125 0.689 0.212 0.435 0.522

IE (basic)
basic 0.205 0.827 0.328 0.562 0.686 0.103 0.295 0.152 0.423 0.505
examples 0.217 0.896 0.348 0.572 0.690 0.153 0.750 0.254 0.447 0.515
def 0.180 0.827 0.296 0.525 0.635 0.164 0.464 0.242 0.520 0.681
def+ex 0.220 0.827 0.348 0.582 0.712 0.174 0.642 0.274 0.511 0.625
human 0.294 0.862 0.439 0.657 0.796 0.277 0.517 0.361 0.618 0.792

IE (def)
basic 0.135 0.827 0.233 0.426 0.491 0.121 0.285 0.170 0.511 0.749
examples 0.141 0.896 0.243 0.423 0.479 0.127 0.517 0.204 0.479 0.625
def 0.126 0.862 0.221 0.388 0.434 0.046 0.178 0.074 0.408 0.598
def+ex 0.146 0.896 0.251 0.438 0.501 0.184 0.586 0.280 0.554 0.721
human 0.896 0.193 0.317 0.536 0.639 0.583 0.233 0.333 0.642 0.910

IE (ex)
basic 0.487 0.759 0.595 0.770 0.903 0.163 0.571 0.253 0.531 0.696
examples 0.489 0.828 0.615 0.780 0.904 0.256 0.714 0.377 0.624 0.787
def 0.500 0.828 0.623 0.785 0.907 0.093 0.428 0.153 0.434 0.574
def+ex 0.589 0.793 0.676 0.818 0.929 0.327 0.714 0.449 0.678 0.841
human 0.815 0.759 0.786 0.882 0.962 0.666 0.689 0.677 0.822 0.938

IE (def+ex)
basic 1.000 0.621 0.765 0.873 0.964 0.160 0.592 0.252 0.528 0.691
examples 1.000 0.655 0.792 0.887 0.967 0.169 0.857 0.282 0.505 0.605
def 1.000 0.655 0.792 0.887 0.967 0.117 0.571 0.194 0.450 0.569
def+ex 1.000 0.758 0.863 0.887 0.968 0.205 0.857 0.331 0.562 0.686
human 1.000 0.767 0.867 0.928 0.978 0.793 0.639 0.707 0.836 0.939

aThe “input” refers to the type of input passed to the classifier, which is either an entire note or the output from the information extraction (IE) step
where “IE (basic),” “IE (def),” “IE (ex),” and “IE (def+ex)” show prompt types used for the IE step. The “prompt (class)” refers to the prompt types
we used for classification, that is, “basic,” “examples,” “def,” and “def+ex.” The “human” classification refers to the human-in-the-loop classification
approach.
bFlan-T5: Fine-Tuned Language Net Text-To-Text Transfer Transformer.
cLLaMA: Large Language Model Architecture.
dPrec: precision.
eRec: recall.
fF1(pos): F1 for the positive class.
gmacro: F1-macro.
hAcc: accuracy score.
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Figure 1. Comparison between classification approaches, that is, using entire notes versus using IE where “F1(pos)” refers to the F1-score for the
positive class. “IE (avg),” “IE (best),” and “IE (worst)” refer to the average, best, and worst results, respectively, for the IE approach per classification
prompt. Classif: classification; Flan-T5: Fine-Tuned Language Net Text-To-Text Transfer Transformer; IE: information extraction; LLaMA: Large
Language Model Architecture.

Human-in-the-Loop Approach
Results in Figure 2 and Table 3 show that combining IE for
extracting task-relevant information and manual classification
can support more accurate and less time-consuming classifi-
cation versus using fully manual or fully automated methods.
The human-in-the-loop approach led to better classifica-
tion performance, especially for the LLaMA model where
the difference in F1(pos) between the best performing IE
approach and human-based method is 0.436. For the Flan-T5
model, the improvement in F1(pos) is 0.003 (F1(pos)=0.867

vs F1(pos)=0.863). Further, the average length of extracted
passages using the FLan-T5 model is 3 tokens, whereas
the average length for the entire note is 190 tokens. This
shows that the IE step combined with the human-in-the-loop
approach can be beneficial for supporting verification or the
conduct of more efficient expert annotations. This could be a
good alternative to a fully automated classification, especially
in the health care domain where accuracy of models and
reliability of results are of high importance.

Figure 2. Comparison between fully automated IE-based classification and human-in-the-loop approach where “F1(pos)” refers to the F1-score for
the positive class, “classif (best)” and “classif (worst)” refer to the best and worst classification results, respectively, per given IE prompt. Flan-T5:
Fine-Tuned Language Net Text-To-Text Transfer Transformer; IE: information extraction; LLaMA: Large Language Model Architecture.

Genetic Validation of Different
Classification Approaches
In all three classifications of ID (manual curation of clinical
summaries, best performing fully automated NLP model, and
performing human-in-the-loop model; see Table 3), damaging
de novo variants were significantly enriched in patients with
schizophrenia with suspected comorbid ID compared with
patients with schizophrenia without ID (Table 4). De novo
variants were most strongly enriched in the schizophrenia ID
group defined by the human-in-the-loop classification (odds
ratio 29.1, 95% CI 7.36-107), with the weakest enrichment
observed in the fully automated classification (odds ratio

15.7, 95% CI 3.58-57.5). The same set of de novo variants
was observed in the ID and non-ID patient groups in the
human-in-the-loop and manual curation classifications, but a
greater enrichment was observed in the human-in-the-loop
classification test as fewer individuals were classified to have
ID (14 in the human-in-the-loop classification vs 18 in the
manual curation classification; Table 4).

To investigate why fewer people were found to have ID
in the human-in-the-loop classification dataset, we examined
the overlap of individuals with ID in this dataset and the
manually curated classification dataset. We also reexamined
the clinical information for individuals found to have ID
in only one dataset. Eleven individuals with schizophrenia

JMIR AI Edwards et al

https://ai.jmir.org/2025/1/e72256 JMIR AI 2025 | vol. 4 | e72256 | p. 8
(page number not for citation purposes)

https://ai.jmir.org/2025/1/e72256


were recorded as having ID in both the manually curated
and human-in-the-loop classification datasets. Among the 7
individuals who were found to have ID only in the manually
curated classification dataset, 2 had clear evidence of having
ID, 2 had ambiguous evidence of having ID, and 3 had no
evidence of having ID. Among the 3 individuals found to

have ID only in the human-in-the-loop classification dataset,
1 had clear evidence of having ID and 2 had ambiguous
evidence of having ID. These results provide suggestive
evidence that the human-in-the-loop approach produces fewer
false positive ID classifications when compared with the
manually curated ID set.

Table 4. Enrichment of de novo variants in individuals with SZa and comorbid IDb.

Classifierc
Patients with SZ
and ID, n

Patients with SZ
but without ID, n P value Odds ratio (95% CI)

Variants in ID
group, n (rate)

Variants in no-ID
group, n (rate)

Manual curation 18 529 7.1×10–5 21.1 (5.48-74.0) 4 (0.22) 7 (0.013)
Automatic model 16 531 9.3×10–5 15.7 (3.58-57.5) 3 (0.19) 8 (0.015)
Human-in-the-loop 14 533 2.1×10–5 29.1 (7.36-107) 4 (0.29) 7 (0.013)

aSZ: schizophrenia.
bID: intellectual disability.
cThe numbers of patients with ID and without ID are presented across three ID classifications where “manual curation” refers to manual annotations
performed by a domain expert, “automatic model” refers to the best performing fully automatic model in Table 3, and “human-in-the-loop” refers to
the best performing human-in-the-loop approach in Table 3.

Discussion
Principal Findings
Our findings show the potential of LLMs to facilitate
different tasks in the clinical domain, such as classification
and IE when only a few training examples are available.
We compared three approaches for classifying ID from the
clinical summaries of individuals with severe mental illness
and found that using an IE step as part of a classifica-
tion pipeline based on the Flan-T5 model and informed by
a prompt combining definitions and examples achieved a
precision of 1.00 and F1 of 0.867 for the positive class.
Further improvements to classification were found when
using the human-in-the-loop approach, a process where a
human must review short NLP-derived summaries instead
of the full clinical dataset. These findings open interest-
ing research avenues in building hybrid approaches, which
combine the benefits LLMs offer for extracting relevant
information in a fast and efficient manner with the knowl-
edge of experts. These kinds of methods can be suitable
for classification tasks which are considered challenging
even for domain experts, as well as for sensitive tasks that
require high accuracy, which is typically hard to achieve
when labeled training data is scarce. Moreover, the ability
of our methods to accurately classify ID was supported by
our genetic analysis, which found the NLP-defined subgroup
of people with schizophrenia and ID to be enriched for
genetic variants in genes known to be associated with ID.
From conversations with geneticists in the area, we found
that manual annotation of comorbidities is often based on
keyword search, since reading of thousands of clinical notes
is typically unfeasible. Our findings therefore suggest that
NLP-based approaches can be used to validate or improve
classification annotations derived from the manual curation of
free-text clinical summaries, which is prone to human error.
Further work is required to test these findings in routinely
collected health care data, such as that captured in electronic
health records, and how to best integrate into genetic analysis

research and beyond the detection of IDs which was used as a
first approximation to the more general problem of extracting
information from free-text clinical summaries.
Importance of Both Automation and
Human Intervention in Health Care
Applications
We have performed further analysis comparing the execu-
tion time efficiency of the best performing automatic and
human-in-the-loop approaches to the manual methods used
by experts for annotating the data (see Table 5). Specifi-
cally, the manual curation involved careful reading through
the entire dataset to classify them. In the keyword search,
experts perform simple searches using the operating system's
search functionality to find potential class candidates. For
these experiments, they used the keywords “IQ” and “mental
handicap”. The results in Table 5 show the benefits of
the automatic and human-in-the-loop approach versus the
human-based annotation where the fully automated method is
more than 20 times faster than manual curation and keyword-
based search. In addition, keyword search has a slightly
lower F1-score than automatic approaches. The reason for
this is the limited number of keywords used in experiments.
However, these results still highlight potential problems with
such an approach where a careful selection of keywords is
needed as well as a good knowledge of the corpus. Further,
the human-in-the-loop approach performs at a very similar
execution time to the fully automated approach but produ-
ces a higher F1-score. Perhaps even more importantly, the
fact that an expert can be involved in the process provides
increased reassurance compared to a fully automatic process.
This shows that semiautomatic approaches can be an efficient
and more reliable option versus full automation for the health
care domain where high accuracy of models is required.
However, research in this field is still very limited. Our work
is one of the first attempts to incorporate manual verification
and LLMs to create more reliable and less data-consuming
approaches for classification of clinical free-text data.
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Table 5. Comparison of the performance of classification approaches in terms of time taken for annotating 314 clinical summaries.
Approach Time F1(pos)a

Manual curationb ∼10 h 1.000
Keyword searchc ∼2 h 0.845
Automatic modeld ∼5 min 0.863
Human-in-the-loope ∼20 min 0.863

aF1(pos): F1 for the positive class.
b“Manual curation” refers to manual annotations performed by a domain expert.
c“Keyword search” refers to CTRL-F–based search using the keywords “IQ” and “mental handicap.”
d“Automatic model” refers to the best performing fully automatic model in Table 3.
e“Human-in-the-loop” refers to the best performing human-in-the-loop approach in Table 3.

Limitations
First, this study is based on a single free-text clinical dataset
containing a summary of real-world clinical data, which was
developed for research purposes. This dataset is not a direct
copy of routinely collected clinical data, which may limit
the generalization of the results. To mitigate this issue, we
used unsupervised approaches that are aimed at modeling
the problem at hand, without relying on training data that
may easily be overfit to our own data. Nonetheless, these
experiments would ideally need to be replicated on similar
cohorts to better understand the strengths and limitations.
Second, and related to the first point, the experiments were
performed in English only, which is the language of the
corpus of clinical summaries. Third, for this analysis, we
simplified the task into a binary problem, in which patients
have suspected comorbid ID or no evidence of ID. How-
ever, the clinical course of many medical conditions is
complex, with high heterogeneity in the type and severity
of symptoms both across individuals and within individuals
over time. This is particularly true for mental health con-
ditions, where individuals often receive different diagnoses
during their life. It is therefore important for future stud-
ies to consider how models can adapt and capture these
complex clinical phenotypes from longitudinal health care
data. Although outside the scope of this paper, we note that
our approach offers a promising path for this task, since it
leverages in-context learning and integrates both labeled data
and regularly updated, domain-specific external resources.

Another limitation of our study was that all manual
annotations were performed by a single expert. This was due

to the complexity and domain-specific expertise required for
the task, making it unfeasible to involve multiple annota-
tors. To ensure the reliability of the automated methods,
we validated them not only against human annotations but
also by using genetic data to confirm that individuals with
NLP-defined ID are enriched for genetic variants known to be
associated with ID.
Conclusions
In this study, we analyze how language models such as
Flan-T5 and LLaMA 2 combined with in-context learning
can be utilized for classifying individuals with severe mental
illness and suspected ID from free-text clinical summaries.
We propose the use of an intermediate IE step for extracting
relevant parts of the notes before classification. Our results
show that such techniques can help improve the perform-
ance of LLMs in one-shot settings when combined with a
prompt that provides both information about the task and
relevant examples. In addition, we propose a human-in-the-
loop approach as an alternative to fully automated classifica-
tion, where the IE step is used to extract succinct parts of the
notes related to the task, which can be used to support faster
and less error-prone manual classification. Approaches based
on this pipeline and the Flan-T5 model showed promising
results and were validated in a proof-of-concept genetic
analysis, which found individuals classified by NLP to have
ID were enriched for genetic variants known to contribute to
developmental disorders.
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