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Abstract

Background: Intensive care units (ICUs) treat patients with life-threatening illnesses. Worldwide, intensive care demand is
massive. Predicting patient outcomes in ICUs holds significant importance for health care operation management. Nevertheless,
it remains a challenging problem that researchers and health care practitioners have yet to overcome. While the newly emerging
health digital trace data offer new possibilities, such data contain complex time series and patterns. Although researchers have
devised severity score systems, traditional machine learning models with feature engineering, and deep learning models that use
raw clinical datato predict ICU outcomes, existing methods have limitations.

Objective: This study aimed to develop a novel feature extraction and machine learning framework to repurpose and extract
features with strong predictive power from patients' health digital traces for ICU outcome prediction.

Methods: Guided by signal processing techniques and medical domain knowledge, the proposed framework introduces a novel,
signal processing—based feature engineering method to extract highly predictive featuresfrom ICU digital trace data. Werigorously
evaluated this method on areal-world | CU dataset, demonstrating significant improvements over both traditional and deep learning
baseline methods. The method was then evaluated using a real-world database to assess prediction accuracy and feature
representativeness.

Results. The prediction results obtained by the proposed framework significantly outperformed state-of-the-art benchmarks.
This demonstrated the framework’s effectiveness in capturing key patterns from complex health digital tracesfor improving ICU
outcome prediction.

Conclusions: Our study contributesto health care operation management by leveraging digital tracesfrom health careinformation
systems to address challenges with significant implications for health care.
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Introduction

Background

As the Fourth Industrial Revolution unfolds, health care
organizationsworl dwide areimplementing an increasing number
of digital artifacts capable of producing or collecting data to
modernize services, scale business, and improve the efficiency
of information exchange. These digital artifacts generate and
record vast quantities of data regarding the conditions and
outcomes of patients, enabling the digital tracing of these
individuals [1]. These digita traces offer a rich collection of
novel and valuable sociotechnical empirical data. This
abundance of new information can greatly enhance
decision-making processes in health care applications. As part
of thistendency, theimplementation of electronicintensive care
unit (el CU) technology over the last decade has allowed large
amounts of intensive care unit (ICU) patients' vital sign data
(ie, agroup of medical signsthat indicate the status of the body’s
life-sustaining functions, such asblood pressure, heart rate, and
respiratory rate) to be collected and streamed [2]. These
real-time time-series data, originally used to monitor patients
real-time conditions, coupled with other patient information
recorded in health IT systems (eg, demographics), constitute
ICU patients’ health digital traces.

ICUs are hospital departments dedicated to providing critical
care medicine to patients who are at risk of, currently
experiencing, or recovering from life-threatening illnesses or
injuries. ICU patients are extremely vulnerable to adverse
outcomes due to their rapid disease progression and have the
highest mortality rate of all patients across different health care
departments[3]. Worldwide, intensive care demand is massive.
Researchers and health care practitioners have long recognized
the significance of | CU outcome prediction, which is generally
defined as predicting patient outcomes resulting from medical
treatment in the ICU, including but not limited to patient
mortality, length of stay, readmission, morbidity, disability, and
quality of life[4]. It has significant implications on health care
operation management, such aslaying the scientific foundation
for assessing the severity of illness, providing a standard for
adjudicating new treatments and policies, providing away for
comparing cohorts of ICU patients treated across different
hospitals and countries, allocating resources and determining
levels of care, and discussing expected outcomes with ICU
patients and families [5,6].

However, predicting ICU outcomes is a complex problem that
practitioners and researchers have yet to overcome. |CU patients
have diverse and dynamic characteristics;, they come from
various diagnosis cohorts, have unique demographics and
disease progressions, and may receive different levels of medical
interventions [7,8]. Effectively identifying patterns and
predicting patients' ICU outcomes poses great challenges in
health care analytics. The emergence of el CUsduring the Fourth
Industrial Revolution, along with the availability of patients
digital health data from elCUs, has created new opportunities
for developing more sophisticated methods for predicting |CU
outcomes. Researchers have demonstrated that, in addition to
being used for monitoring purposes, |CU patients’ health digital
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traces contain rich dynamic patterns that can be repurposed to
inform prognosis, provide early forecasts of life-threatening
conditions, and predict patient outcomes[9]. Many researchers
who work on ICU outcome predictions have explored the value
of patients' health digital traces by incorporating real-timevital
sign data as the input of traditional machine learning models
with feature engineering or deep learning models using raw
clinical data. However, both types of methods have limitations.
This is because ICU patients' health digital traces include
complex time-series data and patterns [8]. Current feature
engineering—based traditiona machine learning models rely
largely on simple summary statistics of vital signs and are
incapable of capturing heterogeneous and dynamic patterns
from patients’ health digital traces, resulting in unsatisfying
performance. On the other hand, deep learning models rely
heavily on computational power and large amounts of training
data, which are normally not availablefor health care predictive
tasks [10]. Thisis because the integration of patient data for a
prediction task in health care analytics must be executed with
great care (eg, considering different patient cohorts and different
periods), making it impractical to acquire a sufficient amount
of training datafor complex deep learning models. Researchers
and practitioners urge the next generation of ICU outcome
prediction models to be more accurate (predict with better
performance), autonomous (execute without time-consuming
or manual data entry), and dynamic (capture tempora changes
in physiological signals and clinical events) [4,11]. Using
mortality prediction as a research case, the objective of this
study was to develop a new method that aims to extract
meaningful patterns from readily available health digital traces
to facilitate accurate ICU outcome predictions.

To achieve this goal, we repurposed and used ICU patients
health digital trace data from the elCU systems as input. To
effectively extract patternsfrom the complex time series of vital
signs in patients health digital traces, we then used signal
processing techniques to decompose the time-series data,
enhance useful signals, and reduce noisein complex time series.
Next, guided by medical domain knowledge and feature
selection techniques, we identified the most representative
features from the decomposed health digital trace datafor ICU
mortality prediction. Finally, using a state-of-the-art machine
learning technique, the proposed framework accurately predicted
the mortality rate for ICU patients. To demonstrate the
effectiveness of the proposed framework, we evaluated it on a
large real-world ICU database. The proposed method
outperformed strong baseline methods, including the Acute
Physiology and Chronic Health Evaluation (APACHE) IV model
(ie, the best-performing scoring system in ICU outcome
prediction that is already used in hospitals), time-series
forecasting methods (ie, autoregressive moving average
[ARMA] and autoregressive integrated moving average
[ARIMA]), other traditional machine learning models with
statistical features, and deep learning models (ie, convolutional
neural networks [CNNSg], long short-term memory [LSTM],
and gated recurrent unit [GRU]), by alarge margin.

Our main contributions are as follows: (1) we propose a new
feature engineering framework that leverages stochastic signal
processing and medical domain knowledgeto extract predictive
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features from ICU digita traces; (2) we designed a structured
feature selection process to enhance model interpretability and
prediction accuracy; (3) through extensive experiments, we
demonstrated that our method significantly outperforms
traditional statistical and deep learning modelson ICU mortality
prediction tasks; and (4) we showed that the features extracted
by our framework generalize across patient cohorts and can be
integrated into existing clinical decision systems. Moreover,
our work has practical implicationsfor ICU outcome prediction
and health care operation management: (1) it requires only
readily available digital health trace data from ICU bedside
monitors rather than laboratory results and intensivists
assessments, (2) it significantly improves the performance of
ICU mortality predictions, and (3) the extracted features can
effectively represent heterogeneous | CU patient cohorts.

Related Work

| CU Outcome Prediction and Limitations of Extant
Studies

The existing methods for predicting ICU outcomes can be
classified into 3 main types (Table 1): severity scoring systems,
traditional machine learning models with feature engineering,
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and deep learning models with raw clinical data. For severity
scoring systems, the most reputable ones (including major
revisions of these models) are the APACHE [12], Simplified
Acute Physiology Score[13], and Mortality Probability Model
[14]. Among the existing severity scoring systems, APACHE
IV demonstratesthe highest performancein terms of areaunder
the curve (AUC) [15]. Despite their widespread use, the
reliability of the severity scoring systems, including APACHE
IV, has been questioned by practitioners[4]. More importantly,
there are ongoing concerns about the prolonged waiting time
of laboratory data collection and the assessments needed from
subject matter experts for calculating the severity scores [11].
For instance, APACHE 1V requires 24 hours to gather all the
necessary information for prediction. The predicting variables
include laboratory test results and Glasgow Coma Scale (GCS)
measures—the laboratory test results can take hoursto daysto
obtain depending on the complexity of the tests [16], the GCS
scores necessitate expert medical evaluation, and their
reproducibility has raised concerns among researchers [11].
Researchers argue that the next generation of ICU mortality
predictive models should use an automated electronic system
for data gathering and prediction generating [4,11].
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Table 1. Summary of intensive care unit (ICU) mortality prediction models from the literature.

Category and representative
method

Required resources

Limited resources

Research gaps

Readily available health digital traces

Laboratory test  Intensivist Pre-ICU conditions Vital signs
results assessment?

Severity scoring systemb Low accuracy; requires expert assessments
and laboratory test results; unable to con-
duct real-time forecasting

SAPSC 11 Yes Yes No Statistics features
APACHEY 1V Yes Yes Yes Statisticsfeatures
MPME 111 No Yes Yes Statisticsfeatures
Traditional machinelearning model with feature engineering' Lack of effective means to extract mean-
ingful patterns from complex time series
DTY, SVM" NN/, and LRI Y&s Yes No Statistics features
D-TSK-FCK Yes No No Statisticsfeatures
RF LR NN,andSvM  Yes Yes No Statisticsfeatures
RF GB™ and LR Yes Yes No Statisticsfeatures
SVM, GB, XGBoost",and  Y&S Yes No Statisticsfeatures
LR
Deep learning model with raw clinical data® Relies on computational power and large
amounts of training data
CNNP model 1 Yes Yes No Time series
CNN model 2 No No No Time series
LSTMY No Yes Yes Time series
8Glasgow Coma Scale.

bZimmerman et [12], Moreno et al [13], and Higgins et al [14].
CSAPS: Simplified Acute Physiology Score.

dAPACHE: Acute Physiology and Chronic Health Evaluation.
EMPM: Mortality Probability Model.

Davoodi and Moradi [17], Kim et a [18], Hsieh et a [19], Kong et a [20], and Zhai et a [21].

9DT: decision tree.

svm: support vector machine.

INN: neural network.

ILR: logistic regression.

KD-TSK-FC: deep Takagi-Sugeno-Kang fuzzy classifier.
IRF: random forest.

MGB: gradient boosting.

"X GBoost: extreme gradient boosting.

OCaicedo-Torres and Gutierrez [22], Kim et al [23], and Thorsen-Meyer et al [24].

PCNN: convolutional neural network.
9_STM: long short-term memory.

With the emergence of health digital trace data, researchers
have recognized the potential of such data in enhancing ICU
outcome prediction [9]. This is because these data reveal
patients pathological conditions and their response to
treatments, making them valuable for improving prediction
performance. Traditional machine learning models have been
adopted for ICU outcome predictions using patients' digital
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trace data, which have included demographic information and
summary statistics of vital measurements (Table 1). Despite
researchers continuously introducing various prediction models,
the features extracted from the health digital traces remain
relatively simple—Dbasic statistics of vital sign time series, such
as the minimum and maximum respiration rates or blood
pressure. However, thereisincreasing evidence suggesting that
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superior accuracy in ICU outcome prediction requires more
effective feature extraction methods [4]. The complexity of
patient cohorts' heterogeneity and the complexity of the time
series of health digital traces pose significant challenges in
extracting meaningful dynamic patterns and uncovering the
relationships among these patterns.

Deep learning models with strong pattern recognition
capabilities are also used in ICU outcome prediction. CNNs,
which can summarize patterns from patients health digital
traces, have been implemented first [22,23]. Researchers also
input patients' vital sign data into recurrent neural networks
(RNNSs) to infer ICU outcomes, which takes advantage of the
temporal information of vital signs[24]. However, these models
take the entire time series of vital signs as input, and their
performance greatly depends on computer power and massive
amounts of training data, which is challenging in health care
practice [10]. In health care predictive analyses, the integration
of patient data must be executed with great care, making it
impractical to acquire sufficient training datafor complex deep
learning models. The integration of health care data from
different patient cohorts (eg, various diseases, distinct ICU
admission types, different races, and diverse age groups) must
be undertaken with meticul ous care. For exampl e, patientswith
different genetic backgrounds (ethnicities) are sometimes
susceptible to certain diseases; patient cohorts comprising
geriatric, neonatal, and general patients show notable variations
in disease risks and prognosis. These differences significantly
influence health care prediction results. In ICU outcome
prediction, it is often necessary to separate the different patient
cohortsinstead of integrating their data. Thereisalso an inherent
temporal aspect to patient data, and it is not appropriate to
integrate patient data from vastly different periods. Societal
development changes patients' physical fitness, underlying
health conditions, and health care providers’ treatments, leading
to significant variations in patient data distribution. Overall,
acquiring sufficient training data for complex deep learning
modelsisusually impractical for health care predictive analytics.
Consequently, the performance of complex deep learning models
is constrained by the limitations of available training data
(experiments are provided in Postanalysis: The Impact of
Limited Patient Data on Deep Learning Model Performance
section).

As ICU patients health digital traces contain complex
time-series data, statistical forecasting models such as ARMA
and ARIMA may aso be used to analyze the time-series data.
However, these time-series model s are devel oped to predict the
value of the time series at the next time step and are not created
for prediction or classification tasks or probability estimations.
To make predictions using time-series data, researchers regard
the coefficients of the time-series models as input features and
train machine learning classifiers [25]. Nevertheless, these
methods are not ideal for the time series of patients health
digital traces from ICUs. The order of atime-series model has
to be determined by the statistical characteristics of a specific
time series (eg, one time series of vital signs from a specific
patient). Researchers usually treat model orders as
hyperparameters and determine them through experiments and
the Akaike information criterion; a fixed order of time-series
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models is required for all patients to ensure that the input
features have the same dimension for the classification task,
which limitsthe predictive power of the time-seriesforecasting
modelsin ICU outcome prediction.

I CU Patients Health Digital Traces and Stochastic
Signal Analysis Techniques

The health digital traces of ICU patients have been originally
used for monitoring and assessing patients immediate
well-being. A growing body of literature has shown that many
shared dynamic patterns can beidentified across heterogeneous
patient cohorts that may be repurposed to evaluate illness
severity, identify future clinical abnormalities, predict adverse
events, or distinguish heterogeneous patient cohorts [9].
However, identifying and extracting meaningful features from
health digital traces remains a challenging task given that the
range of a digital trace varies with a patient's age, gender,
weight, environment, medical condition and intervention, and
many other factors [9]. As a result, the health digital traces
contain complex time series and exhibit diverse and dynamic
patterns. Aswelater demonstrate (refer to the Results section),
extant feature extraction and |CU outcome prediction methods
are inadequate.

Stochastic signal processing, afield of science concerned with
processing and analyzing time-series data, is awell-suited tool
to extract complicated patterns of time-series digital traces.
Stochastic signal processing techniques are particularly useful
for extracting patterns from time-series signals, which are
normally described as aperiodic, noisy, intermittent, and
transient [ 26]. They differ from other time-series analysistools
for 2 reasons. First, they examine the signal in both the time
domain (ie, thetime series of patients’ health digital traces) and
the frequency domain (ie, the magnitude of change within each
frequency band of the time series) simultaneously. Therefore,
they have powerful capabilitiesfor enhancing the useful signals
in complex time series and increasing the signal-to-noiseratio,
which facilitates feature extraction from patients' digital traces.
Second, they have computational algorithms that reduce the
computing time and complexity of large transformations, sothe
time-series data can be processed almost instantaneoudly.

Although complex time series in patients' health digital traces
can be decomposed using signal processing techniquesfor noise
reduction and signal enhancement, specific domain knowledge
is required to determine how to extract meaningful patterns
from the decomposed representations of health digital traces.
In health care research, medica diagnosis signals, including
signals from electrocardiograms (ECGs),
el ectroencephal ograms, and photoplethysmogram, areanalyzed
using signal processing techniques based on researchers' and
practitioners medical knowledge in beat-to-beat heart rate
patterns, electrical activity in the brain, and optical signalsin
blood volume changes [26]. These studies show the potential
of adapting stochastic signal processing techniques in health
care analytics research. However, in these existing studies,
signal processing has been used for specific diagnostic purposes,
with an emphasis on explanation rather than prediction. In this
study, we sought to combine medical knowledge regarding the
patterns and variability of ICU patients' vital signs to extract
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meaningful features for predicting ICU outcomes. To our
knowledge, the complicated time series of vital signsin patients
digital traces have never been systematically analyzed using
signal processing techniques. Combining medical domain
knowledge, the proposed method provides a novel strategy to
extract predictive featuresfor improved | CU outcome prediction
results.

To summarize, the deficiencies of existing ICU mortality
predi ction methods, coupled with the challenges associated with
leveraging patients' health digital traces contained in complex
time series, motivate us to propose a new method that can be
used to (1) effectively extract representative features from ICU
patients digital trace data and (2) accurately predict ICU
mortality using readily available data.

Feature Engineering in | CU Outcome Prediction

In previous ICU prediction literature, feature engineering has
predominantly focused on extracting basic statistical descriptors
from vital signs, such as minimum, maximum, mean, and SD
[18-21]. These summary statistics provide coarse information
about the central tendency and spread of physiological signals
but often overlook dynamic temporal and spectral patterns.

Meanwhile, signal processing techniques such as wavelet
transforms (WTs), spectral analysis, and autocorrelation have
been explored in predictive modeling for specific signals (eg,
most notably from ECGs) for tasks such as arrhythmia
classification, early warning score prediction, and |CU mortality
estimation [26-29]. However, these studies generally target a
narrow range of signals and transformations. Our work expanded
on this by applying a broader set of signal decomposition
methods (fast Fourier transform [FFT], power spectral density
[PSD], autocorrelation, and WT) across multiple ICU vita signs
(eg, arterid oxygen saturation [Sa0,], heart rate, and respiration)
and by combining the results with clinical insights to guide
feature design. Moreover, we introduced new composite
features, such as power in band and relative extrema, that more
precisely quantify signal variability and instability, both of
which are clinically meaningful. This approach results in a
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diverse and interpretable feature set that enhances the model’s
ability to predict ICU outcomes across heterogeneous patient
cohorts.

To ensure that these engineered features are clinically relevant,
we grounded our signal processing techniques in established
medical knowledge. First, for heart rate variability, we computed
power within thelow-frequency and high-frequency bandsusing
PSD analysis. These frequency bands are associated with
sympathetic and parasympathetic nervous system activities,
respectively, and are critical in assessing autonomic function
in patients who are critically ill [30]. Second, given the
nonstationary nature of physiological signals such as ECG and
respiratory patterns, we used WT to capture transient features
and localized frequency components. This approach facilitates
the detection of clinically significant events such asarrhythmias
and respiratory irregularities. Notably, unstable respiration can
lead to respiratory muscle fatigue, cardiovascular collapse, and
impaired oxygen delivery [31]. Third, features such as relative
extremawere designed to identify sudden changesin vital signs,
such as abrupt drops in peripheral oxygen saturation or spikes
in heart rate, which may indicate acute clinical events. Similarly,
power-in-band features help in quantifying the energy within
specific frequency bands associ ated with pathological conditions
[32]. Fourth, by aligning our signal processing techniques with
established medical knowledge, we aimed to extract features
that are not only statistically robust but also clinicaly
interpretable, thereby enhancing the utility of our predictive
modelsin real-world ICU settings.

Methods

We propose a novel method to effectively extract features with
strong predictive power from the complex time series of health
digital tracesfor ICU mortality prediction. Asshownin Figure
1, the proposed model includes three steps: (1) time series of
digital trace decomposition guided by signa processing
techniques, (2) feature extraction guided by medical domain
knowledge, and (3) ICU mortality prediction using v—support
vector classification (SVC).
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Figure 1. The proposed intensive care unit (ICU) mortality prediction framework. AC: autocorrelation; FFT: fast Fourier transform; PSD: power
spectral density; SaO2: arterial oxygen saturation; ST1: estimated ST segment level 1 of the electrocardiogram (ECG); ST2: estimated ST segment level
2 of the ECG; ST3: estimated ST segment level 3 of the ECG; WT: wavelet transform.

(A) Time series of digital trace decomposition guided by signal processing techniques

(B) Feature extraction guided by medical domain knowledge
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Time Series of Health Digital Trace Decomposition
Guided by Signal Processing Techniques

Overview

ICU patients' health digital traces contain multiple complex
time series; each time seriesis denoted by v, (t isthe time index

Table 2. Signal processing techniques and relations to health digital traces.

¥: ICU mortality probability

eg, ¥=[0.89, 0.65, 0.54, 0.25, ..., 0.69]

X: Feature matrix extracted from the time series
of vital signs

and t<N). To enhance useful signals and reduce noise in v;, in
thefirst step, guided by signal processing techniques (Table 2),
we decomposed v, using FFT, PSD, autocorrelation, and WT.

Technique

Signal processing guidelines®

Motivation and relation to health digital traces

FFTP

PSD®

acd

WT®

Using FFT, any time series can be decomposed into a series of
simple sinusoids of different frequencies. The FFT estimates the
coefficients of each sinusoid for a given time series.

The PSD describes the distribution of the power of atime series
over frequency. FFT isgreat at analyzing vibration when there are
afinite number of dominant frequency components, but PSDs can
be used to characterize random vibration signals.

AC isthe correlation of atime series with the lagged version of
itself over successivetimeintervals, which isusually used to detect
repesating patterns, such as periodic signals hidden in noisy data.

The WT decomposes atime seriesinto a series of wavelets with
different scales at different time points. Thus, the outputs of WT
present both the strength and location of frequencies (ie, patterns
from both the frequency and time domains) in the time series.

To decompose complex health digital tracesinto severd relatively
milder, more regular, and stable subsequences

To analyze the random vibration signals, which are common in
patients’ health digital traces.

To detect and enhance repeating patternsin patients’ health digital
traces and reduce noise.

To include the information of the frequencies' time location (time
domain) as the outputs of the aforementioned 3 techniques (FFT,

PSD, and AC) mainly provide information about the frequencies

(frequency domain) in time-series data. Time domain information
reveals patients' disease or condition progression.

8Addison [26], Bloomfield [27], Woyczynski [28], and Broersen [29].
BEFT: fast Fourier transform.

®PSD: power spectral density.

4AC: autocorrelation.

SWT: wavelet transform.
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The decomposed v, is denoted as F(w) (ie, frequency spectrum),
where wisthe parameter of the signal processing. Specifically,
w indicates frequency in FFT and PSD, scale and shift
parameters in WT, and time difference in autocorrelation. For
FFT, PSD, and autocorrelation, the frequency spectrum of a
time series v, is avector, [F(w,), F(w),..., F(wy)]; for WT, the
frequency spectrum is a matrix ([F(wy 1), F(Wy2),..., F(wy )],

[F(wp1), F(wp2) F(@g],-mr [F(s1), F(Ws2),.... F(wsp])
where sisthe number of rows decided by the scale of the WT.
All frequency spectrums converted from time series of patients
health digital traces form a space X, (h=number of patients;
w=the number of frequency spectrums). The following
paragraphs introduce the signal processing transfer processes
in our research setting.

FFT Process

The Fourier transformation of a signal reveals periodicity in
time-series dataand indi cates the frequencies of these periodical
components. The resulting signals after the FFT are frequency

spectrums -2, where v; is the vital sign and w is the
frequency at which a complex sinusoid is computed.

PSD Process

The PSD Fpgy(w) is calculated using == 2 where r(k)is the
autocovariance sequence of Vi and

(k) = E{v(t)v"(t — k)} = Zilps1 Ve Ve v* (t — k)

denotes the complex-conjugate transpose of v(t — k). The PSD
characterizesthe average power (ie, measure of signal strength)
at afrequency winthesignal. Specifically, for time-series data,
the PSD usesthe signal’s autocorrel ations to measure the power.
Compared to FFT, which obtains the amplitudes of a signa’s
frequency components, the PSD of the signa delineates the
power contained within the signal as a function of frequency.

Autocorrelation Process

Autocorrelation measures the correlation between asignal and
its delayed version with lag w, which can be calculated using

Fac(®) = 35° VVsw. 1t reveds the influence of the
previous signal on the following signal in the sequence. When
the signal does not repeat the sequence of valuesregularly after
a fixed length of time, the autocorrelation coefficients tend to
be small, which indicates the fluctuation of v;. Otherwise, the
autocorrelation coefficients tend to be large, which represents
the stable status of health digital traces.

WT Process

The WT analyzes signals with a dynamic frequency spectrum,
providing a high resolution in both the frequency domain and
thetimedomain. The WT of thevital sign signal v; isexpressed

using fr@ =g lLroveene where = (a, b) and Y(+) isthe mother
wavelet (ie, a wavelike oscillation). Parameter a defines the
scale (ie, how stretched a wavelet is) of the wavelet, and
parameter b defines the time location (ie, where the wavelet is
positioned in time) of the wavelet. We used 3 types of wavelets

to generate frequency spectrums. Morlet wavelets (v i),
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complex Morlet wavelets (v»-&*), and Mexican wavelets

(e mae&), Morlet and complex Morlet wavelets were
included because they are closely related to human perception
of vision. Mexican wavelets were used as they are widely used
as broad-spectrum source termsin WT analysis.

Feature Extraction Guided by Medical Domain
Knowledge

Overview

Although signal processing techniques can enhance useful
signals from ICU patients health digital traces that contain
aperiodic, noisy, intermittent, and transient time series, the
resultsfrom signal processing, Xy, ae notideal to useasinput
features of machine learning classifiers for ICU mortality
prediction dueto their high dimensionality. For predicting |ICU
outcomes, the valuable patterns are still hidden in the vast
amount of information. Therefore, we extracted the most
representative features from X, for ICU outcome prediction
by combining medical knowledge regarding the patterns and
variability of ICU patients vital signs (Multimedia Appendix
1). In addition, wetook various statistical featuresfrom thetime
series v;. The extracted features formed a new feature space,
X (n=number of patients; I=the number of features), where
[<<w We evaluated the relative importance of the extracted
features and selected those with the highest predictive power
for ICU mortality. The selected features, X, (n=number of
patients; m=the number of selected features), were the input of
the proposed |CU mortality prediction model.

Relative Extrema

On the basis of medical knowledge regarding vital signs
patternsand variabilities (Multimedia Appendix 1), we extracted
the frequency spectrums’ positions and values of the local
maxima and local minima as the ICU mortality predicting
features. Formally, we extracted (1) the value of the frequencies

where the oscillations, «:, occur; and (2) their corresponding
amplitudes, F(«;), as predictive features (see examplesin Figure
2). Specifically, the relative extrema, («i, F(«) is the local
maximum (or local minimum). Namely, F(wi) = F(w) (or F{wi) < F(w))

for al values of wwithin athreshold distance € on the frequency
spectrum, where € is a small positive value. We extracted 1

relative extrema point & within each distance range (-, €). It
should be noted that there are multiple w on the entire

frequency spectrum, [wi ;. ..o ...»], where t is the number of
extrema. After we found all relative extrema, F(w ), satisfying

the requirement, we obtained a vector u = [F(1). F(@3) ... F(wm)],
The top n maxima are defined as the largest n values on u
(accordingly, the top n minima are defined as the smallest n
values on u). When there were <n elements in u, we adopted
al available relative extrema (ie, m in total) as features and
included n—mmissing values (see parameter selectionin Table
S1in Multimedia Appendix 2).
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Figure2. Anexample of relative maxima of the frequency spectrum.
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Power in Band

The power-in-band feature is the sum of the total power (see
Multimedia Appendix 1 for more detail) within a frequency
band (ie, frequency range). With a specified center frequency
@, and bandwidth wy,,,, we can derive the low and high bounds,
W, — Wy, @nd Wy, + Wy, respectively, of the frequency band. The

power-in-band featureis Lo <o ron F (@) (Figure 3). The power
in band summarizes the strength of the signal in the frequency
band by computing a single number. The benefits of using
power-in-band features are 2-fold. First, the power-in-band

Figure 3. Anexample of the power-in-band (PIB) feature of the frequency spectrum.

feature summarizes the contribution of the given frequency band
to the overall strength of the signal, which contains important
information regarding vital signs' stabilities, which summary
statistics may not be ableto capture (see examplesin Multimedia
Appendix 1). Second, power in band is a smple yet powerful
dimension reduction method for ICU mortality prediction. In
practice, we computed the summation (ie, a number) over the
different segments of avector [F(w,), F(),..., F(w)] (ie, the
vector represents the frequency spectrums transformed from a
vital sign; see parameter selection in Table S2 in Multimedia
Appendix 2).

— pctwpy
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Statistical Features

Summary statistics are also used to outline and provide
information on patients' health digital traces. For example, the
mean of asignal isan estimate of the center of the entire signal.
The SD and variance measure the spread extent of the signal
fromits average value. Taking a patient’s heart rate asasimple
example, a normal adult resting heart rate is between 60 and
100 beats per minute. Hence, the mean of the normal heart rate
should also be within this range, and the SD should be <7.
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Abnormal heart rates can be an indicator of adeteriorating health
condition. In this study, we cal culated various stati stic measures
of ICU patients vital signs as features for ICU mortality
prediction (Multimedia Appendix 3).

Extreme Values of Moving Windows

The extreme values of thetime series of vital signsover agiven
period usually indicate unfavorable health conditions as well.
We propose a new predictive variable to detect the extreme
values on the time-series data. We first created a series of
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moving windows, and each window had k observations. With
the k observations, we calculated the mean and SD (Figure 4).
The observations that were not within 3 SDs of the mean were
treated as extreme values [33]. Intuitively, the observations
above and below the 3 SDs can be considered as a sudden rise
and sudden drop in the vital signs, respectively, both of which
have direct relations with patients’ adverse outcomes [33]. We
then took the topn extrema from the moving windows of vital

Wang et al

signs, denoted as G<i.»)- i), where X isthe event timeand y'
is the value of the extrema. When the vita sign in the moving
window had <n relative extrema (ie, <n data points were above
and below the 3 SDs of the data in a given moving window),
we set al available extreme points (ie, mdata points) asfeatures
and included n — m missing values (parameter selection can be
found in Multimedia Appendix 2).

Figure 4. Example of the moving window on the time series of vital signs.

Time

ICU Mortality Prediction Usingv-SVC
We defined the mortality prediction as a probabilistic

classification problem 7 =argmax, Pr(v = y1¥), X denotes the input
space, where
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Theinput space X includes features obtained from the previous
steps. The output space isdefined as Y = { 1. expired, O: alive}
(ie, patient ICU discharge status). Our objective was to use a
machine learning classifier to establish a mapping function,
denoted as f(X), that effectively maps the input data X to the
output space Y. This mapping function will generate ICU
mortality prediction results, represented as Pr(Y]X), where Pr
is the probability.

For our purposes, we used v-SVC [34]. v-SVC learns a
maximum-margin decision function in kernel space while
regulating model complexity through a single hyperparameter
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v. Thevalue of v simultaneously (1) sets an upper bound on the
proportion of training points permitted to lie inside or beyond
the margin and (2) sets a lower bound on the proportion of
support vectorsthat definethe classifier. Thus, v offersadirect,
interpretable handle on the trade-off between training error and
model sparsity without altering the underlying convex quadratic
program. Among the multitude of machine learning prediction
models, we opted for v-SVC for 3 key reasons. The first is
optimal prediction performance. v-SV C retains the benefits of
other SV C methods, frequently delivering superior performance
across various applications. In our specific use case—predicting
outcomes in the ICU—prediction performance is of utmost
importance. The second reason is handling outliers effectively.
Given the heterogeneity of 1CU patient cohorts, outliers are
common and can significantly impact the prediction results.
v-SV C adjusts the number of support vectors and the margin
width based on data characteristics, making it more robust
against outliers. The third reason isthat it is better equipped to
handle imbalanced datasets. In scenarios in which one class
significantly outnumbers the others—a situation commonly
observed in ICU patient cohorts (Table 3)—v-SVC is adept at
preventing overfitting and bias toward the majority class.
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Table 3. Dataset description.
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Overall® mean (range)

Missing or unknown
(%)

Deceased patients, mean
(range)

Alive patients, mean (range)

ICUP stay (h) 85.82 (4.03t05925.70) _ ¢
Age (y)d 68.20 (18 to 90) 0.01
Sex, n (%) 0.01
Male 50.09 —
Female 49.90 —
Ethnicity, n (%) 53
African American 11.33 —
Asian 151 —
Hispanic 4.16 —
White 77.70 —
Height (cm)® 168.27 (101.60 to —
218.00)
Weight (kg) 8343 (22.7010295.10) —
Health digital traces: vital signs
s20, (%) 96.38 (0 to 100) 0.73
Heart rate (bpm®) 88.22 (0 to 300) 0.02
Respiration (breathsper min)" 2144 (0 to 200) 6.04
sT1 0.98 (-20.70 to —700) 48.67
sT2 1.37(-14.20t0-830)  47.11
STk 124 (-24.75t0-1040) 50.62

113.61 (4.06 to 5925.70)

71.30 (18 to 90)

51.83
48.17

9.03

171

3.35

80.51

168.25 (118.00 to 200.7)

80.58 (27.21 to 275.00)

95.56 (0 to 100)
92.68 (0t0 271)
22.47 (0t0 194)
1.20 (~17.00 to -470)
1.90 (~14.15 to -530)

1.51 (—24.75 to —840)

83.18 (4.03 to 1987.93)

67.90 (18 to 90)

50.08
49.91

11.54

1.49

4.24

77.44

168.027 (101.60 to 218.00)

83.69 (22.70 to 295.10)

96.48 (0 to 100)
87.64 (0 to 300)
21.30 (0 to 200)
0.95 (~20.70 to —700)
1.31 (-14.20 to —830)

1.21 (~18.60 to —1040)

#The data records are from patients whose admission diagnoses were heart failure (HF), pulmonary sepsis, or renal sepsis. There were 17,025 total
admissions (n=5282, 31.02% for HF; n=7308, 42.93% for pulmonary sepsis; and n=4435, 26.05% for renal sepsis). All vital signsused are taken directly
from the electronic intensive care unit Collaborative Research Database Vital Periodic table.

bICU: intensive care unit.
®Not applicable.

Thevariable agein the electronic | CU dataset was set to >89 if the patients were aged >89 years. To calculate the mean, we set the ages of the patients

aged >89 yearsto 90.

®When calculating the demographic statistics, we removed 11 records with irregular height (eg, 772 cm) or irregular weight (eg, 974 kg).

fSa\Oz: arterial oxygen saturation.

9pm: beats per minute; the number of times the heart beats per minute.
M The number of breaths a person takes per minute.
IST1: estimated ST segment level 1 of the electrocardiogram (ECG).
IST2: estimated ST segment level 2 of the ECG.
KST3: estimated ST segment level 3 of the ECG.

We chose v-SV C over deep learning modelsfor 2 reasons. The
first is constraints on data availability. In health predictive
analysis, access to large volumes of high-quality training data
fromhealth care I T systemsis not always guaranteed. However,
supervised deep learning classifiers typically necessitate
substantial amounts of such datafor optimal performance. The
second reason is complexity versus simplicity in model
selection. Rudin [35] countered the common assumption that
more complex models necessarily yield more accurate results,
debunking the notion that acomplicated “ black box” isessential
for optima predictive performance. This is often a
misconception, particularly with structured data possessing

https://ai.jmir.org/2025/1/€72671

meaningful features. In such instances, there is frequently no
significant difference in performance between more complex
classifiers (eg, deep neural networks) and simpler ones given
adequate preprocessing. Leveraging the structured and highly
representative features obtained from previous steps, models
with pattern recognition abilities such as CNNsor transformers
are not necessary for our research problem. Furthermore, our
generated features already incorporate the intricate time-series
information, making RNN models, including LSTM and GRU,
inapplicable in our case. Furthermore, other generative models
such asgenerative adversarial networks or diffusion modelsare
not suitable for our prediction task.
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While we deemed v-SVC a suitable classifier for our research
setting, our proposed research design, involving medical
knowledge—driven signal processing for feature extraction
coupled with machine learning, offers distinct advantages in
extracting meaningful input features beyond the confines of
v-SV C; other machine learning methods can also be used.

To select the most representative features, we used feature
selection techniques (ie, v-SV C with 11 penalties) beforefeeding
the entire input feature space, denoted as X, into the v-SVC
model. |11 penalties are beneficial for feature selection as they
result in many estimated coefficients being O, leaving only the
most important features with nonzero coefficients. Our goal in
selecting these features was to enhance the performance and
accuracy of v-SVC. Formally, for aset of features S, the feature
selection method finds the optimal subset s of Shy minimizing
the loss function mingd|Y — Pr(Y[X, X O s)||, where ||-|| is the
error estimation function. The classification mapping function
Pr isdetermined by the feature sel ection methods. The selected
features X, are the input of the ICU mortality prediction
model, where m<I.

Ethical Considerations

The elCU databases were deidentified, anonymized, and
approved for sharing by the institutional review boards of both
Beth Israel Deaconess Medical Center and the Massachusetts
Ingtitute of Technology. Data access was granted to an
investigator after the completion of a National Institutes of
Health course and successful passing of the associated human
research participant protection examination. Given that the data
are accessible to the public through the elCU Collaborative
Research Database, the need for ethics approval and informed
consent was waived. The contributing author SW obtained the
necessary authorization to access the anonymized dataset and
oversaw the meticulous data extraction process.

Results

Data Description

The ICU mortality prediction test bed comes from the elCU
Collaborative Research Database [2], which includes data
records from multiple hospitals across the United States. The
proposed method was established on patients health digital
traces containing the time series of vital signs. The vital signs
in the el CU Collaborative Research Database are consistently
interfaced from bedside monitors, which are readily available
and updated in real time. To reduce theimpact of missing values,
we mainly considered the following vital signs that were
measured for >50% of patientsin our dataset: Sa0,, heart rate,
respiration, ST1, ST2, and ST3 (estimated ST segment level x
of the ECG, wherex 0 {1, 2, 3}), asshown in Table 3. Sa0, is
useful in understanding the oxygen-carrying capacity of
hemoglobin. It is particularly important in patients' care and
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management because low oxygen saturation can lead to many
acute adverse effects on individual organ systems. Heart rate
and respiration areindicators of the body’sbasic functions. ST1,
ST2, and ST3 are estimated ST segment levels of the ECG.

To show the effectiveness and generalizability of the proposed
method, we included ICU patients from 3 different patient
cohorts in terms of ICU admission diagnoses. patients with
congestive heart failure (HF), pulmonary sepsis, and renal sepsis
or urinary tract infection (including bladder). The 3 diagnoses
were the most prevalent ICU admission diagnoses in the el CU
Collaborative Research Database. The total admissions were
17,025 (n=5282, 31.02% for HF; n=7308, 42.93% for pulmonary
sepsis;, and n=4435, 26.05% for renal sepsis). Due to the
imbalance of the dataset (299/5282, 5.66% deceased for HF;
881/7308, 12.05% deceased for pulmonary sepsi's, and 278/4435,
6.27% deceased for renal sepsis), we implemented a stratified
5-fold cross-validation for evaluation. The stratified k-fold
cross-validation ensured that each fold was representative of
the class proportions in the training dataset. In our research
setting, it yielded better bias and variance estimates in cases of
unegual class proportions. To alleviate the influence of the data
imbalanceissue during classifier training, we assigned different

~ t#samples

weights (7=~ 2x#amies,; i=1 or Q) tothemgjority (ie, Y={ O: alive})
and minority (Y={0: expired}) classes according to the skewed
distribution of the classes. The purpose wasto penalize minority
class misclassification by assigning agreater classweight while
decreasing weight for the majority class.

ICU Mortality Prediction Results

We evaluated the proposed framework for ICU mortality
prediction using the first 24-hour time series of health digital
traces (this aligns with APACHE 1V, which forecasts ICU
outcomes 24 hours after admission). We compared our method
with four groups of benchmark methods:

1. Severity scoring systems, including APACHE 1V [12], the
best-performing scoring system that is aready used in
hospitals

2. Machinelearning classifierswith statistical features[18-21]

3. Deep learning models, including 2 CNN models that have
previoudy been used for ICU mortality prediction and have
achieved state-of-the-art performance [22,23], as well as
LSTM [24] and GRU [36], 2 RNN models that take vital
signsin time sequence to estimate mortality rate

4. Time-series forecasting methods, the classic statistical
time-series forecasting methods; following previous
research [25], we fit the ARMA and ARIMA models on
vital signsand took the estimated coefficients as the inputs
of machine learning classifiers to predict mortality
probabilities (detailsare available in Multimedia A ppendix
2). The results are summarized in Table 4 (parameter
specifications can be found in Multimedia Appendix 2).
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Table 4. Evaluation of the proposed method and baseline methods.
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Category and method AUC? Improvement of our proposed framework
over each baseline method (%)
Severity scoring system
APACHEC IV [12] 0.750 17.6
Traditional machine learning model with feature engineeringd
Decision tree [18] 0.681 29.52
Random forest [19] 0.748 17.91
Logistic regression [21] 0.749 17.76
Gradient boosting [20] 0.775 13.81
Deep learning model with raw clinical data
GRU®[36] 0.722 22.16
CNN' model 1 [23] 0.732 20.49
CNN model 2 [22] 0.712 23.88
LSTMY [24] 0.698 26.36
Time-seriesforecasting model
ARMA" coefficients [25] 0.660 33.64
ARIMA! coefficients [25] 0.611 44.35
Our proposed framework
v-svC 0.882 K

8AUC: areaunder the curve.
by mprovement: percentage increase = (AUCqrs — AUChasdine)/ AUChasdline:

CAPACHE: Acute Physiology and Chronic Health Evaluation.

dEach of the original studies used multiple machine learning classifiers, and the reported best-performing classifier in the original paper was selected

as the benchmark.

®GRU: gated recurring unit.

fFCNN: convolutional neural network.

9STM: long short-term memory.

PARMA: autoregressive moving average.

ARIMA: autoregressive integrated moving average.
Isve: support vector classification.

KNot applicable.

The experiment yielded several findings. First, our method
achieved the highest AUC, demonstrating a significant
improvement compared to all the baseline methods. Second,
our proposed method demonstrated a notable performance
improvement of 17.6% compared to APACHE 1V, which isthe
best-performing scoring system in |CU outcome prediction that
isalready used in hospitals. In contrast to our method, APACHE
IV relies on more resource-demanding featuresfor predictions,
including laboratory test results (which can be time-consuming
to obtain) and intensivists' assessments (which may not always
be available). Our approach exhibited better performancewhile
using fewer resources when compared to the best severity
scoring system. Third, compared to the best-performing
traditional machine learning model with feature engineering
[19] (AUC=0.775), our method improved the AUC by 13.81%.
The significant performance improvement achieved indicates
theinadequacy of traditional statistical-based feature engineering

https://ai.jmir.org/2025/1/€72671

methods in processing complex ICU vital sign time series and
predicting ICU outcomes. Our proposed signal processing
techniques, guided by medical knowledge, proved to be highly
effective in extracting features and greatly benefited ICU
outcome prediction. Fourth, despite the dominance of deep
learning models in the field of data science and machine
learning, al the deep learning—based baseline methods were
significantly outperformed by our proposed method. A possible
reason is our explicit extraction of valuable information from
the patients hedth digital traces, which facilitated the
classifiers' identification of the relationship between the input
space (ie, patients' health digital traces) and the prediction
outcome (ie, ICU mortality), thus improving overall
performance.

Another primary objective of this study wasto introduce anew
method for the effective extraction of patternsfrom the complex
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time series of vital signs in patients health digital traces.
Therefore, we further compared the performance of different
feature sets. The experiment yielded the following findings.
First, the feature set we proposed included statistical features
and signal processing features. We examined their effectiveness.
We excluded statistical features and signal processing features
and reconducted the evaluation. Using only signal processing
features versus only statistical features, the predictive model
reached AUCs of 0.828 and 0.749, respectively. The results
indicate that both signal processing and statistical techniques
can extract informative features and these extracted features are
either more predictive than or comparable to the APACHE 1V
(AUC=0.750) features for ICU mortality prediction. Second,
the obtained AUC scores of signal processing features
(AUC=0.828) were higher than those of statistical features
(AUC=0.749), validating the necessity of using signal processing
techniques for decomposing the complex time series of health
digital trace data and the necessity of the proposed medical
knowledge—guided feature extraction methods. Third, to
examine whether the proposed method can add valueto existing
systemssuch asAPACHE 1V, we merged the features generated
by our method with other features available in the APACHE
IV system. These features include patient demographics and
other attributes available at ICU admission, which can have
great value for ICU mortality prediction. We intentionally
excluded variablesthat demand laboratory resources (eg, arterial
blood gas) or assessments by intensivists (eg, GCS) to maintain
resource efficiency in our prediction model. The new feature

Wang et al

set attained an AUC of 0.886, demonstrating that the features
generated using our method can be effectively incorporated into
other ICU mortality prediction models. The subseguent model
isexpected to display enhanced predictive capability and reduce
the demand for time-consuming or resource-intensive human
evaluations.

To investigate the contributions of different vital signs and
signal processing techniques toward predicting |CU outcomes,
we aggregated the feature importance for each group. As shown
in Table 3, heart rate, respiration, and SaO, exhibited the highest
contribution compared to other vital signs in the mortality
prediction task. These 3 vital signsare not difficult or expensive
to measure in elCUs. In the elCU Collaborative Research
Database, heart rate, respiration, and SaO, were constantly
measured for >90% of patients. Furthermore, among all the
proposed signal processing techniques, WT yielded the most
informative features. A possible reason is that WT can reved
patterns from both the time and frequency domains
simultaneously. In addition, autocorrelation provided the least
instructive features. As a signal processing technique,
autocorrelation is conceptually close to time-series forecasting
algorithms such as ARMA and ARIMA. The unsatisfactory
performance of autocorrelation reveal s the fact that time-series
forecasting algorithms can hardly capture sufficient information
for ICU mortality prediction. Thisobservationisal so supported
by our experiment using ARMA and ARIMA coefficients for
prediction (Figure 5).

Figure 5. Summary of the importance of different feature types. The cells in the Statistics column contain the sum of feature importance across al
statistical features for the corresponding vital sign, including SD, variance, mean, median, quantiles, min, max, and the first and last signal of the vital
sign. AC: autocorrelation; FFT: fast Fourier transform; PSD: power spectral density; SaO2: arterial oxygen saturation; ST1: estimated ST segment level
1 of the electrocardiogram (ECG); ST2: estimated ST segment level 2 of the ECG; ST3: estimated ST segment level 3 of the ECG; WT: wavelet

transform.

Frequency domain Time domain

AC FFT PSD \\ T Statistics SUM
Heart rate 0.021 0.143 0.271 0.532 0.220
Respiration  [0.126 0.201 0.354 0.530 0.125
Sao2 0.039 0.147 0.112 0.503 0.278
Stl 0.131 0.138 0.101 0.120 0.051 0.541
St2 0.056 0.150 0.072 0.131 0.004 0.412
St3 0.080 0.065 0.090 0.152 0.001 0.387
SUM 0.453 0.844 0.999 !.6?9

Postanalysis. Assessing Predictive Features of ICU
Mortality

One of the objectives of thiswork was to extract representative
features from the complex time series of vital signs in ICU
patients health digital traces, which is accomplished by
leveraging medica domain knowledge and using signal
processing techniques to decompose the time-series data,
enhance relevant signal's, and minimi ze noise within the complex
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time series. In this section, we report on the postanalyses
conducted to examine why our proposed method achieved better
performance compared to other existing methods.

We first selected and compared 2 patients from our dataset as
an illustrative example to demonstrate the feasibility of signal
processing techniques and our proposed feature extraction
methods in ICU outcome prediction (Table 5). According to
medical knowledge, the worst vital sign values and fluctuating
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vital signsall have direct relations with adverse ICU outcomes
[12,37]. The health digital traces fluctuating patterns of the 2
patients were distinct, and it was not intuitive to predict their
I CU outcome based on their health digital traces (Table 5, Health
digital traces—time series of vital signs). The SaO, of patient

1 dropped to 58% (the lowest value) and fluctuated at the

https://ai.jmir.org/2025/1/€72671
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beginning of her ICU stay. Her SaO,, stabilized at approximately
840 minutes and stayed at 100%. The lowest SaO, vaue of

patient 2 (80%) was better than that of patient 1. However, her
Sa0, did not stabilize during her 24-hour stay in the ICU asiit
continued to fluctuate.
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Tableb5. Illustrative example demonstrating the feasibility of the proposed feature sets.

Patient 1 (outcome: aive) Patient 2 (outcome: deceased)

Health digital traces—time series of vital signs TR 'I:‘"‘llr'i h

100

sao2

0 200 400 600 800 1000 1200 1400
Time after admission (minutes)

Time-series decomposition using signal processing tech- 100

nigques (using wavelet transform as an example) © MM|

sao2

0 200 400 €00 €00 1000 1200 1400
Time after admission (minutes)

Showsdistinct differencesbetweenthestar  ghoysunstable Sa0, during the entire |CUP

ble and unstable time series of Sa0,°. stay. Unstable vital signshave adirect rela-
tion with adverse ICU outcomes.

Example from the proposed feature set

sa02_sudden-drop_value_1° 58% (less sudden changes) 82% (more sudden changes)

sa02_wt_morl_length5_power-i n-band_ld (power-in- 13,378.21335 8985.535909
band feature; band_1: low-frequency band. A higher
value of thisfeatureindicates that the smooth part [ie,
no fluctuation, indicating favorable health condition]
of thevital signislonger and the value of the smooth
part of thevital signishigher [ie, high SaO,, indicating

afavorable health condition])
stat sa02 lagt® 100 (thelast value at the time of prediction 85 (the last value at the time of prediction
-7 iswithin the normal range) is NOT within the normal range)

Other features There are many other features not included There are many other features not included

in thistable as cases. in this table as cases.
Example from the APACHE' IV feature set

Age(y) 79 83

Gender Female Female

Has active treatment Yes Yes

Has diabetes (diabetesisachronic condition that may  Yes No

lead to adverse |CU outcomes)

GCSY score (depends on expert assessments; the 6 15

higher the better)

Other features There are many other features not included There are many other features not included
in this table as cases. in this table as cases.

Example from the statistical feature set

stat_sao2_mi " (theworst [minimum] value of thevital 58 82

sign; the higher the SaO, the better)

stat_sao2_std' (the fluctuation [SD] of thevital sign;  6:05375 3.20926

the lower the better)

Other features There are many other features not included There are many other features not included
in thistable as cases. in this table as cases.
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Patient 1 (outcome: alive)

Patient 2 (outcome: deceased)

Death probability at 24 h

APACHE IV
wrong)

Our method 31.8%

86.4% (ICU mortality predictionresultwas 8.3%

59.8% (ICU mortality prediction result was
correct)

8340,: arterial oxygen saturation.
BICU: intensive care unit.

Csa02_sudden-drop_value_1: vital sign signal: Sa0,; feature extraction: extreme values within moving windows (sudden drops with an SD of 1).

ds%aoZ_wt_morI_IengthS »_power-in-band_1: vital sign signal: SaOy; signal processing: wavelet transform using Morlet wavelets. Feature extraction:

power in band (segment length of 5 and band_1).

Cstat_sao2_last: vital sign signal: Sa0,. Signal processing: statistical feature (the last value of the vital sign).

fAPACHE: Acute Physiology and Chronic Health Evaluation.
9GCS: Glasgow Coma Scale.

hstat_&aoz_mi n: the worst value of the vital sign.
istat_%oZ_std: the amount of variation in Sa0,.

Theillustrative example reveal s several important observations
related to predictive features of |CU outcome predictions. First,
APACHE IV only included thevital signs’ worst measurements
in the first 24 hours of ICU stay. For patient 1, it ignored the
important healthy signal that the second half of the SaO,
conveys, which caused APACHE 1V to make awrong inference
(86.4% death probahility, but patient 1 was alive at the time of
discharge). In addition, APACHE IV did not capture the vital
sign fluctuation of patient 2 and made awrong prediction (8.3%
death probability, but she died later). Moreover, the GCS score
is a variable depending on expert evaluation in APACHE 1V
(the higher the better; 3 being the worst and 15 being the best).
Patient 1's GCS score was lower than that of patient 2, but
patient 1 survived, demonstrating that such a predictor is not
always indicative of ICU outcomes. Second, in extant studies,
researchers consider simple statistical features of vital signs
(Table 5, Example from the statistical feature set). The
stat_sao2_min variable indicates the worst value of the vital
sign. The stat sao2 std variable indicates the amount of
variation in Sa0,, which represents the fluctuation in Sa0,.
Both values suggest that patient 2 had a higher likelihood of
survival. However, the actual ICU outcome differed from the
prediction, showing that existing statistical features are
inadequate in capturing complex patterns from ICU patients
digital traces. Third, the proposed framework can effectively
identify meaningful patterns in ICU patients' health digital
traces and lead to better ICU outcome predictions (Table 5,
Example from the proposed feature set). The signal processing
result of patient 1's SaO, showsthedistinct differences between

the stable and unstable time series (Table 5, Signal processing

https://ai.jmir.org/2025/1/€72671

decomposition results). The proposed feature extraction
methods, such as sao2 sudden-drop value 1  and
sao2 wt_morl_length5 power-in-band 1, can properly capture
the vital sign’s stability information and result in correct
prediction of patient outcomes. Overal, the example
demonstrates the insufficiency of existing approaches and the
motivation to identify more accurate indicators for predicting
ICU outcomes. In the meantime, the proposed framework can
catch patterns in the time series of vital signs that are difficult
to detect using other methods, such as APACHE IV and
statistical features. Our method can offer valid feature sets for
the prediction of ICU outcomes.

Furthermore, patients from different cohorts exhibited distinct
disease progressions. To evaluate the efficacy of the proposed
features in representing ICU patients from heterogeneous
cohorts, we visualized the proposed feature set and compared
the resulting visualizations to those of the APACHE IV feature
set. As shown in Figure 6, the proposed feature set can
effectively distinguish patientswith different comorbidities and
patients with different ICU admission diagnoses (Figures 6A
and 5C). In contrast, APACHE |V features were not able to
discriminate between patients from different cohorts (Figures
6B and 5D). According to medical literature, different patient
cohorts typically experience varying disease progression and
outcomes [7]. Therefore, our method, which has strong
capabilities to extract patterns and represent |CU patients from
heterogeneous cohorts, can facilitate ICU outcome prediction
(as we demonstrate in the ICU Mortality Prediction Results
section).
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Figure 6. Feature representativeness for heterogeneous intensive care unit (ICU) patient cohorts. APACHE: Acute Physiology and Chronic Health

Evaluation; t-SNE: t-distributed stochastic neighbor embedding.
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® Lymphoma

Cirrhosis or hepatic
failure

® Immunosuppression|

Postanalysis. The Impact of Limited Patient Data on
Deep Learning M odel Performance

Deep learning model s exhibit superior performance dueto their
reliance on substantial computing power, advanced algorithmic
capabilities, and extensive training data, enabling themtoyield
highly promising results across diverse domains. Nonetheless,
patient data in health care predictive analysis, including ICU
outcome prediction, are highly specific. ICU patients comefrom
various diagnostic cohorts, have unique demographics and
disease progressions, and may receive different levels of medical
intervention. The integration of patient data must be executed
with great care, making it impractical to acquire sufficient
training data for complex deep learning models.

The benchmark methods used were the best-performing methods
within each category, as outlined in Table 4.

In our experimental evaluation, we choseto focus on the 3 most
prevalent patient cohorts (ICU admission diagnoses) within the
€l CU Caollaborative Research Database. The number of patients
per cohort had already reached the upper limit in this database

https://ai.jmir.org/2025/1/€72671

RenderX

(5282/17,025, 31.02% for HF; 7308/17,025, 42.93% for
pulmonary sepsis; and 4435/17,025, 26.05% for renal sepsis),
with other patient cohorts containing fewer patients. To our
knowledge, the elCU Collaborative Research Database is
already one of the largest publicly available ICU databases. In
contrast, in other problem domains, such as natural language
processing or image processing, the training data for deep
learning models typically extend into the millions or even
billions. In the aforementioned 3 patient cohorts, when using
the compl ete dataset, deep |earning models did not outperform
our approach. To explorethelimitations and boundariesfurther,
we systematically reduced the original dataset (to 90%, 80%,
70%, 60%, 50%, 40%, and 30%) to observe the performance
variations of our proposed method and the benchmark methods,
asillustrated in Figure 7 [12,19,21,23]. Theresults showed that
(1) our proposed method consistently outperformed all
benchmark methods, (2) traditional machine learning approaches
with feature engineering and scoring systems also demonstrated
better performance compared to deep |earning methods, and (3)
deep learning methods failed to converge when 30% of the
original datawere available.
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Figure7. Evaluation of the proposed method and baseline methods. APACHE: Acute Physiology and Chronic Health Evaluation; ARMA: autoregressive
moving average; AUC: area under the curve; CNN: convolutional neural network; SV C: support vector classification.
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M oreover, we conducted tests on our proposed method and the
benchmark methods using 3 small patient cohorts (in terms of
ICU admission diagnosis). It was noted that obtaining
satisfactory performance results using deep learning methods
posed achallengefor these smaller patient cohorts. Neverthel ess,

https://ai.jmir.org/2025/1/€72671

RenderX

our approach (as well as other traditiona machine learning
methods with feature extraction) exhibited stable performance
over various patient cohorts (Table 6). The model parameters
arelisted in Table S3 in Multimedia Appendix 2.
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Table 6. Evaluation of the proposed method and baseline methods—3 small patient cohorts.

Category and method ICU? admission diagnosis, AUCP
Atelectasis (36 deceased vs 309  Pneumothorax (14 deceased vs ~ Cardiomyopathy (29 deceased vs
aive) 295 alive) 539 dive)

Severity scoring system

APACHE® IV [12] 0.642 0.774 0.812
Traditional machine learning model with feature engineering

Decision tree [18] 0.951 0.824 0.923

Random forest [19] 0.889 0.852 0.944

Logistic regression [21] 0.851 0.764 0.891

Gradient boosting [20] 0.932 0.831 0.832
Deep learning model with raw clinical data

GRUY[36] 0.602 0.889 0.694

CNNE model 1[23] 0.671 0.842 0.584

CNN model 2 [22] 0.620 0.561 0.589

LSTM' [24] 0.641 0.532 0.621
Time-series forecasting model

ARMASY coefficients [25] 0.502 0510 0521

ARIMAN coefficients [25] 0.501 0.521 0.501
Our proposed method

v-sva 0.978 0.989 0.981

8 CU: intensive care unit.

BAUC: area under the curve.

CAPACHE: Acute Physiology and Chronic Health Evaluation.
dGRU: gated recurring unit.

€CNN: convolutional neural network.

fLsT™: long short-term memory.

9ARMA: autoregressive moving average.

PARIMA: autoregressive integrated moving average.

isve: support vector classification.

The aforementioned 2 experimentsillustrate that, in health care
predictive analysis, particularly in ICU outcome prediction,
when acquiring alarge amount of training datais not feasible,
the limitations of deep learning models become evident. In
contrast, our proposed research design, which involves medical
knowledge—driven feature extraction coupled with machine
learning, holds significant potential owing to its efficiency.

Discussion

Principal Findings

ICU patients’ health digital traces contain complex time-series
data and patterns. It is essential to find representative features
to devel op predictive modelsfor better ICU outcome predictions.
Guided by signal processing techniques and medical domain
knowledge, we propose a novel method to repurpose and
effectively extract features with strong predictive power from
patients' health digital traces for ICU mortality prediction. We
systematically eval uated the proposed method using areal-world

https://ai.jmir.org/2025/1/€72671

multicenter ICU database from the perspective of feature
effectiveness and prediction accuracy. The proposed method
efficiently extracted representative features from heterogeneous
patient cohorts. The|CU outcome prediction results significantly
outperformed those of state-of-the-art benchmarks.

Our contribution lies in incorporating medical knowledge to
guide the selection of the most suitable signal processing
techniques and feature extraction methods for predicting ICU
outcomes. Our approach presents generalizable design principles
for research scenarioswith limited training data, demonstrating
how integrating domain knowledge into signal processing and
predictive model design enhances performance. Our work has
important implications for health care operation management.
We contribute to the emerging field of using digital tracesfrom
information systems to address challenges with significant
implications for health care [1]. Specifically, we present a new
feature extraction method that uses patients’ digital traces
retrieved from health IT systems to predict ICU mortality
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accurately. Practically, accurate prediction of ICU outcomesis
important. It indicates when patients may require heightened
attention, care, and interventions, therefore, all essential
resources, including personnel, equipment, and medications,
are readily available to ensure the provision of comprehensive
support for the patient.

While the results are encouraging, the proposed method is not
without limitations. First, more vital sign data (eg, the central
venous pressure and pulmonary artery pressure) were not
included due to the high missing rate. The predicting power of
these vital sign data can be evaluated in the future. Next, our
method could be enhanced by devel oping amore comprehensive
model that incorporates individual patient characteristics such
as medical history and genetic information. By doing so, our
method holdsthe potential to evolveinto ageneralized mortality
prediction model tailored to each patient’s unique profile.
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Conclusions

To conclude, asthe Fourth Industrial Revolution evolves, digital
tools create an influx of data. In health care, this trend has
transformed | CUs by enabling the collection of real-time patient
health data, leading to critical advances in ICU outcome
predictions—a task with high stakes due to patients' rapid
disease progression and high mortality rates. The availability
of digital health data provides new opportunitiesto refine these
prediction models. This study created a new feature extraction
method that aims to enhance the accuracy of ICU outcome
predictions by repurposing digital trace datafrom |CU patients.
The resulting method outperformed existing ICU outcome
prediction models. Our study has important implications for
health care operation management by using digital traces from
health careinformation systemsto solve problemswith soci etal
implications and leveraging specific domain knowledgeto create
innovative and impactful artifacts. Practically, the proposed
method efficiently extracted representative features, facilitating
ICU outcome prediction.
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