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Abstract

Background: Intensive care units (ICUs) treat patients with life-threatening illnesses. Worldwide, intensive care demand is
massive. Predicting patient outcomes in ICUs holds significant importance for health care operation management. Nevertheless,
it remains a challenging problem that researchers and health care practitioners have yet to overcome. While the newly emerging
health digital trace data offer new possibilities, such data contain complex time series and patterns. Although researchers have
devised severity score systems, traditional machine learning models with feature engineering, and deep learning models that use
raw clinical data to predict ICU outcomes, existing methods have limitations.

Objective: This study aimed to develop a novel feature extraction and machine learning framework to repurpose and extract
features with strong predictive power from patients’ health digital traces for ICU outcome prediction.

Methods: Guided by signal processing techniques and medical domain knowledge, the proposed framework introduces a novel,
signal processing–based feature engineering method to extract highly predictive features from ICU digital trace data. We rigorously
evaluated this method on a real-world ICU dataset, demonstrating significant improvements over both traditional and deep learning
baseline methods. The method was then evaluated using a real-world database to assess prediction accuracy and feature
representativeness.

Results: The prediction results obtained by the proposed framework significantly outperformed state-of-the-art benchmarks.
This demonstrated the framework’s effectiveness in capturing key patterns from complex health digital traces for improving ICU
outcome prediction.

Conclusions: Our study contributes to health care operation management by leveraging digital traces from health care information
systems to address challenges with significant implications for health care.

(JMIR AI 2025;4:e72671) doi: 10.2196/72671
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Introduction

Background
As the Fourth Industrial Revolution unfolds, health care
organizations worldwide are implementing an increasing number
of digital artifacts capable of producing or collecting data to
modernize services, scale business, and improve the efficiency
of information exchange. These digital artifacts generate and
record vast quantities of data regarding the conditions and
outcomes of patients, enabling the digital tracing of these
individuals [1]. These digital traces offer a rich collection of
novel and valuable sociotechnical empirical data. This
abundance of new information can greatly enhance
decision-making processes in health care applications. As part
of this tendency, the implementation of electronic intensive care
unit (eICU) technology over the last decade has allowed large
amounts of intensive care unit (ICU) patients’ vital sign data
(ie, a group of medical signs that indicate the status of the body’s
life-sustaining functions, such as blood pressure, heart rate, and
respiratory rate) to be collected and streamed [2]. These
real-time time-series data, originally used to monitor patients’
real-time conditions, coupled with other patient information
recorded in health IT systems (eg, demographics), constitute
ICU patients’ health digital traces.

ICUs are hospital departments dedicated to providing critical
care medicine to patients who are at risk of, currently
experiencing, or recovering from life-threatening illnesses or
injuries. ICU patients are extremely vulnerable to adverse
outcomes due to their rapid disease progression and have the
highest mortality rate of all patients across different health care
departments [3]. Worldwide, intensive care demand is massive.
Researchers and health care practitioners have long recognized
the significance of ICU outcome prediction, which is generally
defined as predicting patient outcomes resulting from medical
treatment in the ICU, including but not limited to patient
mortality, length of stay, readmission, morbidity, disability, and
quality of life [4]. It has significant implications on health care
operation management, such as laying the scientific foundation
for assessing the severity of illness, providing a standard for
adjudicating new treatments and policies, providing a way for
comparing cohorts of ICU patients treated across different
hospitals and countries, allocating resources and determining
levels of care, and discussing expected outcomes with ICU
patients and families [5,6].

However, predicting ICU outcomes is a complex problem that
practitioners and researchers have yet to overcome. ICU patients
have diverse and dynamic characteristics; they come from
various diagnosis cohorts, have unique demographics and
disease progressions, and may receive different levels of medical
interventions [7,8]. Effectively identifying patterns and
predicting patients’ ICU outcomes poses great challenges in
health care analytics. The emergence of eICUs during the Fourth
Industrial Revolution, along with the availability of patients’
digital health data from eICUs, has created new opportunities
for developing more sophisticated methods for predicting ICU
outcomes. Researchers have demonstrated that, in addition to
being used for monitoring purposes, ICU patients’health digital

traces contain rich dynamic patterns that can be repurposed to
inform prognosis, provide early forecasts of life-threatening
conditions, and predict patient outcomes [9]. Many researchers
who work on ICU outcome predictions have explored the value
of patients’ health digital traces by incorporating real-time vital
sign data as the input of traditional machine learning models
with feature engineering or deep learning models using raw
clinical data. However, both types of methods have limitations.
This is because ICU patients’ health digital traces include
complex time-series data and patterns [8]. Current feature
engineering–based traditional machine learning models rely
largely on simple summary statistics of vital signs and are
incapable of capturing heterogeneous and dynamic patterns
from patients’ health digital traces, resulting in unsatisfying
performance. On the other hand, deep learning models rely
heavily on computational power and large amounts of training
data, which are normally not available for health care predictive
tasks [10]. This is because the integration of patient data for a
prediction task in health care analytics must be executed with
great care (eg, considering different patient cohorts and different
periods), making it impractical to acquire a sufficient amount
of training data for complex deep learning models. Researchers
and practitioners urge the next generation of ICU outcome
prediction models to be more accurate (predict with better
performance), autonomous (execute without time-consuming
or manual data entry), and dynamic (capture temporal changes
in physiological signals and clinical events) [4,11]. Using
mortality prediction as a research case, the objective of this
study was to develop a new method that aims to extract
meaningful patterns from readily available health digital traces
to facilitate accurate ICU outcome predictions.

To achieve this goal, we repurposed and used ICU patients’
health digital trace data from the eICU systems as input. To
effectively extract patterns from the complex time series of vital
signs in patients’ health digital traces, we then used signal
processing techniques to decompose the time-series data,
enhance useful signals, and reduce noise in complex time series.
Next, guided by medical domain knowledge and feature
selection techniques, we identified the most representative
features from the decomposed health digital trace data for ICU
mortality prediction. Finally, using a state-of-the-art machine
learning technique, the proposed framework accurately predicted
the mortality rate for ICU patients. To demonstrate the
effectiveness of the proposed framework, we evaluated it on a
large real-world ICU database. The proposed method
outperformed strong baseline methods, including the Acute
Physiology and Chronic Health Evaluation (APACHE) IV model
(ie, the best-performing scoring system in ICU outcome
prediction that is already used in hospitals), time-series
forecasting methods (ie, autoregressive moving average
[ARMA] and autoregressive integrated moving average
[ARIMA]), other traditional machine learning models with
statistical features, and deep learning models (ie, convolutional
neural networks [CNNs], long short-term memory [LSTM],
and gated recurrent unit [GRU]), by a large margin.

Our main contributions are as follows: (1) we propose a new
feature engineering framework that leverages stochastic signal
processing and medical domain knowledge to extract predictive
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features from ICU digital traces; (2) we designed a structured
feature selection process to enhance model interpretability and
prediction accuracy; (3) through extensive experiments, we
demonstrated that our method significantly outperforms
traditional statistical and deep learning models on ICU mortality
prediction tasks; and (4) we showed that the features extracted
by our framework generalize across patient cohorts and can be
integrated into existing clinical decision systems. Moreover,
our work has practical implications for ICU outcome prediction
and health care operation management: (1) it requires only
readily available digital health trace data from ICU bedside
monitors rather than laboratory results and intensivists’
assessments, (2) it significantly improves the performance of
ICU mortality predictions, and (3) the extracted features can
effectively represent heterogeneous ICU patient cohorts.

Related Work

ICU Outcome Prediction and Limitations of Extant
Studies
The existing methods for predicting ICU outcomes can be
classified into 3 main types (Table 1): severity scoring systems,
traditional machine learning models with feature engineering,

and deep learning models with raw clinical data. For severity
scoring systems, the most reputable ones (including major
revisions of these models) are the APACHE [12], Simplified
Acute Physiology Score [13], and Mortality Probability Model
[14]. Among the existing severity scoring systems, APACHE
IV demonstrates the highest performance in terms of area under
the curve (AUC) [15]. Despite their widespread use, the
reliability of the severity scoring systems, including APACHE
IV, has been questioned by practitioners [4]. More importantly,
there are ongoing concerns about the prolonged waiting time
of laboratory data collection and the assessments needed from
subject matter experts for calculating the severity scores [11].
For instance, APACHE IV requires 24 hours to gather all the
necessary information for prediction. The predicting variables
include laboratory test results and Glasgow Coma Scale (GCS)
measures—the laboratory test results can take hours to days to
obtain depending on the complexity of the tests [16], the GCS
scores necessitate expert medical evaluation, and their
reproducibility has raised concerns among researchers [11].
Researchers argue that the next generation of ICU mortality
predictive models should use an automated electronic system
for data gathering and prediction generating [4,11].
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Table 1. Summary of intensive care unit (ICU) mortality prediction models from the literature.

Research gapsRequired resourcesCategory and representative
method

Readily available health digital tracesLimited resources

Vital signsPre-ICU conditionsIntensivist

assessmenta
Laboratory test
results

Low accuracy; requires expert assessments
and laboratory test results; unable to con-
duct real-time forecasting

Severity scoring systemb

Statistics featuresNoYesYesSAPSc III

Statistics featuresYesYesYesAPACHEd IV

Statistics featuresYesYesNoMPMe III

Lack of effective means to extract mean-
ingful patterns from complex time series

Traditional machine learning model with feature engineeringf

Statistics featuresNoYesYesDTg, SVMh, NNi, and LRj

Statistics featuresNoNoYesD-TSK-FCk

Statistics featuresNoYesYesRFl, LR, NN, and SVM

Statistics featuresNoYesYesRF, GBm, and LR

Statistics featuresNoYesYesSVM, GB, XGBoostn, and
LR

Relies on computational power and large
amounts of training data

Deep learning model with raw clinical datao

Time seriesNoYesYesCNNp model 1

Time seriesNoNoNoCNN model 2

Time seriesYesYesNoLSTMq

aGlasgow Coma Scale.
bZimmerman et al [12], Moreno et al [13], and Higgins et al [14].
cSAPS: Simplified Acute Physiology Score.
dAPACHE: Acute Physiology and Chronic Health Evaluation.
eMPM: Mortality Probability Model.
fDavoodi and Moradi [17], Kim et al [18], Hsieh et al [19], Kong et al [20], and Zhai et al [21].
gDT: decision tree.
hSVM: support vector machine.
iNN: neural network.
jLR: logistic regression.
kD-TSK-FC: deep Takagi-Sugeno-Kang fuzzy classifier.
lRF: random forest.
mGB: gradient boosting.
nXGBoost: extreme gradient boosting.
oCaicedo-Torres and Gutierrez [22], Kim et al [23], and Thorsen-Meyer et al [24].
pCNN: convolutional neural network.
qLSTM: long short-term memory.

With the emergence of health digital trace data, researchers
have recognized the potential of such data in enhancing ICU
outcome prediction [9]. This is because these data reveal
patients’ pathological conditions and their response to
treatments, making them valuable for improving prediction
performance. Traditional machine learning models have been
adopted for ICU outcome predictions using patients’ digital

trace data, which have included demographic information and
summary statistics of vital measurements (Table 1). Despite
researchers continuously introducing various prediction models,
the features extracted from the health digital traces remain
relatively simple—basic statistics of vital sign time series, such
as the minimum and maximum respiration rates or blood
pressure. However, there is increasing evidence suggesting that
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superior accuracy in ICU outcome prediction requires more
effective feature extraction methods [4]. The complexity of
patient cohorts’ heterogeneity and the complexity of the time
series of health digital traces pose significant challenges in
extracting meaningful dynamic patterns and uncovering the
relationships among these patterns.

Deep learning models with strong pattern recognition
capabilities are also used in ICU outcome prediction. CNNs,
which can summarize patterns from patients’ health digital
traces, have been implemented first [22,23]. Researchers also
input patients’ vital sign data into recurrent neural networks
(RNNs) to infer ICU outcomes, which takes advantage of the
temporal information of vital signs [24]. However, these models
take the entire time series of vital signs as input, and their
performance greatly depends on computer power and massive
amounts of training data, which is challenging in health care
practice [10]. In health care predictive analyses, the integration
of patient data must be executed with great care, making it
impractical to acquire sufficient training data for complex deep
learning models. The integration of health care data from
different patient cohorts (eg, various diseases, distinct ICU
admission types, different races, and diverse age groups) must
be undertaken with meticulous care. For example, patients with
different genetic backgrounds (ethnicities) are sometimes
susceptible to certain diseases; patient cohorts comprising
geriatric, neonatal, and general patients show notable variations
in disease risks and prognosis. These differences significantly
influence health care prediction results. In ICU outcome
prediction, it is often necessary to separate the different patient
cohorts instead of integrating their data. There is also an inherent
temporal aspect to patient data, and it is not appropriate to
integrate patient data from vastly different periods. Societal
development changes patients’ physical fitness, underlying
health conditions, and health care providers’ treatments, leading
to significant variations in patient data distribution. Overall,
acquiring sufficient training data for complex deep learning
models is usually impractical for health care predictive analytics.
Consequently, the performance of complex deep learning models
is constrained by the limitations of available training data
(experiments are provided in Postanalysis: The Impact of
Limited Patient Data on Deep Learning Model Performance
section).

As ICU patients’ health digital traces contain complex
time-series data, statistical forecasting models such as ARMA
and ARIMA may also be used to analyze the time-series data.
However, these time-series models are developed to predict the
value of the time series at the next time step and are not created
for prediction or classification tasks or probability estimations.
To make predictions using time-series data, researchers regard
the coefficients of the time-series models as input features and
train machine learning classifiers [25]. Nevertheless, these
methods are not ideal for the time series of patients’ health
digital traces from ICUs. The order of a time-series model has
to be determined by the statistical characteristics of a specific
time series (eg, one time series of vital signs from a specific
patient). Researchers usually treat model orders as
hyperparameters and determine them through experiments and
the Akaike information criterion; a fixed order of time-series

models is required for all patients to ensure that the input
features have the same dimension for the classification task,
which limits the predictive power of the time-series forecasting
models in ICU outcome prediction.

ICU Patients’ Health Digital Traces and Stochastic
Signal Analysis Techniques
The health digital traces of ICU patients have been originally
used for monitoring and assessing patients’ immediate
well-being. A growing body of literature has shown that many
shared dynamic patterns can be identified across heterogeneous
patient cohorts that may be repurposed to evaluate illness
severity, identify future clinical abnormalities, predict adverse
events, or distinguish heterogeneous patient cohorts [9].
However, identifying and extracting meaningful features from
health digital traces remains a challenging task given that the
range of a digital trace varies with a patient’s age, gender,
weight, environment, medical condition and intervention, and
many other factors [9]. As a result, the health digital traces
contain complex time series and exhibit diverse and dynamic
patterns. As we later demonstrate (refer to the Results section),
extant feature extraction and ICU outcome prediction methods
are inadequate.

Stochastic signal processing, a field of science concerned with
processing and analyzing time-series data, is a well-suited tool
to extract complicated patterns of time-series digital traces.
Stochastic signal processing techniques are particularly useful
for extracting patterns from time-series signals, which are
normally described as aperiodic, noisy, intermittent, and
transient [26]. They differ from other time-series analysis tools
for 2 reasons. First, they examine the signal in both the time
domain (ie, the time series of patients’ health digital traces) and
the frequency domain (ie, the magnitude of change within each
frequency band of the time series) simultaneously. Therefore,
they have powerful capabilities for enhancing the useful signals
in complex time series and increasing the signal-to-noise ratio,
which facilitates feature extraction from patients’digital traces.
Second, they have computational algorithms that reduce the
computing time and complexity of large transformations, so the
time-series data can be processed almost instantaneously.

Although complex time series in patients’ health digital traces
can be decomposed using signal processing techniques for noise
reduction and signal enhancement, specific domain knowledge
is required to determine how to extract meaningful patterns
from the decomposed representations of health digital traces.
In health care research, medical diagnosis signals, including
signals from electrocardiograms (ECGs),
electroencephalograms, and photoplethysmogram, are analyzed
using signal processing techniques based on researchers’ and
practitioners’ medical knowledge in beat-to-beat heart rate
patterns, electrical activity in the brain, and optical signals in
blood volume changes [26]. These studies show the potential
of adapting stochastic signal processing techniques in health
care analytics research. However, in these existing studies,
signal processing has been used for specific diagnostic purposes,
with an emphasis on explanation rather than prediction. In this
study, we sought to combine medical knowledge regarding the
patterns and variability of ICU patients’ vital signs to extract
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meaningful features for predicting ICU outcomes. To our
knowledge, the complicated time series of vital signs in patients’
digital traces have never been systematically analyzed using
signal processing techniques. Combining medical domain
knowledge, the proposed method provides a novel strategy to
extract predictive features for improved ICU outcome prediction
results.

To summarize, the deficiencies of existing ICU mortality
prediction methods, coupled with the challenges associated with
leveraging patients’ health digital traces contained in complex
time series, motivate us to propose a new method that can be
used to (1) effectively extract representative features from ICU
patients’ digital trace data and (2) accurately predict ICU
mortality using readily available data.

Feature Engineering in ICU Outcome Prediction
In previous ICU prediction literature, feature engineering has
predominantly focused on extracting basic statistical descriptors
from vital signs, such as minimum, maximum, mean, and SD
[18-21]. These summary statistics provide coarse information
about the central tendency and spread of physiological signals
but often overlook dynamic temporal and spectral patterns.

Meanwhile, signal processing techniques such as wavelet
transforms (WTs), spectral analysis, and autocorrelation have
been explored in predictive modeling for specific signals (eg,
most notably from ECGs) for tasks such as arrhythmia
classification, early warning score prediction, and ICU mortality
estimation [26-29]. However, these studies generally target a
narrow range of signals and transformations. Our work expanded
on this by applying a broader set of signal decomposition
methods (fast Fourier transform [FFT], power spectral density
[PSD], autocorrelation, and WT) across multiple ICU vital signs
(eg, arterial oxygen saturation [SaO2], heart rate, and respiration)
and by combining the results with clinical insights to guide
feature design. Moreover, we introduced new composite
features, such as power in band and relative extrema, that more
precisely quantify signal variability and instability, both of
which are clinically meaningful. This approach results in a

diverse and interpretable feature set that enhances the model’s
ability to predict ICU outcomes across heterogeneous patient
cohorts.

To ensure that these engineered features are clinically relevant,
we grounded our signal processing techniques in established
medical knowledge. First, for heart rate variability, we computed
power within the low-frequency and high-frequency bands using
PSD analysis. These frequency bands are associated with
sympathetic and parasympathetic nervous system activities,
respectively, and are critical in assessing autonomic function
in patients who are critically ill [30]. Second, given the
nonstationary nature of physiological signals such as ECG and
respiratory patterns, we used WT to capture transient features
and localized frequency components. This approach facilitates
the detection of clinically significant events such as arrhythmias
and respiratory irregularities. Notably, unstable respiration can
lead to respiratory muscle fatigue, cardiovascular collapse, and
impaired oxygen delivery [31]. Third, features such as relative
extrema were designed to identify sudden changes in vital signs,
such as abrupt drops in peripheral oxygen saturation or spikes
in heart rate, which may indicate acute clinical events. Similarly,
power-in-band features help in quantifying the energy within
specific frequency bands associated with pathological conditions
[32]. Fourth, by aligning our signal processing techniques with
established medical knowledge, we aimed to extract features
that are not only statistically robust but also clinically
interpretable, thereby enhancing the utility of our predictive
models in real-world ICU settings.

Methods

We propose a novel method to effectively extract features with
strong predictive power from the complex time series of health
digital traces for ICU mortality prediction. As shown in Figure
1, the proposed model includes three steps: (1) time series of
digital trace decomposition guided by signal processing
techniques, (2) feature extraction guided by medical domain
knowledge, and (3) ICU mortality prediction using ν–support
vector classification (SVC).
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Figure 1. The proposed intensive care unit (ICU) mortality prediction framework. AC: autocorrelation; FFT: fast Fourier transform; PSD: power
spectral density; SaO2: arterial oxygen saturation; ST1: estimated ST segment level 1 of the electrocardiogram (ECG); ST2: estimated ST segment level
2 of the ECG; ST3: estimated ST segment level 3 of the ECG; WT: wavelet transform.

Time Series of Health Digital Trace Decomposition
Guided by Signal Processing Techniques

Overview
ICU patients’ health digital traces contain multiple complex
time series; each time series is denoted by vt (t is the time index

and t≤N). To enhance useful signals and reduce noise in vt, in
the first step, guided by signal processing techniques (Table 2),
we decomposed vt using FFT, PSD, autocorrelation, and WT.

Table 2. Signal processing techniques and relations to health digital traces.

Motivation and relation to health digital tracesSignal processing guidelinesaTechnique

To decompose complex health digital traces into several relatively
milder, more regular, and stable subsequences

Using FFT, any time series can be decomposed into a series of
simple sinusoids of different frequencies. The FFT estimates the
coefficients of each sinusoid for a given time series.

FFTb

To analyze the random vibration signals, which are common in
patients’ health digital traces.

The PSD describes the distribution of the power of a time series
over frequency. FFT is great at analyzing vibration when there are
a finite number of dominant frequency components, but PSDs can
be used to characterize random vibration signals.

PSDc

To detect and enhance repeating patterns in patients’ health digital
traces and reduce noise.

AC is the correlation of a time series with the lagged version of
itself over successive time intervals, which is usually used to detect
repeating patterns, such as periodic signals hidden in noisy data.

ACd

To include the information of the frequencies’ time location (time
domain) as the outputs of the aforementioned 3 techniques (FFT,
PSD, and AC) mainly provide information about the frequencies
(frequency domain) in time-series data. Time domain information
reveals patients’ disease or condition progression.

The WT decomposes a time series into a series of wavelets with
different scales at different time points. Thus, the outputs of WT
present both the strength and location of frequencies (ie, patterns
from both the frequency and time domains) in the time series.

WTe

aAddison [26], Bloomfield [27], Woyczynski [28], and Broersen [29].
bFFT: fast Fourier transform.
cPSD: power spectral density.
dAC: autocorrelation.
eWT: wavelet transform.

JMIR AI 2025 | vol. 4 | e72671 | p. 7https://ai.jmir.org/2025/1/e72671
(page number not for citation purposes)

Wang et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The decomposed vt is denoted as F(ω) (ie, frequency spectrum),
where ω is the parameter of the signal processing. Specifically,
ω indicates frequency in FFT and PSD, scale and shift
parameters in WT, and time difference in autocorrelation. For
FFT, PSD, and autocorrelation, the frequency spectrum of a
time series vt is a vector, [F(ω1), F(ω2),..., F(ωt)]; for WT, the
frequency spectrum is a matrix ([F(ω1,1), F(ω1,2),..., F(ω1,t)],
[F(ω2,1), F(ω2,2),..., F(ω2,t)],..., [F(ωs,1), F(ωs,2),..., F(ωs,t)])
where s is the number of rows decided by the scale of the WT.
All frequency spectrums converted from time series of patients’
health digital traces form a space Xn×w (n=number of patients;
w=the number of frequency spectrums). The following
paragraphs introduce the signal processing transfer processes
in our research setting.

FFT Process
The Fourier transformation of a signal reveals periodicity in
time-series data and indicates the frequencies of these periodical
components. The resulting signals after the FFT are frequency

spectrums , where vt is the vital sign and ω is the
frequency at which a complex sinusoid is computed.

PSD Process

The PSD FPSD(ω) is calculated using where r(k)is the
a u t o c o v a r i a n c e  s e q u e n c e  o f  v t a n d

denotes the complex-conjugate transpose of v(t – k). The PSD
characterizes the average power (ie, measure of signal strength)
at a frequency ω in the signal. Specifically, for time-series data,
the PSD uses the signal’s autocorrelations to measure the power.
Compared to FFT, which obtains the amplitudes of a signal’s
frequency components, the PSD of the signal delineates the
power contained within the signal as a function of frequency.

Autocorrelation Process
Autocorrelation measures the correlation between a signal and
its delayed version with lag ω, which can be calculated using

. It reveals the influence of the
previous signal on the following signal in the sequence. When
the signal does not repeat the sequence of values regularly after
a fixed length of time, the autocorrelation coefficients tend to
be small, which indicates the fluctuation of vt. Otherwise, the
autocorrelation coefficients tend to be large, which represents
the stable status of health digital traces.

WT Process
The WT analyzes signals with a dynamic frequency spectrum,
providing a high resolution in both the frequency domain and
the time domain. The WT of the vital sign signal vt is expressed

using , where ω = (a, b) and ψ(·) is the mother
wavelet (ie, a wavelike oscillation). Parameter a defines the
scale (ie, how stretched a wavelet is) of the wavelet, and
parameter b defines the time location (ie, where the wavelet is
positioned in time) of the wavelet. We used 3 types of wavelets

to generate frequency spectrums: Morlet wavelets ( ),

complex Morlet wavelets ( ), and Mexican wavelets

( ). Morlet and complex Morlet wavelets were
included because they are closely related to human perception
of vision. Mexican wavelets were used as they are widely used
as broad-spectrum source terms in WT analysis.

Feature Extraction Guided by Medical Domain
Knowledge

Overview
Although signal processing techniques can enhance useful
signals from ICU patients’ health digital traces that contain
aperiodic, noisy, intermittent, and transient time series, the
results from signal processing, Xn×w, are not ideal to use as input
features of machine learning classifiers for ICU mortality
prediction due to their high dimensionality. For predicting ICU
outcomes, the valuable patterns are still hidden in the vast
amount of information. Therefore, we extracted the most
representative features from Xn×w for ICU outcome prediction
by combining medical knowledge regarding the patterns and
variability of ICU patients’ vital signs (Multimedia Appendix
1). In addition, we took various statistical features from the time
series vt. The extracted features formed a new feature space,
Xn×l (n=number of patients; l=the number of features), where
l<<w We evaluated the relative importance of the extracted
features and selected those with the highest predictive power
for ICU mortality. The selected features, Xn×m (n=number of
patients; m=the number of selected features), were the input of
the proposed ICU mortality prediction model.

Relative Extrema
On the basis of medical knowledge regarding vital signs’
patterns and variabilities (Multimedia Appendix 1), we extracted
the frequency spectrums’ positions and values of the local
maxima and local minima as the ICU mortality predicting
features. Formally, we extracted (1) the value of the frequencies

where the oscillations, , occur; and (2) their corresponding

amplitudes, , as predictive features (see examples in Figure

2). Specifically, the relative extrema, ( , ) is the local

maximum (or local minimum). Namely, 
for all values of ω within a threshold distance ε on the frequency
spectrum, where ε is a small positive value. We extracted 1

relative extrema point ω* within each distance range (–ε, ε). It

should be noted that there are multiple ω* on the entire

frequency spectrum, , where t is the number of

extrema. After we found all relative extrema, F(ω*), satisfying

the requirement, we obtained a vector .
The top n maxima are defined as the largest n values on u
(accordingly, the top n minima are defined as the smallest n
values on u). When there were <n elements in u, we adopted
all available relative extrema (ie, m in total) as features and
included n – m missing values (see parameter selection in Table
S1 in Multimedia Appendix 2).
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Figure 2. An example of relative maxima of the frequency spectrum.

Power in Band
The power-in-band feature is the sum of the total power (see
Multimedia Appendix 1 for more detail) within a frequency
band (ie, frequency range). With a specified center frequency
ωc and bandwidth ωbw, we can derive the low and high bounds,
ωc – ωbw and ωc + ωbw, respectively, of the frequency band. The

power-in-band feature is (Figure 3). The power
in band summarizes the strength of the signal in the frequency
band by computing a single number. The benefits of using
power-in-band features are 2-fold. First, the power-in-band

feature summarizes the contribution of the given frequency band
to the overall strength of the signal, which contains important
information regarding vital signs’ stabilities, which summary
statistics may not be able to capture (see examples in Multimedia
Appendix 1). Second, power in band is a simple yet powerful
dimension reduction method for ICU mortality prediction. In
practice, we computed the summation (ie, a number) over the
different segments of a vector [F(ω1), F(ω2),..., F(ωt)] (ie, the
vector represents the frequency spectrums transformed from a
vital sign; see parameter selection in Table S2 in Multimedia
Appendix 2).

Figure 3. An example of the power-in-band (PIB) feature of the frequency spectrum.

Statistical Features
Summary statistics are also used to outline and provide
information on patients’ health digital traces. For example, the
mean of a signal is an estimate of the center of the entire signal.
The SD and variance measure the spread extent of the signal
from its average value. Taking a patient’s heart rate as a simple
example, a normal adult resting heart rate is between 60 and
100 beats per minute. Hence, the mean of the normal heart rate
should also be within this range, and the SD should be <7.

Abnormal heart rates can be an indicator of a deteriorating health
condition. In this study, we calculated various statistic measures
of ICU patients’ vital signs as features for ICU mortality
prediction (Multimedia Appendix 3).

Extreme Values of Moving Windows
The extreme values of the time series of vital signs over a given
period usually indicate unfavorable health conditions as well.
We propose a new predictive variable to detect the extreme
values on the time-series data. We first created a series of
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moving windows, and each window had k observations. With
the k observations, we calculated the mean and SD (Figure 4).
The observations that were not within 3 SDs of the mean were
treated as extreme values [33]. Intuitively, the observations
above and below the 3 SDs can be considered as a sudden rise
and sudden drop in the vital signs, respectively, both of which
have direct relations with patients’ adverse outcomes [33]. We
then took the topn extrema from the moving windows of vital

signs, denoted as , where x* is the event time and y*

is the value of the extrema. When the vital sign in the moving
window had <n relative extrema (ie, <n data points were above
and below the 3 SDs of the data in a given moving window),
we set all available extreme points (ie, m data points) as features
and included n – m missing values (parameter selection can be
found in Multimedia Appendix 2).

Figure 4. Example of the moving window on the time series of vital signs.

ICU Mortality Prediction Using ν-SVC
We defined the mortality prediction as a probabilistic

classification problem . X denotes the input
space, where

The input space X includes features obtained from the previous
steps. The output space is defined as Y = {1: expired, 0: alive}
(ie, patient ICU discharge status). Our objective was to use a
machine learning classifier to establish a mapping function,
denoted as f(x), that effectively maps the input data X to the
output space Y. This mapping function will generate ICU
mortality prediction results, represented as Pr(Y|X), where Pr
is the probability.

For our purposes, we used ν-SVC [34]. ν-SVC learns a
maximum-margin decision function in kernel space while
regulating model complexity through a single hyperparameter

ν. The value of ν simultaneously (1) sets an upper bound on the
proportion of training points permitted to lie inside or beyond
the margin and (2) sets a lower bound on the proportion of
support vectors that define the classifier. Thus, ν offers a direct,
interpretable handle on the trade-off between training error and
model sparsity without altering the underlying convex quadratic
program. Among the multitude of machine learning prediction
models, we opted for ν-SVC for 3 key reasons. The first is
optimal prediction performance. ν-SVC retains the benefits of
other SVC methods, frequently delivering superior performance
across various applications. In our specific use case—predicting
outcomes in the ICU—prediction performance is of utmost
importance. The second reason is handling outliers effectively.
Given the heterogeneity of ICU patient cohorts, outliers are
common and can significantly impact the prediction results.
ν-SVC adjusts the number of support vectors and the margin
width based on data characteristics, making it more robust
against outliers. The third reason is that it is better equipped to
handle imbalanced datasets. In scenarios in which one class
significantly outnumbers the others—a situation commonly
observed in ICU patient cohorts (Table 3)—ν-SVC is adept at
preventing overfitting and bias toward the majority class.
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Table 3. Dataset description.

Alive patients, mean (range)Deceased patients, mean
(range)

Missing or unknown
(%)

Overalla, mean (range)

83.18 (4.03 to 1987.93)113.61 (4.06 to 5925.70)—c85.82 (4.03 to 5925.70)ICUb stay (h)

67.90 (18 to 90)71.30 (18 to 90)0.0168.20 (18 to 90)Age (y)d

0.01Sex, n (%)

50.0851.83—50.09Male

49.9148.17—49.90Female

5.3Ethnicity, n (%)

11.549.03—11.33African American

1.491.71—1.51Asian

4.243.35—4.16Hispanic

77.4480.51—77.70White

168.027 (101.60 to 218.00)168.25 (118.00 to 200.7)—168.27 (101.60 to
218.00)

Height (cm)e

83.69 (22.70 to 295.10)80.58 (27.21 to 275.00)—83.43 (22.70 to 295.10)Weight (kg)

Health digital traces: vital signs

96.48 (0 to 100)95.56 (0 to 100)0.7396.38 (0 to 100)SaO2
f (%)

87.64 (0 to 300)92.68 (0 to 271)0.0288.22 (0 to 300)Heart rate (bpmg)

21.30 (0 to 200)22.47 (0 to 194)6.0421.44 (0 to 200)Respiration (breaths per min)h

0.95 (−20.70 to –700)1.20 (−17.00 to –470)48.670.98 (−20.70 to –700)ST1i

1.31 (−14.20 to –830)1.90 (−14.15 to –530)47.111.37 (−14.20 to –830)ST2j

1.21 (−18.60 to –1040)1.51 (−24.75 to –840)50.621.24 (−24.75 to –1040)ST3k

aThe data records are from patients whose admission diagnoses were heart failure (HF), pulmonary sepsis, or renal sepsis. There were 17,025 total
admissions (n=5282, 31.02% for HF; n=7308, 42.93% for pulmonary sepsis; and n=4435, 26.05% for renal sepsis). All vital signs used are taken directly
from the electronic intensive care unit Collaborative Research Database Vital Periodic table.
bICU: intensive care unit.
cNot applicable.
dThe variable age in the electronic ICU dataset was set to >89 if the patients were aged >89 years. To calculate the mean, we set the ages of the patients
aged >89 years to 90.
eWhen calculating the demographic statistics, we removed 11 records with irregular height (eg, 772 cm) or irregular weight (eg, 974 kg).
fSaO2: arterial oxygen saturation.
gbpm: beats per minute; the number of times the heart beats per minute.
hThe number of breaths a person takes per minute.
iST1: estimated ST segment level 1 of the electrocardiogram (ECG).
jST2: estimated ST segment level 2 of the ECG.
kST3: estimated ST segment level 3 of the ECG.

We chose ν-SVC over deep learning models for 2 reasons. The
first is constraints on data availability. In health predictive
analysis, access to large volumes of high-quality training data
from health care IT systems is not always guaranteed. However,
supervised deep learning classifiers typically necessitate
substantial amounts of such data for optimal performance. The
second reason is complexity versus simplicity in model
selection. Rudin [35] countered the common assumption that
more complex models necessarily yield more accurate results,
debunking the notion that a complicated “black box” is essential
for optimal predictive performance. This is often a
misconception, particularly with structured data possessing

meaningful features. In such instances, there is frequently no
significant difference in performance between more complex
classifiers (eg, deep neural networks) and simpler ones given
adequate preprocessing. Leveraging the structured and highly
representative features obtained from previous steps, models
with pattern recognition abilities such as CNNs or transformers
are not necessary for our research problem. Furthermore, our
generated features already incorporate the intricate time-series
information, making RNN models, including LSTM and GRU,
inapplicable in our case. Furthermore, other generative models
such as generative adversarial networks or diffusion models are
not suitable for our prediction task.
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While we deemed ν-SVC a suitable classifier for our research
setting, our proposed research design, involving medical
knowledge–driven signal processing for feature extraction
coupled with machine learning, offers distinct advantages in
extracting meaningful input features beyond the confines of
ν-SVC; other machine learning methods can also be used.

To select the most representative features, we used feature
selection techniques (ie, ν-SVC with l1 penalties) before feeding
the entire input feature space, denoted as Xn×l, into the ν-SVC
model. l1 penalties are beneficial for feature selection as they
result in many estimated coefficients being 0, leaving only the
most important features with nonzero coefficients. Our goal in
selecting these features was to enhance the performance and
accuracy of ν-SVC. Formally, for a set of features S, the feature
selection method finds the optimal subset s of S by minimizing
the loss function mins⊆S||Y – Pr(Y|X, X ∈ s)||, where ||·|| is the
error estimation function. The classification mapping function
Pr is determined by the feature selection methods. The selected
features Xn×m are the input of the ICU mortality prediction
model, where m<l.

Ethical Considerations
The eICU databases were deidentified, anonymized, and
approved for sharing by the institutional review boards of both
Beth Israel Deaconess Medical Center and the Massachusetts
Institute of Technology. Data access was granted to an
investigator after the completion of a National Institutes of
Health course and successful passing of the associated human
research participant protection examination. Given that the data
are accessible to the public through the eICU Collaborative
Research Database, the need for ethics approval and informed
consent was waived. The contributing author SW obtained the
necessary authorization to access the anonymized dataset and
oversaw the meticulous data extraction process.

Results

Data Description
The ICU mortality prediction test bed comes from the eICU
Collaborative Research Database [2], which includes data
records from multiple hospitals across the United States. The
proposed method was established on patients’ health digital
traces containing the time series of vital signs. The vital signs
in the eICU Collaborative Research Database are consistently
interfaced from bedside monitors, which are readily available
and updated in real time. To reduce the impact of missing values,
we mainly considered the following vital signs that were
measured for >50% of patients in our dataset: SaO2, heart rate,
respiration, ST1, ST2, and ST3 (estimated ST segment level x
of the ECG, where x ∈ {1, 2, 3}), as shown in Table 3. SaO2 is
useful in understanding the oxygen-carrying capacity of
hemoglobin. It is particularly important in patients’ care and

management because low oxygen saturation can lead to many
acute adverse effects on individual organ systems. Heart rate
and respiration are indicators of the body’s basic functions. ST1,
ST2, and ST3 are estimated ST segment levels of the ECG.

To show the effectiveness and generalizability of the proposed
method, we included ICU patients from 3 different patient
cohorts in terms of ICU admission diagnoses: patients with
congestive heart failure (HF), pulmonary sepsis, and renal sepsis
or urinary tract infection (including bladder). The 3 diagnoses
were the most prevalent ICU admission diagnoses in the eICU
Collaborative Research Database. The total admissions were
17,025 (n=5282, 31.02% for HF; n=7308, 42.93% for pulmonary
sepsis; and n=4435, 26.05% for renal sepsis). Due to the
imbalance of the dataset (299/5282, 5.66% deceased for HF;
881/7308, 12.05% deceased for pulmonary sepsis; and 278/4435,
6.27% deceased for renal sepsis), we implemented a stratified
5-fold cross-validation for evaluation. The stratified k-fold
cross-validation ensured that each fold was representative of
the class proportions in the training dataset. In our research
setting, it yielded better bias and variance estimates in cases of
unequal class proportions. To alleviate the influence of the data
imbalance issue during classifier training, we assigned different

weights ( ; i=1 or 0) to the majority (ie, Y={0: alive})
and minority (Y={0: expired}) classes according to the skewed
distribution of the classes. The purpose was to penalize minority
class misclassification by assigning a greater class weight while
decreasing weight for the majority class.

ICU Mortality Prediction Results
We evaluated the proposed framework for ICU mortality
prediction using the first 24-hour time series of health digital
traces (this aligns with APACHE IV, which forecasts ICU
outcomes 24 hours after admission). We compared our method
with four groups of benchmark methods:

1. Severity scoring systems, including APACHE IV [12], the
best-performing scoring system that is already used in
hospitals

2. Machine learning classifiers with statistical features [18-21]
3. Deep learning models, including 2 CNN models that have

previously been used for ICU mortality prediction and have
achieved state-of-the-art performance [22,23], as well as
LSTM [24] and GRU [36], 2 RNN models that take vital
signs in time sequence to estimate mortality rate

4. Time-series forecasting methods, the classic statistical
time-series forecasting methods; following previous
research [25], we fit the ARMA and ARIMA models on
vital signs and took the estimated coefficients as the inputs
of machine learning classifiers to predict mortality
probabilities (details are available in Multimedia Appendix
2). The results are summarized in Table 4 (parameter
specifications can be found in Multimedia Appendix 2).
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Table 4. Evaluation of the proposed method and baseline methods.

Improvement of our proposed framework

over each baseline method (%)b
AUCaCategory and method

Severity scoring system

17.60.750APACHEc IV [12]

Traditional machine learning model with feature engineeringd

29.520.681Decision tree [18]

17.910.748Random forest [19]

17.760.749Logistic regression [21]

13.810.775Gradient boosting [20]

Deep learning model with raw clinical data

22.160.722GRUe [36]

20.490.732CNNf model 1 [23]

23.880.712CNN model 2 [22]

26.360.698LSTMg [24]

Time-series forecasting model

33.640.660ARMAh coefficients [25]

44.350.611ARIMAi coefficients [25]

Our proposed framework

—k0.882ν-SVCj

aAUC: area under the curve.
bImprovement: percentage increase = (AUCours – AUCbaseline)/AUCbaseline.
cAPACHE: Acute Physiology and Chronic Health Evaluation.
dEach of the original studies used multiple machine learning classifiers, and the reported best-performing classifier in the original paper was selected
as the benchmark.
eGRU: gated recurring unit.
fCNN: convolutional neural network.
gLSTM: long short-term memory.
hARMA: autoregressive moving average.
iARIMA: autoregressive integrated moving average.
jSVC: support vector classification.
kNot applicable.

The experiment yielded several findings. First, our method
achieved the highest AUC, demonstrating a significant
improvement compared to all the baseline methods. Second,
our proposed method demonstrated a notable performance
improvement of 17.6% compared to APACHE IV, which is the
best-performing scoring system in ICU outcome prediction that
is already used in hospitals. In contrast to our method, APACHE
IV relies on more resource-demanding features for predictions,
including laboratory test results (which can be time-consuming
to obtain) and intensivists’ assessments (which may not always
be available). Our approach exhibited better performance while
using fewer resources when compared to the best severity
scoring system. Third, compared to the best-performing
traditional machine learning model with feature engineering
[19] (AUC=0.775), our method improved the AUC by 13.81%.
The significant performance improvement achieved indicates
the inadequacy of traditional statistical-based feature engineering

methods in processing complex ICU vital sign time series and
predicting ICU outcomes. Our proposed signal processing
techniques, guided by medical knowledge, proved to be highly
effective in extracting features and greatly benefited ICU
outcome prediction. Fourth, despite the dominance of deep
learning models in the field of data science and machine
learning, all the deep learning–based baseline methods were
significantly outperformed by our proposed method. A possible
reason is our explicit extraction of valuable information from
the patients’ health digital traces, which facilitated the
classifiers’ identification of the relationship between the input
space (ie, patients’ health digital traces) and the prediction
outcome (ie, ICU mortality), thus improving overall
performance.

Another primary objective of this study was to introduce a new
method for the effective extraction of patterns from the complex
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time series of vital signs in patients’ health digital traces.
Therefore, we further compared the performance of different
feature sets. The experiment yielded the following findings.
First, the feature set we proposed included statistical features
and signal processing features. We examined their effectiveness.
We excluded statistical features and signal processing features
and reconducted the evaluation. Using only signal processing
features versus only statistical features, the predictive model
reached AUCs of 0.828 and 0.749, respectively. The results
indicate that both signal processing and statistical techniques
can extract informative features and these extracted features are
either more predictive than or comparable to the APACHE IV
(AUC=0.750) features for ICU mortality prediction. Second,
the obtained AUC scores of signal processing features
(AUC=0.828) were higher than those of statistical features
(AUC=0.749), validating the necessity of using signal processing
techniques for decomposing the complex time series of health
digital trace data and the necessity of the proposed medical
knowledge–guided feature extraction methods. Third, to
examine whether the proposed method can add value to existing
systems such as APACHE IV, we merged the features generated
by our method with other features available in the APACHE
IV system. These features include patient demographics and
other attributes available at ICU admission, which can have
great value for ICU mortality prediction. We intentionally
excluded variables that demand laboratory resources (eg, arterial
blood gas) or assessments by intensivists (eg, GCS) to maintain
resource efficiency in our prediction model. The new feature

set attained an AUC of 0.886, demonstrating that the features
generated using our method can be effectively incorporated into
other ICU mortality prediction models. The subsequent model
is expected to display enhanced predictive capability and reduce
the demand for time-consuming or resource-intensive human
evaluations.

To investigate the contributions of different vital signs and
signal processing techniques toward predicting ICU outcomes,
we aggregated the feature importance for each group. As shown
in Table 3, heart rate, respiration, and SaO2 exhibited the highest
contribution compared to other vital signs in the mortality
prediction task. These 3 vital signs are not difficult or expensive
to measure in eICUs. In the eICU Collaborative Research
Database, heart rate, respiration, and SaO2 were constantly
measured for >90% of patients. Furthermore, among all the
proposed signal processing techniques, WT yielded the most
informative features. A possible reason is that WT can reveal
patterns from both the time and frequency domains
simultaneously. In addition, autocorrelation provided the least
instructive features. As a signal processing technique,
autocorrelation is conceptually close to time-series forecasting
algorithms such as ARMA and ARIMA. The unsatisfactory
performance of autocorrelation reveals the fact that time-series
forecasting algorithms can hardly capture sufficient information
for ICU mortality prediction. This observation is also supported
by our experiment using ARMA and ARIMA coefficients for
prediction (Figure 5).

Figure 5. Summary of the importance of different feature types. The cells in the Statistics column contain the sum of feature importance across all
statistical features for the corresponding vital sign, including SD, variance, mean, median, quantiles, min, max, and the first and last signal of the vital
sign. AC: autocorrelation; FFT: fast Fourier transform; PSD: power spectral density; SaO2: arterial oxygen saturation; ST1: estimated ST segment level
1 of the electrocardiogram (ECG); ST2: estimated ST segment level 2 of the ECG; ST3: estimated ST segment level 3 of the ECG; WT: wavelet
transform.

Postanalysis: Assessing Predictive Features of ICU
Mortality
One of the objectives of this work was to extract representative
features from the complex time series of vital signs in ICU
patients’ health digital traces, which is accomplished by
leveraging medical domain knowledge and using signal
processing techniques to decompose the time-series data,
enhance relevant signals, and minimize noise within the complex

time series. In this section, we report on the postanalyses
conducted to examine why our proposed method achieved better
performance compared to other existing methods.

We first selected and compared 2 patients from our dataset as
an illustrative example to demonstrate the feasibility of signal
processing techniques and our proposed feature extraction
methods in ICU outcome prediction (Table 5). According to
medical knowledge, the worst vital sign values and fluctuating
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vital signs all have direct relations with adverse ICU outcomes
[12,37]. The health digital traces’ fluctuating patterns of the 2
patients were distinct, and it was not intuitive to predict their
ICU outcome based on their health digital traces (Table 5, Health
digital traces—time series of vital signs). The SaO2 of patient
1 dropped to 58% (the lowest value) and fluctuated at the

beginning of her ICU stay. Her SaO2 stabilized at approximately
840 minutes and stayed at 100%. The lowest SaO2 value of
patient 2 (80%) was better than that of patient 1. However, her
SaO2 did not stabilize during her 24-hour stay in the ICU as it
continued to fluctuate.
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Table 5. Illustrative example demonstrating the feasibility of the proposed feature sets.

Patient 2 (outcome: deceased)Patient 1 (outcome: alive)

Health digital traces—time series of vital signs

Time-series decomposition using signal processing tech-
niques (using wavelet transform as an example)

Shows unstable SaO2 during the entire ICUb

stay. Unstable vital signs have a direct rela-
tion with adverse ICU outcomes.

Shows distinct differences between the sta-

ble and unstable time series of SaO2
a.

Example from the proposed feature set

82% (more sudden changes)58% (less sudden changes)sao2_sudden-drop_value_1c

8985.53590913,378.21335sao2_wt_morl_length5_power-in-band_1d (power-in-
band feature; band_1: low-frequency band. A higher
value of this feature indicates that the smooth part [ie,
no fluctuation, indicating favorable health condition]
of the vital sign is longer and the value of the smooth
part of the vital sign is higher [ie, high SaO2, indicating
a favorable health condition])

85 (the last value at the time of prediction
is NOT within the normal range)

100 (the last value at the time of prediction
is within the normal range)

stat_sao2_laste

There are many other features not included
in this table as cases.

There are many other features not included
in this table as cases.

Other features

Example from the APACHEf IV feature set

8379Age (y)

FemaleFemaleGender

YesYesHas active treatment

NoYesHas diabetes (diabetes is a chronic condition that may
lead to adverse ICU outcomes)

156GCSg score (depends on expert assessments; the
higher the better)

There are many other features not included
in this table as cases.

There are many other features not included
in this table as cases.

Other features

Example from the statistical feature set

8258stat_sao2_minh (the worst [minimum] value of the vital
sign; the higher the SaO2 the better)

3.209266.05375stat_sao2_stdi (the fluctuation [SD] of the vital sign;
the lower the better)

There are many other features not included
in this table as cases.

There are many other features not included
in this table as cases.

Other features
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Patient 2 (outcome: deceased)Patient 1 (outcome: alive)

Death probability at 24 h

8.3%86.4% (ICU mortality prediction result was
wrong)

APACHE IV

59.8% (ICU mortality prediction result was
correct)

31.8%Our method

aSaO2: arterial oxygen saturation.
bICU: intensive care unit.
csao2_sudden-drop_value_1: vital sign signal: SaO2; feature extraction: extreme values within moving windows (sudden drops with an SD of 1).
dsao2_wt_morl_length5_power-in-band_1: vital sign signal: SaO2; signal processing: wavelet transform using Morlet wavelets. Feature extraction:
power in band (segment length of 5 and band_1).
estat_sao2_last: vital sign signal: SaO2. Signal processing: statistical feature (the last value of the vital sign).
fAPACHE: Acute Physiology and Chronic Health Evaluation.
gGCS: Glasgow Coma Scale.
hstat_sao2_min: the worst value of the vital sign.
istat_sao2_std: the amount of variation in SaO2.

The illustrative example reveals several important observations
related to predictive features of ICU outcome predictions. First,
APACHE IV only included the vital signs’worst measurements
in the first 24 hours of ICU stay. For patient 1, it ignored the
important healthy signal that the second half of the SaO2

conveys, which caused APACHE IV to make a wrong inference
(86.4% death probability, but patient 1 was alive at the time of
discharge). In addition, APACHE IV did not capture the vital
sign fluctuation of patient 2 and made a wrong prediction (8.3%
death probability, but she died later). Moreover, the GCS score
is a variable depending on expert evaluation in APACHE IV
(the higher the better; 3 being the worst and 15 being the best).
Patient 1’s GCS score was lower than that of patient 2, but
patient 1 survived, demonstrating that such a predictor is not
always indicative of ICU outcomes. Second, in extant studies,
researchers consider simple statistical features of vital signs
(Table 5, Example from the statistical feature set). The
stat_sao2_min variable indicates the worst value of the vital
sign. The stat_sao2_std variable indicates the amount of
variation in SaO2, which represents the fluctuation in SaO2.
Both values suggest that patient 2 had a higher likelihood of
survival. However, the actual ICU outcome differed from the
prediction, showing that existing statistical features are
inadequate in capturing complex patterns from ICU patients’
digital traces. Third, the proposed framework can effectively
identify meaningful patterns in ICU patients’ health digital
traces and lead to better ICU outcome predictions (Table 5,
Example from the proposed feature set). The signal processing
result of patient 1’s SaO2 shows the distinct differences between
the stable and unstable time series (Table 5, Signal processing

decomposition results). The proposed feature extraction
methods, such as sao2_sudden-drop_value_1 and
sao2_wt_morl_length5_power-in-band_1, can properly capture
the vital sign’s stability information and result in correct
prediction of patient outcomes. Overall, the example
demonstrates the insufficiency of existing approaches and the
motivation to identify more accurate indicators for predicting
ICU outcomes. In the meantime, the proposed framework can
catch patterns in the time series of vital signs that are difficult
to detect using other methods, such as APACHE IV and
statistical features. Our method can offer valid feature sets for
the prediction of ICU outcomes.

Furthermore, patients from different cohorts exhibited distinct
disease progressions. To evaluate the efficacy of the proposed
features in representing ICU patients from heterogeneous
cohorts, we visualized the proposed feature set and compared
the resulting visualizations to those of the APACHE IV feature
set. As shown in Figure 6, the proposed feature set can
effectively distinguish patients with different comorbidities and
patients with different ICU admission diagnoses (Figures 6A
and 5C). In contrast, APACHE IV features were not able to
discriminate between patients from different cohorts (Figures
6B and 5D). According to medical literature, different patient
cohorts typically experience varying disease progression and
outcomes [7]. Therefore, our method, which has strong
capabilities to extract patterns and represent ICU patients from
heterogeneous cohorts, can facilitate ICU outcome prediction
(as we demonstrate in the ICU Mortality Prediction Results
section).
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Figure 6. Feature representativeness for heterogeneous intensive care unit (ICU) patient cohorts. APACHE: Acute Physiology and Chronic Health
Evaluation; t-SNE: t-distributed stochastic neighbor embedding.

Postanalysis: The Impact of Limited Patient Data on
Deep Learning Model Performance
Deep learning models exhibit superior performance due to their
reliance on substantial computing power, advanced algorithmic
capabilities, and extensive training data, enabling them to yield
highly promising results across diverse domains. Nonetheless,
patient data in health care predictive analysis, including ICU
outcome prediction, are highly specific. ICU patients come from
various diagnostic cohorts, have unique demographics and
disease progressions, and may receive different levels of medical
intervention. The integration of patient data must be executed
with great care, making it impractical to acquire sufficient
training data for complex deep learning models.

The benchmark methods used were the best-performing methods
within each category, as outlined in Table 4.

In our experimental evaluation, we chose to focus on the 3 most
prevalent patient cohorts (ICU admission diagnoses) within the
eICU Collaborative Research Database. The number of patients
per cohort had already reached the upper limit in this database

(5282/17,025, 31.02% for HF; 7308/17,025, 42.93% for
pulmonary sepsis; and 4435/17,025, 26.05% for renal sepsis),
with other patient cohorts containing fewer patients. To our
knowledge, the eICU Collaborative Research Database is
already one of the largest publicly available ICU databases. In
contrast, in other problem domains, such as natural language
processing or image processing, the training data for deep
learning models typically extend into the millions or even
billions. In the aforementioned 3 patient cohorts, when using
the complete dataset, deep learning models did not outperform
our approach. To explore the limitations and boundaries further,
we systematically reduced the original dataset (to 90%, 80%,
70%, 60%, 50%, 40%, and 30%) to observe the performance
variations of our proposed method and the benchmark methods,
as illustrated in Figure 7 [12,19,21,23]. The results showed that
(1) our proposed method consistently outperformed all
benchmark methods, (2) traditional machine learning approaches
with feature engineering and scoring systems also demonstrated
better performance compared to deep learning methods, and (3)
deep learning methods failed to converge when 30% of the
original data were available.

JMIR AI 2025 | vol. 4 | e72671 | p. 18https://ai.jmir.org/2025/1/e72671
(page number not for citation purposes)

Wang et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 7. Evaluation of the proposed method and baseline methods. APACHE: Acute Physiology and Chronic Health Evaluation; ARMA: autoregressive
moving average; AUC: area under the curve; CNN: convolutional neural network; SVC: support vector classification.

Moreover, we conducted tests on our proposed method and the
benchmark methods using 3 small patient cohorts (in terms of
ICU admission diagnosis). It was noted that obtaining
satisfactory performance results using deep learning methods
posed a challenge for these smaller patient cohorts. Nevertheless,

our approach (as well as other traditional machine learning
methods with feature extraction) exhibited stable performance
over various patient cohorts (Table 6). The model parameters
are listed in Table S3 in Multimedia Appendix 2.
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Table 6. Evaluation of the proposed method and baseline methods—3 small patient cohorts.

ICUa admission diagnosis, AUCbCategory and method

Cardiomyopathy (29 deceased vs
539 alive)

Pneumothorax (14 deceased vs
295 alive)

Atelectasis (36 deceased vs 309
alive)

Severity scoring system

0.8120.7740.642APACHEc IV [12]

Traditional machine learning model with feature engineering

0.9230.8240.951Decision tree [18]

0.9440.8520.889Random forest [19]

0.8910.7640.851Logistic regression [21]

0.8320.8310.932Gradient boosting [20]

Deep learning model with raw clinical data

0.6940.8890.602GRUd [36]

0.5840.8420.671CNNe model 1 [23]

0.5890.5610.620CNN model 2 [22]

0.6210.5320.641LSTMf [24]

Time-series forecasting model

0.5210.5100.502ARMAg coefficients [25]

0.5010.5210.501ARIMAh coefficients [25]

Our proposed method

0.9810.9890.978ν-SVCi

aICU: intensive care unit.
bAUC: area under the curve.
cAPACHE: Acute Physiology and Chronic Health Evaluation.
dGRU: gated recurring unit.
eCNN: convolutional neural network.
fLSTM: long short-term memory.
gARMA: autoregressive moving average.
hARIMA: autoregressive integrated moving average.
iSVC: support vector classification.

The aforementioned 2 experiments illustrate that, in health care
predictive analysis, particularly in ICU outcome prediction,
when acquiring a large amount of training data is not feasible,
the limitations of deep learning models become evident. In
contrast, our proposed research design, which involves medical
knowledge–driven feature extraction coupled with machine
learning, holds significant potential owing to its efficiency.

Discussion

Principal Findings
ICU patients’ health digital traces contain complex time-series
data and patterns. It is essential to find representative features
to develop predictive models for better ICU outcome predictions.
Guided by signal processing techniques and medical domain
knowledge, we propose a novel method to repurpose and
effectively extract features with strong predictive power from
patients’ health digital traces for ICU mortality prediction. We
systematically evaluated the proposed method using a real-world

multicenter ICU database from the perspective of feature
effectiveness and prediction accuracy. The proposed method
efficiently extracted representative features from heterogeneous
patient cohorts. The ICU outcome prediction results significantly
outperformed those of state-of-the-art benchmarks.

Our contribution lies in incorporating medical knowledge to
guide the selection of the most suitable signal processing
techniques and feature extraction methods for predicting ICU
outcomes. Our approach presents generalizable design principles
for research scenarios with limited training data, demonstrating
how integrating domain knowledge into signal processing and
predictive model design enhances performance. Our work has
important implications for health care operation management.
We contribute to the emerging field of using digital traces from
information systems to address challenges with significant
implications for health care [1]. Specifically, we present a new
feature extraction method that uses patients’ digital traces
retrieved from health IT systems to predict ICU mortality
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accurately. Practically, accurate prediction of ICU outcomes is
important. It indicates when patients may require heightened
attention, care, and interventions; therefore, all essential
resources, including personnel, equipment, and medications,
are readily available to ensure the provision of comprehensive
support for the patient.

While the results are encouraging, the proposed method is not
without limitations. First, more vital sign data (eg, the central
venous pressure and pulmonary artery pressure) were not
included due to the high missing rate. The predicting power of
these vital sign data can be evaluated in the future. Next, our
method could be enhanced by developing a more comprehensive
model that incorporates individual patient characteristics such
as medical history and genetic information. By doing so, our
method holds the potential to evolve into a generalized mortality
prediction model tailored to each patient’s unique profile.

Conclusions
To conclude, as the Fourth Industrial Revolution evolves, digital
tools create an influx of data. In health care, this trend has
transformed ICUs by enabling the collection of real-time patient
health data, leading to critical advances in ICU outcome
predictions—a task with high stakes due to patients’ rapid
disease progression and high mortality rates. The availability
of digital health data provides new opportunities to refine these
prediction models. This study created a new feature extraction
method that aims to enhance the accuracy of ICU outcome
predictions by repurposing digital trace data from ICU patients.
The resulting method outperformed existing ICU outcome
prediction models. Our study has important implications for
health care operation management by using digital traces from
health care information systems to solve problems with societal
implications and leveraging specific domain knowledge to create
innovative and impactful artifacts. Practically, the proposed
method efficiently extracted representative features, facilitating
ICU outcome prediction.
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