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Abstract

Background: Multidisciplinary care management teams must rapidly prioritize interventions for patients with complex medical
and social needs. Current approaches rely on individual training, judgment, and experience, missing opportunities to learn from
longitudinal trajectories and prevent adverse outcomes through recommender systems.

Objective: This study aims to evaluate whether a reinforcement learning approach could outperform standard care management
practices in recommending optimal interventions for patients with complex needs.

Methods: Using data from 3175 Medicaid beneficiaries in care management programs across 2 states from 2023 to 2024, we
compared alternative approaches for recommending “next best step” interventions: the standard experience-based approach (status
quo) and a state-action-reward-state-action (SARSA) reinforcement learning model. We evaluated performance using clinical
impact metrics, conducted counterfactual causal inference analyses to estimate reductions in acute care events, assessed fairness
across demographic subgroups, and performed qualitative chart reviews where the models differed.

Results: In counterfactual analyses, SARSA-guided care management reduced acute care events by 12 percentage points (95%
CI 2.2-21.8 percentage points, a 20.7% relative reduction; P=.02) compared to the status quo approach, with a number needed
to treat of 8.3 (95% CI 4.6-45.2) to prevent 1 acute event. The approach showed improved fairness across demographic groups,
including gender (3.8% vs 5.3% disparity in acute event rates, reduction 1.5%, 95% CI 0.3%-2.7%) and race and ethnicity (5.6%
vs 8.9% disparity, reduction 3.3%, 95% CI 1.1%-5.5%). In qualitative reviews, the SARSA model detected and recommended
interventions for specific medical-social interactions, such as respiratory issues associated with poor housing quality or food
insecurity in individuals with diabetes.

Conclusions: SARSA-guided care management shows potential to reduce acute care use compared to standard practice. The
approach demonstrates how reinforcement learning can improve complex decision-making in situations where patients face
concurrent clinical and social factors while maintaining safety and fairness across demographic subgroups.
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Introduction

Background
Health care delivery increasingly relies on multidisciplinary
teams, including care coordinators and community health
workers, to support patients with complex medical and social

needs [1]. These care management programs are now mandated
components of state Medicaid programs serving more than 80
million Americans and are widely implemented in Medicare
Advantage plans serving an additional 30 million beneficiaries
[1]. These programs aim to reduce acute care use through
proactive outreach, offering services such as care coordination,
medication adherence counseling, and social needs assistance.
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While physicians and nurses typically follow evidence-based
protocols, newer team member disciplines, such as community
health workers, frequently lack standardized guidance for
prioritizing interventions, instead relying on varied training
approaches and personal experiences that may not consistently
yield optimal outcomes [2].

This gap is particularly challenging when caring for patients
with multiple chronic conditions, mental health disorders,
substance use issues, and social needs. In time-constrained
interactions, team members must make sequential decisions
with long-term consequences, rapidly prioritizing among
competing needs while recognizing that today’s choices affect
future patient states [3]. Current Medicaid care management
programs typically rely on electronic health record
documentation and clinical guidelines focused primarily on
optimizing each individual’s medical condition, with minimal
decision support tools addressing social needs integration or
optimal intervention sequencing.

The sequential nature of care management decisions, combined
with the need to learn optimal intervention timing from
longitudinal patient trajectories, suggests the potential utility
of reinforcement learning approaches [4]. Unlike traditional
supervised learning methods that treat each decision
independently, reinforcement learning explicitly models how
current actions influence future states and outcomes [5].
Traditional machine learning approaches cannot effectively
capture these temporal dependencies and delayed rewards that
characterize care management decisions. While large language
models have shown promise in health care, they lack the ability
to learn explicit action-value functions from sequential decision
processes with delayed rewards [6].

Wi t h i n  r e i n f o r c e m e n t  l e a r n i n g ,  t h e
state-action-reward-state-action (SARSA) algorithm is
particularly well-suited for clinical decision support due to its
on-policy learning approach, which ensures that
recommendations align with actual practice patterns while still
optimizing for improved outcomes [7]. This on-policy
characteristic provides crucial safety advantages over off-policy
algorithms, such as Q-learning or deep Q-networks, which may
recommend actions that deviate substantially from established
clinical practice patterns and could potentially compromise
patient safety. Unlike off-policy algorithms, SARSA’s
conservative on-policy approach provides an important safety
constraint for health care applications where drastic deviations
from established practice patterns may pose serious health risks.

Currently, care management teams typically rely on training
that codifies expert knowledge into predefined curricula on how
to address each patient’s needs, often leaving the prioritization
of multiple needs to team member experience [8]. This approach
can fail to capture the value of experiences for newer team
members early in their careers and address how simultaneous
comorbid conditions and social-medical interactions can affect
real-time decision-making in care management [9].

This Study
In this study, we report results obtained upon comparing
SARSA-guided care management to the status quo approach

of human experience–guided decision-making. Using real-world
data from multidisciplinary care teams across 2 states, we
performed counterfactual causal inference analyses and
qualitative reviews to evaluate each approach’s ability to
recommend interventions that reduced subsequent acute care
use while maintaining fairness across patient subgroups.

Methods

Study Design and Data Source
We conducted a comparative effectiveness study using
longitudinal cohort data from Medicaid beneficiaries enrolled
in care management programs in Virginia and Washington from
2023 to 2024. The programs involved multidisciplinary teams
that engaged patients in community settings. Data were extracted
from the programs’ health record systems, capturing
demographics, health conditions, social determinants, team
interventions, and health care use outcomes. Complete code is
available at the link included in Multimedia Appendix 1.

The cohort included Medicaid beneficiaries enrolled in care
management between January 1, 2023, and December 31, 2024,
with follow-up through February 28, 2025. Patient identification
was done using a previously validated extreme gradient boosting
algorithm considering chronic conditions, previous health care
use, and social determinants to identify individuals at high risk
for acute care use [10]. The primary outcome was a composite
of emergency department visits and hospitalizations.

Reinforcement Learning Model Development
We estimated the impact of a SARSA reinforcement learning
approach to optimize sequential intervention decisions. The
SARSA model belongs to the temporal difference learning
family and is well suited for health care applications due to its
on-policy learning from multistep patient trajectories rather than
optimizing for only the next immediate intervention [11].

The state representation comprised features across multiple
domains, such as demographics, clinical metrics (chronic
conditions and risk factors), social determinants of health, health
care use history, and intervention history. The action space
consisted of 9 mutually exclusive interventions derived through
clinical expert consensus and existing care management
protocols, such as substance use support, mental health support,
chronic condition management support, food assistance, housing
assistance, transportation assistance, utility assistance, childcare
assistance, and watchful waiting. Actions are mutually exclusive
at each decision point to prevent combinatorial complexity,
with the model selecting the single most appropriate intervention
based on the current patient state.

For function approximation, we developed a neural network
architecture with an input layer accepting the multidimensional
state vector, followed by 2 hidden layers with rectified linear
unit activation functions and dropout regularization. The output
layer contained 9 nodes corresponding to the Q-values for each
intervention. Complete architectural specifications,
hyperparameter grids, and training procedures are detailed in
Multimedia Appendix 1.
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Reward Function Engineering
The reward function captured multiple aspects of clinical quality
and safety. The primary component was a negative reward for
acute care events, reflecting the main objective of reducing
emergency department visits and hospitalizations. We
incorporated a continuous reward signal proportional to the
reduction in calculated risk score, allowing the model to learn
the value of incremental risk reductions even when acute events
did not occur.

Clinical appropriateness was encouraged through a structured
reward bonus system, including a prevention bonus for avoiding
acute care events (scaled based on preintervention risk level)
and an intervention matching bonus when the selected
intervention aligned with the patient’s primary risk domain.
Safety constraints were enforced through both a penalty system
and an action masking mechanism that prevented the selection
of interventions that violated clinical constraints or were deemed
inappropriate based on the patient’s current state.

Model Training and Evaluation
We divided our dataset into training (2222/3175, 70%),
validation (635/3175, 20%), and testing (318/3175, 10%) sets,
with stratification by outcome occurrence. All analyses used a
fixed random seed (42) to ensure reproducibility. Software
versions included Python (version 3.9.7; Python Software
Foundation), TensorFlow (version 2.8.0; Google LLC), NumPy
(version 1.21.0; NumFOCUS), Pandas (version 1.3.3;
NumFOCUS), and Scikit-learn (version 1.0.2; NumFOCUS).
The SARSA model was trained for 100 epochs, with early
stopping based on validation set performance. Hyperparameters
were tuned through grid search on the validation set, optimizing
for reduction in acute care events. The code for reproducibility
and extension is available at GitHub [12].

Counterfactual Evaluation
To estimate the clinical impact, we conducted counterfactual
causal inference analysis using a held-out test set [13]. For each
patient, we generated comprehensive paired trajectories under
2 distinct intervention policies: the status quo approach based
on observed care management decisions and the SARSA-guided
approach.

Our transition model captured the relationship between patient
characteristics, interventions, and outcomes through a neural
network architecture trained to predict state evolution
conditioned on actions. This model was validated for calibration
(expected calibration error of 0.08) and discrimination (area
under the curve=0.78).

The transition model architecture comprised an input layer
accepting 47 state features; 3 hidden layers with 128, 64, and
32 nodes, respectively; and an output layer predicting next-state
probabilities. Additional validation metrics included Brier score
(0.142), calibration slope (0.96), and Hosmer-Lemeshow test
(P=.23), indicating good model fit. We conducted doubly robust
sensitivity analysis using inverse probability weighting
combined with outcome regression to assess robustness to
unmeasured time-varying confounding.

We estimated CIs using bootstrapping with 1000 iterations,
resampling at the patient level to account for within-patient
correlation in outcomes. This methodology extends traditional
causal inference approaches by modeling the complex,
sequential nature of care management decisions [14].

We evaluated model performance using multiple metrics,
including number needed to treat (NNT), absolute risk reduction
(ARR), and relative risk reduction (RRR) with 95% CIs. We
assessed fairness across demographic groups by calculating
equalized odds discrepancy for self-reported gender, race, and
ethnicity. Equalized odds discrepancy is defined as the
maximum difference in true positive rates and false positive
rates across demographic groups: max(|TPR_group1 –
TPR_group2|, |FPR_group1 – FPR_group2|), with values less
than or equal to 5% considered acceptable. We selected this
metric over demographic parity or calibration measures because
it directly assesses whether the model provides equitable benefit
(true positive rate) and harm (false positive rate) across groups,
which is most clinically relevant for care management decisions
[15]. Disparities were assessed on observed outcomes rather
than predicted risk scores. Analyses followed the Minimum
Information About Clinical Artificial Intelligence Modeling
checklist (MI-CLAIM) [16] and Developmental and Exploratory
Clinical Investigations of Decision support systems driven by
Artificial Intelligence (DECIDE-AI) guidelines [17].

Qualitative Analysis of Recommendation Differences
We conducted a qualitative analysis of cases where the status
quo and SARSA models recommended different interventions,
using a grounded theory approach [18]. We selected a purposive
sample of 200 patient cases where intervention recommendations
differed. To ensure diverse representation, we stratified this
sample based on primary risk domain (medical, behavioral, and
social) and the presence or absence of acute events following
intervention.

Our qualitative analysis followed standard grounded theory
methodology with 3 stages of coding [18,19]. Two independent
coders with clinical (internal medicine) and social science
(medical anthropology and social work) backgrounds conducted
the analysis, with regular reflexivity sessions to examine
potential bias in interpretation. First, in open coding, we
independently reviewed each case, identifying key factors
influencing divergent recommendations. Intercoder agreement
was assessed using Cohen κ (κ=0.82; indicating substantial
agreement). Second, during axial coding, through iterative
comparison and refinement, we identified recurring patterns
and developed provisional categories describing why and when
the models diverged. Finally, in selective coding, we refined
these categories into core conceptual themes that explained
when the SARSA model’s recommendations differed most
substantially from the status quo approach. A complete audit
trail documented all coding decisions and category development.
We maintained detailed reflexivity notes throughout the process
to acknowledge potential researcher bias and ensure analytic
rigor.
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Ethical Considerations
This study was approved by the Western Institutional Review
Board–Copernicus Institutional Review Board (20243894). All
data were deidentified using the safe harbor method to preserve
patient privacy, and waiver of consent was obtained from the
institutional review board; patients were not compensated for
participation.

Results

Characteristics of the Study Population
Table 1 presents the demographic and clinical characteristics
of the 3175 Medicaid beneficiaries enrolled in care management

programs. The study population had a mean age of 34.5 (SD
18.5) years, with 2089 (65.8%) female participants. Most
patients were categorized under other or multiple races
(2181/3175, 68.7%), with smaller proportions identifying as
White (423/3175, 13.3%), Black (376/3175, 11.8%), Hispanic
(162/3175, 5.1%), or Asian (33/3175, 1%). The most common
chronic conditions were hypertension (1371/3175, 43.2%),
depression (1203/3175, 37.9%), and diabetes (939/3175, 29.6%).
At baseline, 1642 (51.7%) participants had experienced at least
1 emergency department visit in the previous 6 months, and
738 (23.2%) had been hospitalized.

Table 1. Characteristics of the study population (N=3175).

ValuesCharacteristic

34.5 (18.5)Age (y), mean (SD)

2089 (65.8)Female sex, n (%)

Racial or ethnic group, n (%)

33 (1)Asian

376 (11.8)Black

162 (5.1)Hispanic

423 (13.3)White

2181 (68.7)Other or multiple races

Clinical conditions, n (%)

1371 (43.2)Hypertension

1203 (37.9)Depression

939 (29.6)Diabetes

635 (20)Substance use disorder

476 (15)Chronic obstructive pulmonary disease

349 (11)Congestive heart failure

Social determinants, n (%)

869 (27.4)Housing instability

730 (23)Food insecurity

571 (18)Transportation barriers

428 (13.5)Utility needs

Health care use, n (%)

1642 (51.7)≥1 emergency department visit in the past 6 months

738 (23.2)≥1 hospitalization in the past 6 months

Comparative Effectiveness in Reducing Acute Care
Events
In our counterfactual analysis comparing SARSA-guided care
management to status quo practice, the SARSA approach
achieved an acute event rate of 46% compared to 58% in the
status quo condition, representing an absolute reduction of 12
percentage points (95% CI 2.2-21.8 percentage points; P=.02)

and a relative reduction of 20.7% (Table 2). This translates to
an NNT of 8.3 (95% CI 4.6-45.2), indicating that for
approximately every 8 patients receiving SARSA-guided
interventions instead of standard care, 1 acute care event would
be prevented. The number needed to harm was infinite,
indicating no cases of worsened outcomes because of following
SARSA recommendations rather than the status quo approach.
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Table 2. Effectiveness of the state-action-reward-state-action (SARSA)–guided care management compared to the status quo approach.

P valueDifference (95% CI)Status quo, %SARSA, %Outcome

Primary outcome

.02–12.0 (–21.8 to –2.2)5846Acute care event rate

Secondary outcomes

.0212.0 (2.2 to 21.8)——aAbsolute risk reduction, percentage points

—20.7 (3.8 to 37.6)——Relative risk reduction

—8.3 (4.6 to 45.2)——Number needed to treatb

—Not defined (infinite)——Number needed to harm

Risk-stratified analysis: number needed to treat b

.0045.2 (3.1 to 14.3)——High-risk patients

.028.9 (4.7 to 38.6)——Medium-risk patients

.0823.4 (11.2 to infinite)——Low-risk patients

Fairness metrics: equalized odds discrepancy c

.04–1.5% (0.3% to 2.7%)5.33.8Gender

.008–3.3% (1.1%-5.5%)8.95.6Race and ethnicity

aNot applicable.
bThe number needed to treat is the number of patients who would need to receive SARSA-guided interventions instead of status quo care to prevent 1
acute care event.
cLower equalized odds discrepancy values indicate more equitable performance across demographic groups. The improvement in fairness metrics for
the SARSA model compared to the status quo approach represents a 28.3% reduction in gender-based disparities and a 37.1% reduction in race- and
ethnicity-based disparities.

The effectiveness of the SARSA-guided interventions varied
by patient risk level. We observed the greatest benefit among
high-risk patients (top tertile of preintervention risk score), with
an NNT of 5.2 (95% CI 3.1-14.3). Medium-risk patients (second
tertile) showed moderate benefit with an NNT of 8.9 (95% CI
4.7-38.6), while low-risk patients (bottom tertile) demonstrated
less substantial improvement with an NNT of 23.4 (95% CI
11.2-∞).

Sensitivity analysis using doubly robust estimation confirmed
the robustness of our primary findings. The doubly robust
estimator yielded an ARR of 11.2 percentage points (95% CI
1.8-20.6 percentage points), closely aligning with our primary
counterfactual analysis. This consistency suggested that
unmeasured time-varying confounding is unlikely to
substantially bias our estimates.

Patterns of Intervention Recommendations
Analysis of the intervention patterns revealed substantial
differences between the SARSA approach and status quo
practice. The SARSA model recommended substantially more
chronic condition management interventions (54% vs 36%,
difference +18%) and substance use support (26% vs <0.1%,
difference +26%). Conversely, status quo practice featured more
mental health support interventions (34% vs 4%, difference
–30%), housing assistance (10% vs 3%, difference –7%), and
food assistance (9% vs 1%, difference –8%).

The differences in recommendations reflected the algorithm’s
learned patterns rather than a devaluation of mental health
interventions. When examining cases where the status quo
approach recommended mental health support but the SARSA
model recommended substance use support, our qualitative
analysis found that the SARSA model frequently identified
underlying substance use issues contributing to mental health
symptoms. The status quo approach often defaulted to treating
mental health symptoms (anxiety and depression) without
addressing potential substance use triggers.

Fairness Analysis Across Demographic Groups
The SARSA approach demonstrated improved equalized odds
fairness metrics across demographic subgroups compared to
status quo approaches (Table 2). For gender, the SARSA model
showed a 3.8% disparity in outcomes versus 5.3% for the status
quo approach, representing a 28.3% improvement in fairness.
For race and ethnicity, the SARSA model demonstrated a 5.6%
disparity compared to 8.9% for the status quo approach—a
37.1% improvement.

Qualitative Findings From Chart Reviews
The qualitative analysis revealed 7 key areas where the SARSA
model’s recommendations better recognized complex
interactions among medical, behavioral, and social needs
(Textbox 1).
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Textbox 1. Seven key areas where recommendations by the state-action-reward-state-action (SARSA) model better recognized complex interactions
among medical, behavioral, and social needs.

1. Housing quality and respiratory health interactions: the SARSA model identified cases where poor housing conditions exacerbated respiratory
conditions and recommended housing and chronic condition interventions concurrently, whereas these interventions fell further down the list of
priorities in the status quo.

2. Food security and chronic disease management: while the status quo approach often addressed either food insecurity or chronic disease separately,
the SARSA model linked these needs, recommending food support and chronic condition interventions sequentially when people had these risk factors
concurrently.

3. Substance use recognition: the SARSA model more frequently recognized underlying substance use issues in patients presenting with symptoms
of anxiety or depression. Rather than solely recommending mental health support (as seen in the status quo approach), the SARSA model appropriately
recommended substance use interventions when evidence suggested this was a primary driver of symptoms.

4. Housing stability and mental health: the SARSA model identified connections between housing instability and mental health deterioration,
recommending coordinated interventions that addressed both needs, often addressing housing interventions before mental health or alternating between
housing and mental health rather than focusing on mental health alone.

5. Transportation and health care access: the SARSA model recognized when transportation barriers directly affected health care access and treatment
adherence, prioritizing transportation assistance at critical junctures in care, such as before or after outpatient visits; in the chart review of the status
quo approach, transportation was usually addressed only after hospitalizations rather than proactively.

6. Utility access and health-dependent technologies: the SARSA model identified cases where utility issues (eg, electricity and water) affected
health-critical technologies (eg, oxygen concentrators and medication refrigeration), whereas the status quo approach often missed these connections
and did not offer utility support proactively when patients had durable medical equipment.

7. Social isolation and treatment adherence: the SARSA model recognized patterns where social isolation contributed to poor medication adherence
or appointment attendance, recommending interventions that addressed underlying social needs, whereas the status quo approach often leaned toward
“watchful waiting” for such patients.

Analysis of the relationship between emergent qualitative themes
and quantitative outcomes revealed that cases involving
medical-social interaction themes (theme 3: “integrated
medical-social needs assessment” and theme 5: “housing-health
interactions”) accounted for 65% of the observed ARR.
Specifically, patients for whom the SARSA model identified
housing and respiratory interactions or food insecurity and
diabetes management needs showed the greatest benefit from
SARSA-guided interventions compared to status quo care
(NNT=4.2 vs overall NNT=8.3).

Discussion

Principal Findings
In this study, we examined whether reinforcement learning,
specifically a SARSA approach, could effectively assist care
management team members in prioritizing interventions for
patients with complex medical and social needs. To the best of
our knowledge, this is the first application of reinforcement
learning beyond physician- or nurse-led medical decisions,
entering into multidisciplinary care-team decision-making that
now reaches more than 80 million Americans [1]. The
SARSA-guided approach reduced acute care events by 12
percentage points compared to status quo practice, with
improved fairness metrics across demographic groups. This
ARR of 12% and RRR of 20.7% compares favorably to many
established clinical interventions. For context, statins for patients
with hypertension and cardiovascular risk factors show an ARR
of 28% to 54% and RRR of 36% to 67% [20]. Our NNT of 8.3
indicates substantial clinical relevance, falling within the range
considered highly effective for many pharmacological and
behavioral interventions in chronic disease management [20].

In our qualitative assessment, the greater effectiveness of the
SARSA model than the status quo approach appeared to derive

from its ability to learn optimal intervention sequences from
longitudinal patient trajectories [4,5] rather than relying on
individual experience and judgment, which may vary among
team members. The algorithm was particularly effective for
high-risk patients (NNT=5.2), suggesting its utility in targeting
intensive support to those most likely to benefit.

Our mixed methods approach [18] revealed several key features
of the SARSA model’s differences from the status quo approach.
The qualitative analysis identified 7 distinct patterns where the
SARSA model recognized complex interactions between
medical and social needs often missed in standard practice [9].
A particular strength of our study was the use of real-world care
management data, capturing both medical and social care details
often missing from conventional health records [1]. Previous
work in health care artificial intelligence (AI) has largely relied
on hospital or clinic-based data [21-23], limiting its applicability
to community-based care settings where most of the care
management occurs [1,8]. Our dataset uniquely captured the
full scope of care manager activities, including home visits,
social service visits, and “street medicine” interactions.

These findings compare favorably to other care management
interventions reported in the literature. Kangovi et al [24]
reported an NNT of 6 for preventing one 30-day readmission
with community health worker interventions, while Krieger et
al [25] found an NNT of 15 for increasing symptom-free days
by 1 day per 2 weeks in children with asthma. Our observed
NNT of 8.3 suggests that SARSA-guided care management
provides efficient targeting of interventions within the range of
established care management approaches.

Real-world deployment of SARSA-guided care management
faces several implementation challenges beyond technical
performance. Workflow integration requires careful
consideration of existing care team processes, with
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recommendations delivered through user interfaces that
complement rather than disrupt established clinical workflows.
Team training must address both technical literacy and trust
building, as care team members need to understand when and
why to follow or override algorithmic recommendations.
Override mechanisms must be easily accessible and well
documented to maintain clinical autonomy while capturing data
on recommendation acceptance patterns. Continuous monitoring
protocols are essential to detect model drift, reward hacking
behaviors, and changes in patient population characteristics that
might affect model performance.

The improved fairness metrics achieved by the SARSA model
are particularly noteworthy given concerns about AI
perpetuating health care disparities [15]. The reduction in
outcome disparities across gender (3.8% vs 5.3%) and race and
ethnicity (5.6% vs 8.9%) suggests that appropriately designed
AI systems may help promote more equitable care delivery. We
attribute this improvement to several factors, including the
diverse training dataset, explicit consideration of social
determinants in the state representation, and the action masking
mechanism that prevented unsafe or inappropriate interventions.

While our fairness analysis demonstrates improved equity
compared to status quo practice, the risk of unintended bias
reinforcement through AI systems requires ongoing vigilance.
We recommend implementing comprehensive bias mitigation
strategies, including regular algorithmic auditing across
demographic subgroups, continuous monitoring of
recommendation patterns for evidence of discriminatory
outcomes, and establishment of governance frameworks for
detecting and addressing potential bias reinforcement. Future
monitoring plans should include quarterly fairness assessments,
annual model retraining with updated data, and systematic
review of override patterns to identify the potential sources of
algorithmic bias. In addition, diverse stakeholder engagement
in model development and deployment can help identify blind
spots that technical metrics alone might miss.

Limitations
Several limitations should be noted. First, while our
counterfactual analyses showed promising results, prospective
validation through a randomized trial would provide stronger
evidence of effectiveness, particularly as our approach may not
fully account for time-varying unmeasured confounders
unaddressed by our individual-level causal inference
methodology. Second, our training data came from Medicaid
populations in 2 states, potentially limiting generalizability to
populations with higher incomes and different health care
insurance coverage or in regions with different care delivery
systems or social service landscapes. Third, while we
demonstrated improved fairness metrics [15-17], a longer-term
study would be needed to confirm sustained reductions in health
care disparities.

The generalizability of our findings is limited by the
single-organization implementation across Virginia and
Washington state Medicaid programs. Variations in state
Medicaid waiver designs, social service infrastructure
availability, and electronic health record integration capabilities
may substantially affect both state vector quality and action

feasibility in other contexts. For example, states with more
robust housing assistance programs may see different patterns
of housing-related intervention effectiveness, while states with
limited mental health infrastructure may require modified action
spaces. Successful adaptation to different health care contexts
will likely require retraining models with local data, adjusting
action spaces to reflect available services, and validating
performance across diverse patient populations and care delivery
systems.

Several additional limitations warrant consideration. The
potential for gaming behaviors (influencing the model to achieve
a desired recommendation) exists if care team members learn
to manipulate model inputs to achieve preferred
recommendations, which could undermine the integrity of the
decision support system. We recommend implementing
randomized auditing procedures and behavioral monitoring to
detect and prevent such gaming. The single-vendor, 2-state
implementation limits generalizability to other care management
programs with different patient populations, service availability,
or organizational structures. Future research should validate
these findings across diverse health care contexts and patient
populations.

The counterfactual evaluation approach, while methodologically
rigorous, relies on assumptions about unmeasured confounding
that cannot be fully validated without prospective
implementation. Although our sensitivity analyses suggest
robustness to unmeasured confounding, prospective randomized
trials remain the gold standard for causal inference in clinical
interventions. In addition, the 12-month follow-up period may
not capture longer-term effects of intervention sequencing
decisions, and the focus on acute care use may miss other
important outcomes, such as patient satisfaction, quality of life,
or care team efficiency.

Future Directions
Future research should explore several key directions. First,
extending the SARSA approach to include more granular social
determinants data and community resource availability could
further improve intervention targeting. Second, investigating
how to optimally integrate AI recommendations into care team
workflows while preserving human judgment and
relationship-based care delivery will be important. Third,
examining how SARSA-guided care management performs
across different health care contexts and patient populations
could identify areas for refined algorithm development.

Successful integration of SARSA-guided recommendations into
care team workflows requires careful attention to user interface
design, governance structures, and quality assurance
mechanisms. User interfaces should present recommendations
with clear rationale, confidence indicators, and easy override
options to maintain clinical decision-making autonomy.
Governance frameworks must address algorithm change
management, including procedures for model updates,
performance monitoring, and stakeholder communication.
Quality assurance protocols should include regular validation
of model predictions against observed outcomes, monitoring
for reward hacking behaviors where care teams might game the
system, and assessment of recommendation acceptance rates
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across different team members and patient populations. In
addition, clear escalation procedures must be established for
cases in which algorithmic recommendations conflict with
clinical judgment or patient preferences.

Conclusions
Our findings suggest that reinforcement learning may effectively
support complex care management decisions while promoting
more equitable care delivery. As care management programs
are mandated benefits for more than 80 million Americans and

health care systems increasingly diversify the types of
professionals working on these teams to address both medical
and social needs, particularly through nonphysician team
members for whom standardized guidelines are not universally
available, AI approaches that can learn optimal intervention
sequences while maintaining safety and fairness will become
increasingly valuable. Further research should focus on
prospective validation and optimal integration into care team
workflows.
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